/************************************************************************** * * XVID MPEG-4 VIDEO CODEC * - MB prediction header file - * * This program is an implementation of a part of one or more MPEG-4 * Video tools as specified in ISO/IEC 14496-2 standard. Those intending * to use this software module in hardware or software products are * advised that its use may infringe existing patents or copyrights, and * any such use would be at such party's own risk. The original * developer of this software module and his/her company, and subsequent * editors and their companies, will have no liability for use of this * software or modifications or derivatives thereof. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the xvid_free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the xvid_free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * $Id: mbprediction.h,v 1.11 2002-06-30 10:46:29 suxen_drol Exp $ * *************************************************************************/ /****************************************************************************** * * * Revision history: * * * * 29.06.2002 get_pmvdata() bounding * * * ******************************************************************************/ #ifndef _MBPREDICTION_H_ #define _MBPREDICTION_H_ #include "../portab.h" #include "../decoder.h" #include "../global.h" #define MIN(X, Y) ((X)<(Y)?(X):(Y)) #define MAX(X, Y) ((X)>(Y)?(X):(Y)) /* very large value */ #define MV_MAX_ERROR (4096 * 256) #define MVequal(A,B) ( ((A).x)==((B).x) && ((A).y)==((B).y) ) void MBPrediction(FRAMEINFO * frame, /* <-- The parameter for ACDC and MV prediction */ uint32_t x_pos, /* <-- The x position of the MB to be searched */ uint32_t y_pos, /* <-- The y position of the MB to be searched */ uint32_t x_dim, /* <-- Number of macroblocks in a row */ int16_t * qcoeff); /* <-> The quantized DCT coefficients */ void add_acdc(MACROBLOCK * pMB, uint32_t block, int16_t dct_codes[64], uint32_t iDcScaler, int16_t predictors[8]); void predict_acdc(MACROBLOCK * pMBs, uint32_t x, uint32_t y, uint32_t mb_width, uint32_t block, int16_t qcoeff[64], uint32_t current_quant, int32_t iDcScaler, int16_t predictors[8], const int bound); /* get_pmvdata returns the median predictor and nothing else */ static __inline VECTOR get_pmv(const MACROBLOCK * const pMBs, const uint32_t x, const uint32_t y, const uint32_t x_dim, const uint32_t block) { int xin1, xin2, xin3; int yin1, yin2, yin3; int vec1, vec2, vec3; VECTOR lneigh, tneigh, trneigh; /* left neighbour, top neighbour, topright neighbour */ VECTOR median; static VECTOR zeroMV = { 0, 0 }; uint32_t index = x + y * x_dim; /* first row (special case) */ if (y == 0 && (block == 0 || block == 1)) { if ((x == 0) && (block == 0)) // first column, first block { return zeroMV; } if (block == 1) // second block; has only a left neighbour { return pMBs[index].mvs[0]; } else { /* block==0, but x!=0, so again, there is a left neighbour */ return pMBs[index - 1].mvs[1]; } } /* * MODE_INTER, vm18 page 48 * MODE_INTER4V vm18 page 51 * * (x,y-1) (x+1,y-1) * [ | ] [ | ] * [ 2 | 3 ] [ 2 | ] * * (x-1,y) (x,y) (x+1,y) * [ | 1 ] [ 0 | 1 ] [ 0 | ] * [ | 3 ] [ 2 | 3 ] [ | ] */ switch (block) { case 0: xin1 = x - 1; yin1 = y; vec1 = 1; /* left */ xin2 = x; yin2 = y - 1; vec2 = 2; /* top */ xin3 = x + 1; yin3 = y - 1; vec3 = 2; /* top right */ break; case 1: xin1 = x; yin1 = y; vec1 = 0; xin2 = x; yin2 = y - 1; vec2 = 3; xin3 = x + 1; yin3 = y - 1; vec3 = 2; break; case 2: xin1 = x - 1; yin1 = y; vec1 = 3; xin2 = x; yin2 = y; vec2 = 0; xin3 = x; yin3 = y; vec3 = 1; break; default: xin1 = x; yin1 = y; vec1 = 2; xin2 = x; yin2 = y; vec2 = 0; xin3 = x; yin3 = y; vec3 = 1; } if (xin1 < 0 || /* yin1 < 0 || */ xin1 >= (int32_t) x_dim) { lneigh = zeroMV; } else { lneigh = pMBs[xin1 + yin1 * x_dim].mvs[vec1]; } if (xin2 < 0 || /* yin2 < 0 || */ xin2 >= (int32_t) x_dim) { tneigh = zeroMV; } else { tneigh = pMBs[xin2 + yin2 * x_dim].mvs[vec2]; } if (xin3 < 0 || /* yin3 < 0 || */ xin3 >= (int32_t) x_dim) { trneigh = zeroMV; } else { trneigh = pMBs[xin3 + yin3 * x_dim].mvs[vec3]; } /* median,minimum */ median.x = MIN(MAX(lneigh.x, tneigh.x), MIN(MAX(tneigh.x, trneigh.x), MAX(lneigh.x, trneigh.x))); median.y = MIN(MAX(lneigh.y, tneigh.y), MIN(MAX(tneigh.y, trneigh.y), MAX(lneigh.y, trneigh.y))); return median; } int get_pmvdata2(const MACROBLOCK * const pMBs, const uint32_t x, const uint32_t y, const uint32_t x_dim, const uint32_t block, VECTOR * const pmv, int32_t * const psad, const int bound); /* This is somehow a copy of get_pmv, but returning all MVs and Minimum SAD instead of only Median MV */ static __inline int get_pmvdata(const MACROBLOCK * const pMBs, const uint32_t x, const uint32_t y, const uint32_t x_dim, const uint32_t block, VECTOR * const pmv, int32_t * const psad) { /* * pmv are filled with: * [0]: Median (or whatever is correct in a special case) * [1]: left neighbour * [2]: top neighbour * [3]: topright neighbour * psad are filled with: * [0]: minimum of [1] to [3] * [1]: left neighbour's SAD (NB:[1] to [3] are actually not needed) * [2]: top neighbour's SAD * [3]: topright neighbour's SAD */ int xin1, xin2, xin3; int yin1, yin2, yin3; int vec1, vec2, vec3; uint32_t index = x + y * x_dim; const VECTOR zeroMV = { 0, 0 }; // first row of blocks (special case) if (y == 0 && (block == 0 || block == 1)) { if ((x == 0) && (block == 0)) // first column, first block { pmv[0] = pmv[1] = pmv[2] = pmv[3] = zeroMV; psad[0] = 0; psad[1] = psad[2] = psad[3] = MV_MAX_ERROR; return 0; } if (block == 1) // second block; has only a left neighbour { pmv[0] = pmv[1] = pMBs[index].mvs[0]; pmv[2] = pmv[3] = zeroMV; psad[0] = psad[1] = pMBs[index].sad8[0]; psad[2] = psad[3] = MV_MAX_ERROR; return 0; } else { /* block==0, but x!=0, so again, there is a left neighbour */ pmv[0] = pmv[1] = pMBs[index - 1].mvs[1]; pmv[2] = pmv[3] = zeroMV; psad[0] = psad[1] = pMBs[index - 1].sad8[1]; psad[2] = psad[3] = MV_MAX_ERROR; return 0; } } /* * MODE_INTER, vm18 page 48 * MODE_INTER4V vm18 page 51 * * (x,y-1) (x+1,y-1) * [ | ] [ | ] * [ 2 | 3 ] [ 2 | ] * * (x-1,y) (x,y) (x+1,y) * [ | 1 ] [ 0 | 1 ] [ 0 | ] * [ | 3 ] [ 2 | 3 ] [ | ] */ switch (block) { case 0: xin1 = x - 1; yin1 = y; vec1 = 1; /* left */ xin2 = x; yin2 = y - 1; vec2 = 2; /* top */ xin3 = x + 1; yin3 = y - 1; vec3 = 2; /* top right */ break; case 1: xin1 = x; yin1 = y; vec1 = 0; xin2 = x; yin2 = y - 1; vec2 = 3; xin3 = x + 1; yin3 = y - 1; vec3 = 2; break; case 2: xin1 = x - 1; yin1 = y; vec1 = 3; xin2 = x; yin2 = y; vec2 = 0; xin3 = x; yin3 = y; vec3 = 1; break; default: xin1 = x; yin1 = y; vec1 = 2; xin2 = x; yin2 = y; vec2 = 0; xin3 = x; yin3 = y; vec3 = 1; } if (xin1 < 0 || xin1 >= (int32_t) x_dim) { pmv[1] = zeroMV; psad[1] = MV_MAX_ERROR; } else { pmv[1] = pMBs[xin1 + yin1 * x_dim].mvs[vec1]; psad[1] = pMBs[xin1 + yin1 * x_dim].sad8[vec1]; } if (xin2 < 0 || xin2 >= (int32_t) x_dim) { pmv[2] = zeroMV; psad[2] = MV_MAX_ERROR; } else { pmv[2] = pMBs[xin2 + yin2 * x_dim].mvs[vec2]; psad[2] = pMBs[xin2 + yin2 * x_dim].sad8[vec2]; } if (xin3 < 0 || xin3 >= (int32_t) x_dim) { pmv[3] = zeroMV; psad[3] = MV_MAX_ERROR; } else { pmv[3] = pMBs[xin3 + yin3 * x_dim].mvs[vec3]; psad[3] = pMBs[xin2 + yin2 * x_dim].sad8[vec3]; } if ((MVequal(pmv[1], pmv[2])) && (MVequal(pmv[1], pmv[3]))) { pmv[0] = pmv[1]; psad[0] = MIN(MIN(psad[1], psad[2]), psad[3]); return 1; } /* median,minimum */ pmv[0].x = MIN(MAX(pmv[1].x, pmv[2].x), MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); pmv[0].y = MIN(MAX(pmv[1].y, pmv[2].y), MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); psad[0] = MIN(MIN(psad[1], psad[2]), psad[3]); return 0; } #endif /* _MBPREDICTION_H_ */