Parent Directory | Revision Log
interlacing speedup - transfer strides used instead of manual field-to-frame conversion
/****************************************************************************** * * * This file is part of XviD, a free MPEG-4 video encoder/decoder * * * * XviD is an implementation of a part of one or more MPEG-4 Video tools * * as specified in ISO/IEC 14496-2 standard. Those intending to use this * * software module in hardware or software products are advised that its * * use may infringe existing patents or copyrights, and any such use * * would be at such party's own risk. The original developer of this * * software module and his/her company, and subsequent editors and their * * companies, will have no liability for use of this software or * * modifications or derivatives thereof. * * * * XviD is free software; you can redistribute it and/or modify it * * under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * XviD is distributed in the hope that it will be useful, but * * WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the Free Software * * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * ******************************************************************************/ /****************************************************************************** * * * mbtransquant.c * * * * Copyright (C) 2001 - Peter Ross <pross@cs.rmit.edu.au> * * Copyright (C) 2001 - Michael Militzer <isibaar@xvid.org> * * * * For more information visit the XviD homepage: http://www.xvid.org * * * ******************************************************************************/ /****************************************************************************** * * * Revision history: * * * * 29.03.2002 interlacing speedup - used transfer strides instead of * manual field-to-frame conversion * 26.03.2002 interlacing support - moved transfers outside loops * 22.12.2001 get_dc_scaler() moved to common.h * 19.11.2001 introduced coefficient thresholding (Isibaar) * * 17.11.2001 initial version * * * ******************************************************************************/ #include <string.h> #include "../portab.h" #include "mbfunctions.h" #include "../global.h" #include "mem_transfer.h" #include "timer.h" #include "../dct/fdct.h" #include "../dct/idct.h" #include "../quant/quant_mpeg4.h" #include "../quant/quant_h263.h" #include "../encoder.h" #define MIN(X, Y) ((X)<(Y)?(X):(Y)) #define MAX(X, Y) ((X)>(Y)?(X):(Y)) #define TOOSMALL_LIMIT 1 /* skip blocks having a coefficient sum below this value */ /* this isnt pretty, but its better than 20 ifdefs */ void MBTransQuantIntra(const MBParam *pParam, MACROBLOCK * pMB, const uint32_t x_pos, const uint32_t y_pos, int16_t data[6*64], int16_t qcoeff[6*64], IMAGE * const pCurrent) { uint32_t stride = pParam->edged_width; uint32_t stride2 = stride / 2; uint32_t next_block = stride * 8; uint32_t i; uint32_t iQuant = pParam->quant; uint8_t *pY_Cur, *pU_Cur, *pV_Cur; pY_Cur = pCurrent->y + (y_pos << 4) * stride + (x_pos << 4); pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3); pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3); start_timer(); transfer_8to16copy(&data[0*64], pY_Cur, stride); transfer_8to16copy(&data[1*64], pY_Cur + 8, stride); transfer_8to16copy(&data[2*64], pY_Cur + next_block, stride); transfer_8to16copy(&data[3*64], pY_Cur + next_block + 8,stride); transfer_8to16copy(&data[4*64], pU_Cur, stride2); transfer_8to16copy(&data[5*64], pV_Cur, stride2); stop_transfer_timer(); start_timer(); pMB->field_dct = 0; if (pParam->global_flags & XVID_INTERLACING) { pMB->field_dct = MBDecideFieldDCT(data); } stop_interlacing_timer(); for(i = 0; i < 6; i++) { uint32_t iDcScaler = get_dc_scaler(iQuant, i < 4); start_timer(); fdct(&data[i*64]); stop_dct_timer(); if (pParam->quant_type == H263_QUANT) { start_timer(); quant_intra(&qcoeff[i*64], &data[i*64], iQuant, iDcScaler); stop_quant_timer(); start_timer(); dequant_intra(&data[i*64], &qcoeff[i*64], iQuant, iDcScaler); stop_iquant_timer(); } else { start_timer(); quant4_intra(&qcoeff[i*64], &data[i*64], iQuant, iDcScaler); stop_quant_timer(); start_timer(); dequant4_intra(&data[i*64], &qcoeff[i*64], iQuant, iDcScaler); stop_iquant_timer(); } start_timer(); idct(&data[i*64]); stop_idct_timer(); } if (pMB->field_dct) { next_block = stride; stride *= 2; } start_timer(); transfer_16to8copy(pY_Cur, &data[0*64], stride); transfer_16to8copy(pY_Cur + 8, &data[1*64], stride); transfer_16to8copy(pY_Cur + next_block, &data[2*64], stride); transfer_16to8copy(pY_Cur + next_block + 8, &data[3*64], stride); transfer_16to8copy(pU_Cur, &data[4*64], stride2); transfer_16to8copy(pV_Cur, &data[5*64], stride2); stop_transfer_timer(); } uint8_t MBTransQuantInter(const MBParam *pParam, MACROBLOCK * pMB, const uint32_t x_pos, const uint32_t y_pos, int16_t data[6*64], int16_t qcoeff[6*64], IMAGE * const pCurrent) { uint32_t stride = pParam->edged_width; uint32_t stride2 = stride / 2; uint32_t next_block = stride * 8; uint32_t i; uint32_t iQuant = pParam->quant; uint8_t *pY_Cur, *pU_Cur, *pV_Cur; uint8_t cbp = 0; uint32_t sum; pY_Cur = pCurrent->y + (y_pos << 4) * stride + (x_pos << 4); pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3); pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3); start_timer(); pMB->field_dct = 0; if (pParam->global_flags & XVID_INTERLACING) { pMB->field_dct = MBDecideFieldDCT(data); } stop_interlacing_timer(); for(i = 0; i < 6; i++) { /* * no need to transfer 8->16-bit * (this is performed already in motion compensation) */ start_timer(); fdct(&data[i*64]); stop_dct_timer(); if (pParam->quant_type == 0) { start_timer(); sum = quant_inter(&qcoeff[i*64], &data[i*64], iQuant); stop_quant_timer(); } else { start_timer(); sum = quant4_inter(&qcoeff[i*64], &data[i*64], iQuant); stop_quant_timer(); } if(sum >= TOOSMALL_LIMIT) { // skip block ? if (pParam->quant_type == H263_QUANT) { start_timer(); dequant_inter(&data[i*64], &qcoeff[i*64], iQuant); stop_iquant_timer(); } else { start_timer(); dequant4_inter(&data[i*64], &qcoeff[i*64], iQuant); stop_iquant_timer(); } cbp |= 1 << (5 - i); start_timer(); idct(&data[i*64]); stop_idct_timer(); } } if (pMB->field_dct) { next_block = stride; stride *= 2; } start_timer(); if (cbp & 32) transfer_16to8add(pY_Cur, &data[0*64], stride); if (cbp & 16) transfer_16to8add(pY_Cur + 8, &data[1*64], stride); if (cbp & 8) transfer_16to8add(pY_Cur + next_block, &data[2*64], stride); if (cbp & 4) transfer_16to8add(pY_Cur + next_block + 8, &data[3*64], stride); if (cbp & 2) transfer_16to8add(pU_Cur, &data[4*64], stride2); if (cbp & 1) transfer_16to8add(pV_Cur, &data[5*64], stride2); stop_transfer_timer(); return cbp; } /* if sum(diff between field lines) < sum(diff between frame lines), use field dct */ #define ABS(X) (X)<0 ? -(X) : (X) uint32_t MBDecideFieldDCT(int16_t data[6*64]) { const uint8_t blocks[] = {0*64, 0*64, 0*64, 0*64, 2*64, 2*64, 2*64, 2*64}; const uint8_t lines[] = {0, 16, 32, 48, 0, 16, 32, 48}; int frame = 0, field = 0; int i, j; for (i=0 ; i<7 ; ++i) { for (j=0 ; j<8 ; ++j) { frame += ABS(data[0*64 + (i+1)*8 + j] - data[0*64 + i*8 + j]); frame += ABS(data[1*64 + (i+1)*8 + j] - data[1*64 + i*8 + j]); frame += ABS(data[2*64 + (i+1)*8 + j] - data[2*64 + i*8 + j]); frame += ABS(data[3*64 + (i+1)*8 + j] - data[3*64 + i*8 + j]); field += ABS(data[blocks[i+1] + lines[i+1] + j] -\ data[blocks[i ] + lines[i ] + j]); field += ABS(data[blocks[i+1] + lines[i+1] + 8 + j] -\ data[blocks[i ] + lines[i ] + 8 + j]); field += ABS(data[blocks[i+1] + 64 + lines[i+1] + j] -\ data[blocks[i ] + 64 + lines[i ] + j]); field += ABS(data[blocks[i+1] + 64 + lines[i+1] + 8 + j] -\ data[blocks[i ] + 64 + lines[i ] + 8 + j]); } } if (frame > field) { MBFrameToField(data); } return (frame > field); } /* deinterlace Y blocks vertically */ #define MOVLINE(X,Y) memcpy(X, Y, sizeof(tmp)) #define LINE(X,Y) &data[X*64 + Y*8] void MBFrameToField(int16_t data[6*64]) { int16_t tmp[8]; /* left blocks */ // 1=2, 2=4, 4=8, 8=1 MOVLINE(tmp, LINE(0,1)); MOVLINE(LINE(0,1), LINE(0,2)); MOVLINE(LINE(0,2), LINE(0,4)); MOVLINE(LINE(0,4), LINE(2,0)); MOVLINE(LINE(2,0), tmp); // 3=6, 6=12, 12=9, 9=3 MOVLINE(tmp, LINE(0,3)); MOVLINE(LINE(0,3), LINE(0,6)); MOVLINE(LINE(0,6), LINE(2,4)); MOVLINE(LINE(2,4), LINE(2,1)); MOVLINE(LINE(2,1), tmp); // 5=10, 10=5 MOVLINE(tmp, LINE(0,5)); MOVLINE(LINE(0,5), LINE(2,2)); MOVLINE(LINE(2,2), tmp); // 7=14, 14=13, 13=11, 11=7 MOVLINE(tmp, LINE(0,7)); MOVLINE(LINE(0,7), LINE(2,6)); MOVLINE(LINE(2,6), LINE(2,5)); MOVLINE(LINE(2,5), LINE(2,3)); MOVLINE(LINE(2,3), tmp); /* right blocks */ // 1=2, 2=4, 4=8, 8=1 MOVLINE(tmp, LINE(1,1)); MOVLINE(LINE(1,1), LINE(1,2)); MOVLINE(LINE(1,2), LINE(1,4)); MOVLINE(LINE(1,4), LINE(3,0)); MOVLINE(LINE(3,0), tmp); // 3=6, 6=12, 12=9, 9=3 MOVLINE(tmp, LINE(1,3)); MOVLINE(LINE(1,3), LINE(1,6)); MOVLINE(LINE(1,6), LINE(3,4)); MOVLINE(LINE(3,4), LINE(3,1)); MOVLINE(LINE(3,1), tmp); // 5=10, 10=5 MOVLINE(tmp, LINE(1,5)); MOVLINE(LINE(1,5), LINE(3,2)); MOVLINE(LINE(3,2), tmp); // 7=14, 14=13, 13=11, 11=7 MOVLINE(tmp, LINE(1,7)); MOVLINE(LINE(1,7), LINE(3,6)); MOVLINE(LINE(3,6), LINE(3,5)); MOVLINE(LINE(3,5), LINE(3,3)); MOVLINE(LINE(3,3), tmp); }
No admin address has been configured | ViewVC Help |
Powered by ViewVC 1.0.4 |