[svn] / trunk / xvidcore / src / utils / mbtransquant.c Repository:
ViewVC logotype

View of /trunk/xvidcore/src/utils/mbtransquant.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 599 - (download) (annotate)
Wed Oct 16 20:58:22 2002 UTC (17 years ago) by h
File size: 17094 byte(s)
fixed stupid-programmer interlacing bug
fields could have been incorrectly handled due to missing bias test
/*****************************************************************************
 *
 *  XVID MPEG-4 VIDEO CODEC
 *  - MacroBlock transfer and quantization -
 *
 *  Copyright(C) 2002-2001 Michael Militzer <isibaar@xvid.org>
 *               2002-2001 Peter Ross <pross@xvid.org>
 *
 *  This program is an implementation of a part of one or more MPEG-4
 *  Video tools as specified in ISO/IEC 14496-2 standard.  Those intending
 *  to use this software module in hardware or software products are
 *  advised that its use may infringe existing patents or copyrights, and
 *  any such use would be at such party's own risk.  The original
 *  developer of this software module and his/her company, and subsequent
 *  editors and their companies, will have no liability for use of this
 *  software or modifications or derivatives thereof.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 * $Id: mbtransquant.c,v 1.17 2002-10-16 20:58:22 h Exp $
 *
 ****************************************************************************/

#include <string.h>

#include "../portab.h"
#include "mbfunctions.h"

#include "../global.h"
#include "mem_transfer.h"
#include "timer.h"
#include "../dct/fdct.h"
#include "../dct/idct.h"
#include "../quant/quant_mpeg4.h"
#include "../quant/quant_h263.h"
#include "../encoder.h"

#define MIN(X, Y) ((X)<(Y)?(X):(Y))
#define MAX(X, Y) ((X)>(Y)?(X):(Y))

#define TOOSMALL_LIMIT 3		/* skip blocks having a coefficient sum below this value */

/* this isnt pretty, but its better than 20 ifdefs */

void
MBTransQuantIntra(const MBParam * pParam,
				  FRAMEINFO * frame,
				  MACROBLOCK * pMB,
				  const uint32_t x_pos,
				  const uint32_t y_pos,
				  int16_t data[6 * 64],
				  int16_t qcoeff[6 * 64])
{

	uint32_t stride = pParam->edged_width;
	uint32_t stride2 = stride / 2;
	uint32_t next_block = stride * 8;
	uint32_t i;
	uint32_t iQuant = frame->quant;
	uint8_t *pY_Cur, *pU_Cur, *pV_Cur;
	IMAGE *pCurrent = &frame->image;

	pY_Cur = pCurrent->y + (y_pos << 4) * stride + (x_pos << 4);
	pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3);
	pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3);

	start_timer();
	transfer_8to16copy(&data[0 * 64], pY_Cur, stride);
	transfer_8to16copy(&data[1 * 64], pY_Cur + 8, stride);
	transfer_8to16copy(&data[2 * 64], pY_Cur + next_block, stride);
	transfer_8to16copy(&data[3 * 64], pY_Cur + next_block + 8, stride);
	transfer_8to16copy(&data[4 * 64], pU_Cur, stride2);
	transfer_8to16copy(&data[5 * 64], pV_Cur, stride2);
	stop_transfer_timer();

	start_timer();
	pMB->field_dct = 0;
	if ((frame->global_flags & XVID_INTERLACING) &&
		(x_pos>0) && (x_pos<pParam->mb_width-1) &&
		(y_pos>0) && (y_pos<pParam->mb_height-1)) {
		pMB->field_dct = MBDecideFieldDCT(data);
	}
	stop_interlacing_timer();

	for (i = 0; i < 6; i++) {
		uint32_t iDcScaler = get_dc_scaler(iQuant, i < 4);

		start_timer();
		fdct(&data[i * 64]);
		stop_dct_timer();

		if (pParam->m_quant_type == H263_QUANT) {
			start_timer();
			quant_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler);
			stop_quant_timer();

			start_timer();
			dequant_intra(&data[i * 64], &qcoeff[i * 64], iQuant, iDcScaler);
			stop_iquant_timer();
		} else {
			start_timer();
			quant4_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler);
			stop_quant_timer();

			start_timer();
			dequant4_intra(&data[i * 64], &qcoeff[i * 64], iQuant, iDcScaler);
			stop_iquant_timer();
		}

		start_timer();
		idct(&data[i * 64]);
		stop_idct_timer();
	}

	if (pMB->field_dct) {
		next_block = stride;
		stride *= 2;
	}

	start_timer();
	transfer_16to8copy(pY_Cur, &data[0 * 64], stride);
	transfer_16to8copy(pY_Cur + 8, &data[1 * 64], stride);
	transfer_16to8copy(pY_Cur + next_block, &data[2 * 64], stride);
	transfer_16to8copy(pY_Cur + next_block + 8, &data[3 * 64], stride);
	transfer_16to8copy(pU_Cur, &data[4 * 64], stride2);
	transfer_16to8copy(pV_Cur, &data[5 * 64], stride2);
	stop_transfer_timer();

}


uint8_t
MBTransQuantInter(const MBParam * pParam,
				  FRAMEINFO * frame,
				  MACROBLOCK * pMB,
				  const uint32_t x_pos,
				  const uint32_t y_pos,
				  int16_t data[6 * 64],
				  int16_t qcoeff[6 * 64])
{

	uint32_t stride = pParam->edged_width;
	uint32_t stride2 = stride / 2;
	uint32_t next_block = stride * 8;
	uint32_t i;
	uint32_t iQuant = frame->quant;
	uint8_t *pY_Cur, *pU_Cur, *pV_Cur;
	uint8_t cbp = 0;
	uint32_t sum;
	IMAGE *pCurrent = &frame->image;

	pY_Cur = pCurrent->y + (y_pos << 4) * stride + (x_pos << 4);
	pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3);
	pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3);

	start_timer();
	pMB->field_dct = 0;
	if ((frame->global_flags & XVID_INTERLACING) &&
		(x_pos>0) && (x_pos<pParam->mb_width-1) &&
		(y_pos>0) && (y_pos<pParam->mb_height-1)) {
		pMB->field_dct = MBDecideFieldDCT(data);
	}
	stop_interlacing_timer();

	for (i = 0; i < 6; i++) {
		/* 
		 *  no need to transfer 8->16-bit
		 * (this is performed already in motion compensation) 
		 */
		start_timer();
		fdct(&data[i * 64]);
		stop_dct_timer();

		if (pParam->m_quant_type == 0) {
			start_timer();
			sum = quant_inter(&qcoeff[i * 64], &data[i * 64], iQuant);
			stop_quant_timer();
		} else {
			start_timer();
			sum = quant4_inter(&qcoeff[i * 64], &data[i * 64], iQuant);
			stop_quant_timer();
		}

		if ((sum >= TOOSMALL_LIMIT) || (qcoeff[i*64] != 0) ||
			(qcoeff[i*64+1] != 0) || (qcoeff[i*64+8] != 0)) {

			if (pParam->m_quant_type == H263_QUANT) {
				start_timer();
				dequant_inter(&data[i * 64], &qcoeff[i * 64], iQuant);
				stop_iquant_timer();
			} else {
				start_timer();
				dequant4_inter(&data[i * 64], &qcoeff[i * 64], iQuant);
				stop_iquant_timer();
			}

			cbp |= 1 << (5 - i);

			start_timer();
			idct(&data[i * 64]);
			stop_idct_timer();
		}
	}

	if (pMB->field_dct) {
		next_block = stride;
		stride *= 2;
	}

	start_timer();
	if (cbp & 32)
		transfer_16to8add(pY_Cur, &data[0 * 64], stride);
	if (cbp & 16)
		transfer_16to8add(pY_Cur + 8, &data[1 * 64], stride);
	if (cbp & 8)
		transfer_16to8add(pY_Cur + next_block, &data[2 * 64], stride);
	if (cbp & 4)
		transfer_16to8add(pY_Cur + next_block + 8, &data[3 * 64], stride);
	if (cbp & 2)
		transfer_16to8add(pU_Cur, &data[4 * 64], stride2);
	if (cbp & 1)
		transfer_16to8add(pV_Cur, &data[5 * 64], stride2);
	stop_transfer_timer();

	return cbp;

}

void 
MBTransQuantIntra2(const MBParam * pParam,
				  FRAMEINFO * frame,
				  MACROBLOCK * pMB,
				  const uint32_t x_pos,
				  const uint32_t y_pos,
				  int16_t data[6 * 64],
				  int16_t qcoeff[6 * 64])
{
	MBTrans(pParam,frame,pMB,x_pos,y_pos,data);
	MBfDCT(pParam,frame,pMB,data);
	MBQuantIntra(pParam,frame,pMB,data,qcoeff);
	MBDeQuantIntra(pParam,frame->quant,data,qcoeff);
	MBiDCT(data,0x3F);
	MBTransAdd(pParam,frame,pMB,x_pos,y_pos,data,0x3F);
}


uint8_t
MBTransQuantInter2(const MBParam * pParam,
				  FRAMEINFO * frame,
				  MACROBLOCK * pMB,
				  const uint32_t x_pos,
				  const uint32_t y_pos,
				  int16_t data[6 * 64],
				  int16_t qcoeff[6 * 64])
{
	uint8_t cbp;
	
/* there is no MBTrans for Inter block, that's done in motion compensation already */

	MBfDCT(pParam,frame,pMB,data);
	cbp = MBQuantInter(pParam,frame->quant,data,qcoeff);
	MBDeQuantInter(pParam,frame->quant,data,qcoeff,cbp);
	MBiDCT(data,cbp);
	MBTransAdd(pParam,frame,pMB,x_pos,y_pos,data,cbp);
	
	return cbp;
}

uint8_t
MBTransQuantInterBVOP(const MBParam * pParam,
				  FRAMEINFO * frame,
				  MACROBLOCK * pMB,
				  int16_t data[6 * 64],
				  int16_t qcoeff[6 * 64])
{
	uint8_t cbp;
	
/* there is no MBTrans for Inter block, that's done in motion compensation already */

	MBfDCT(pParam,frame,pMB,data);
	cbp = MBQuantInter(pParam,frame->quant,data,qcoeff);

/* we don't have to DeQuant, iDCT and Transfer back data for B-frames */

	return cbp;
}


void
MBfDCT(const MBParam * pParam,
				  FRAMEINFO * frame,
				  MACROBLOCK * pMB,
				  int16_t data[6 * 64])
{	
	int i;

	start_timer();
	pMB->field_dct = 0;
	if ((frame->global_flags & XVID_INTERLACING)) {
		pMB->field_dct = MBDecideFieldDCT(data);
	}
	stop_interlacing_timer();

	for (i = 0; i < 6; i++) {
		start_timer();
		fdct(&data[i * 64]);
		stop_dct_timer();
	}
}

void
MBQuantDeQuantIntra(const MBParam * pParam,
				  	FRAMEINFO * frame,
				  	MACROBLOCK * pMB,
				  	int16_t qcoeff[6 * 64],
  				  	int16_t data[6*64])
{
	int i;
	int iQuant = frame->quant;

	start_timer();
	pMB->field_dct = 0;
	if ((frame->global_flags & XVID_INTERLACING)) {
		pMB->field_dct = MBDecideFieldDCT(data);
	}
	stop_interlacing_timer();

	for (i = 0; i < 6; i++) {
		uint32_t iDcScaler = get_dc_scaler(iQuant, i < 4);

		if (pParam->m_quant_type == H263_QUANT) {
			start_timer();
			quant_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler);
			stop_quant_timer();

			start_timer();
			dequant_intra(&data[i * 64], &qcoeff[i * 64], iQuant, iDcScaler);
			stop_iquant_timer();
		} else {
			start_timer();
			quant4_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler);
			stop_quant_timer();

			start_timer();
			dequant4_intra(&data[i * 64], &qcoeff[i * 64], iQuant, iDcScaler);
			stop_iquant_timer();
		}
	}
}

void
MBQuantIntra(const MBParam * pParam,
		  	 FRAMEINFO * frame,
			 MACROBLOCK *pMB,
			 int16_t data[6 * 64],
 		     int16_t qcoeff[6 * 64])
{
	int i;
	int iQuant = frame->quant;

	start_timer();
	pMB->field_dct = 0;
	if ((frame->global_flags & XVID_INTERLACING)) {
		pMB->field_dct = MBDecideFieldDCT(data);
	}
	stop_interlacing_timer();

	for (i = 0; i < 6; i++) {
		uint32_t iDcScaler = get_dc_scaler(iQuant, i < 4);

		if (pParam->m_quant_type == H263_QUANT) {
			start_timer();
			quant_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler);
			stop_quant_timer();
		} else {
			start_timer();
			quant4_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler);
			stop_quant_timer();
		}
	}
}

void
MBDeQuantIntra(const MBParam * pParam,
			   const int iQuant,
				  int16_t qcoeff[6 * 64],
				  int16_t data[6*64])
{
	int i;

	for (i = 0; i < 6; i++) {
		uint32_t iDcScaler = get_dc_scaler(iQuant, i < 4);

		if (pParam->m_quant_type == H263_QUANT) {
			start_timer();
			dequant_intra(&data[i * 64], &qcoeff[i * 64], iQuant, iDcScaler);
			stop_iquant_timer();
		} else {
			start_timer();
			dequant4_intra(&data[i * 64], &qcoeff[i * 64], iQuant, iDcScaler);
			stop_iquant_timer();
		}
	}
}

uint8_t
MBQuantInter(const MBParam * pParam,
			 const int iQuant,
				  int16_t data[6 * 64],
				  int16_t qcoeff[6 * 64])
{

	int i;
	uint8_t cbp = 0;
	int sum;

	for (i = 0; i < 6; i++) {
	
		if (pParam->m_quant_type == 0) {
			start_timer();
			sum = quant_inter(&qcoeff[i * 64], &data[i * 64], iQuant);
			stop_quant_timer();
		} else {
			start_timer();
			sum = quant4_inter(&qcoeff[i * 64], &data[i * 64], iQuant);
			stop_quant_timer();
		}

		if (sum >= TOOSMALL_LIMIT) {	// skip block ?
			cbp |= 1 << (5 - i);
		}
	}
	return cbp;
}

void 
MBDeQuantInter(	const MBParam * pParam,
				const int iQuant,
				  int16_t data[6 * 64],
				  int16_t qcoeff[6 * 64],
				  const uint8_t cbp)
{
	int i;

	for (i = 0; i < 6; i++) {
		if (cbp & (1 << (5 - i)))
		{	
			if (pParam->m_quant_type == H263_QUANT) {
				start_timer();
				dequant_inter(&data[i * 64], &qcoeff[i * 64], iQuant);
				stop_iquant_timer();
			} else {
				start_timer();
				dequant4_inter(&data[i * 64], &qcoeff[i * 64], iQuant);
				stop_iquant_timer();
			}
		}
	}
}

void
MBiDCT(	int16_t data[6 * 64],
		const uint8_t cbp)
{
	int i;

	for (i = 0; i < 6; i++) {
		if (cbp & (1 << (5 - i)))
		{	
			start_timer();
			idct(&data[i * 64]);
			stop_idct_timer();
		
		}
	}
}


void
MBTrans(const MBParam * pParam,
				  FRAMEINFO * frame,
				  MACROBLOCK * pMB,
				  const uint32_t x_pos,
				  const uint32_t y_pos,
				  int16_t data[6 * 64])
{
	uint32_t stride = pParam->edged_width;
	uint32_t stride2 = stride / 2;
	uint32_t next_block = stride * 8;
	uint8_t *pY_Cur, *pU_Cur, *pV_Cur;
	IMAGE *pCurrent = &frame->image;

	pY_Cur = pCurrent->y + (y_pos << 4) * stride + (x_pos << 4);
	pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3);
	pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3);

	start_timer();
	transfer_8to16copy(&data[0 * 64], pY_Cur, stride);
	transfer_8to16copy(&data[1 * 64], pY_Cur + 8, stride);
	transfer_8to16copy(&data[2 * 64], pY_Cur + next_block, stride);
	transfer_8to16copy(&data[3 * 64], pY_Cur + next_block + 8, stride);
	transfer_8to16copy(&data[4 * 64], pU_Cur, stride2);
	transfer_8to16copy(&data[5 * 64], pV_Cur, stride2);
	stop_transfer_timer();
}
	
void
MBTransAdd(const MBParam * pParam,
				  FRAMEINFO * frame,
				  MACROBLOCK * pMB,
				  const uint32_t x_pos,
				  const uint32_t y_pos,
				  int16_t data[6 * 64],
				  const uint8_t cbp)
{
	uint8_t *pY_Cur, *pU_Cur, *pV_Cur;
	uint32_t stride = pParam->edged_width;
	uint32_t stride2 = stride / 2;
	uint32_t next_block = stride * 8;
	IMAGE *pCurrent = &frame->image;

	pY_Cur = pCurrent->y + (y_pos << 4) * stride + (x_pos << 4);
	pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3);
	pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3);

	if (pMB->field_dct) {
		next_block = stride;
		stride *= 2;
	}

	start_timer();
	if (cbp & 32)
		transfer_16to8add(pY_Cur, &data[0 * 64], stride);
	if (cbp & 16)
		transfer_16to8add(pY_Cur + 8, &data[1 * 64], stride);
	if (cbp & 8)
		transfer_16to8add(pY_Cur + next_block, &data[2 * 64], stride);
	if (cbp & 4)
		transfer_16to8add(pY_Cur + next_block + 8, &data[3 * 64], stride);
	if (cbp & 2)
		transfer_16to8add(pU_Cur, &data[4 * 64], stride2);
	if (cbp & 1)
		transfer_16to8add(pV_Cur, &data[5 * 64], stride2);
	stop_transfer_timer();
}



/* if sum(diff between field lines) < sum(diff between frame lines), use field dct */


uint32_t
MBDecideFieldDCT(int16_t data[6 * 64])
{

	const uint8_t blocks[] =
		{ 0 * 64, 0 * 64, 0 * 64, 0 * 64, 2 * 64, 2 * 64, 2 * 64, 2 * 64 };
	const uint8_t lines[] = { 0, 16, 32, 48, 0, 16, 32, 48 };

	int frame = 0, field = 0;
	int i, j;

	for (i = 0; i < 7; ++i) {
		for (j = 0; j < 8; ++j) {
			frame +=
				ABS(data[0 * 64 + (i + 1) * 8 + j] - data[0 * 64 + i * 8 + j]);
			frame +=
				ABS(data[1 * 64 + (i + 1) * 8 + j] - data[1 * 64 + i * 8 + j]);
			frame +=
				ABS(data[2 * 64 + (i + 1) * 8 + j] - data[2 * 64 + i * 8 + j]);
			frame +=
				ABS(data[3 * 64 + (i + 1) * 8 + j] - data[3 * 64 + i * 8 + j]);

			field +=
				ABS(data[blocks[i + 1] + lines[i + 1] + j] -
					data[blocks[i] + lines[i] + j]);
			field +=
				ABS(data[blocks[i + 1] + lines[i + 1] + 8 + j] -
					data[blocks[i] + lines[i] + 8 + j]);
			field +=
				ABS(data[blocks[i + 1] + 64 + lines[i + 1] + j] -
					data[blocks[i] + 64 + lines[i] + j]);
			field +=
				ABS(data[blocks[i + 1] + 64 + lines[i + 1] + 8 + j] -
					data[blocks[i] + 64 + lines[i] + 8 + j]);
		}
	}

	if (frame > (field + 350)) {
		MBFrameToField(data);
	}

	return (frame > (field + 350));
}


/* deinterlace Y blocks vertically */

#define MOVLINE(X,Y) memcpy(X, Y, sizeof(tmp))
#define LINE(X,Y)    &data[X*64 + Y*8]

void
MBFrameToField(int16_t data[6 * 64])
{
	int16_t tmp[8];

	/* left blocks */

	// 1=2, 2=4, 4=8, 8=1
	MOVLINE(tmp, LINE(0, 1));
	MOVLINE(LINE(0, 1), LINE(0, 2));
	MOVLINE(LINE(0, 2), LINE(0, 4));
	MOVLINE(LINE(0, 4), LINE(2, 0));
	MOVLINE(LINE(2, 0), tmp);

	// 3=6, 6=12, 12=9, 9=3
	MOVLINE(tmp, LINE(0, 3));
	MOVLINE(LINE(0, 3), LINE(0, 6));
	MOVLINE(LINE(0, 6), LINE(2, 4));
	MOVLINE(LINE(2, 4), LINE(2, 1));
	MOVLINE(LINE(2, 1), tmp);

	// 5=10, 10=5
	MOVLINE(tmp, LINE(0, 5));
	MOVLINE(LINE(0, 5), LINE(2, 2));
	MOVLINE(LINE(2, 2), tmp);

	// 7=14, 14=13, 13=11, 11=7
	MOVLINE(tmp, LINE(0, 7));
	MOVLINE(LINE(0, 7), LINE(2, 6));
	MOVLINE(LINE(2, 6), LINE(2, 5));
	MOVLINE(LINE(2, 5), LINE(2, 3));
	MOVLINE(LINE(2, 3), tmp);

	/* right blocks */

	// 1=2, 2=4, 4=8, 8=1
	MOVLINE(tmp, LINE(1, 1));
	MOVLINE(LINE(1, 1), LINE(1, 2));
	MOVLINE(LINE(1, 2), LINE(1, 4));
	MOVLINE(LINE(1, 4), LINE(3, 0));
	MOVLINE(LINE(3, 0), tmp);

	// 3=6, 6=12, 12=9, 9=3
	MOVLINE(tmp, LINE(1, 3));
	MOVLINE(LINE(1, 3), LINE(1, 6));
	MOVLINE(LINE(1, 6), LINE(3, 4));
	MOVLINE(LINE(3, 4), LINE(3, 1));
	MOVLINE(LINE(3, 1), tmp);

	// 5=10, 10=5
	MOVLINE(tmp, LINE(1, 5));
	MOVLINE(LINE(1, 5), LINE(3, 2));
	MOVLINE(LINE(3, 2), tmp);

	// 7=14, 14=13, 13=11, 11=7
	MOVLINE(tmp, LINE(1, 7));
	MOVLINE(LINE(1, 7), LINE(3, 6));
	MOVLINE(LINE(3, 6), LINE(3, 5));
	MOVLINE(LINE(3, 5), LINE(3, 3));
	MOVLINE(LINE(3, 3), tmp);
}

No admin address has been configured
ViewVC Help
Powered by ViewVC 1.0.4