--- trunk/xvidcore/src/motion/motion_comp.c 2003/03/22 00:31:35 934 +++ trunk/xvidcore/src/motion/motion_comp.c 2003/03/22 13:41:11 935 @@ -29,16 +29,16 @@ #endif -/* This is borrowed from decoder.c */ +/* This is borrowed from decoder.c */ static __inline int gmc_sanitize(int value, int quarterpel, int fcode) { int length = 1 << (fcode+4); // if (quarterpel) value *= 2; - if (value < -length) + if (value < -length) return -length; - else if (value >= length) + else if (value >= length) return length-1; else return value; } @@ -59,7 +59,7 @@ return n; #else __asm { - bsr eax, value + bsr eax, value inc eax } #endif @@ -98,20 +98,20 @@ } else ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); transfer_8to16sub(dct_codes, cur + y * stride + x, - ptr, stride); + ptr, stride); transfer_8to16sub(dct_codes+64, cur + y * stride + x + 8, - ptr + 8, stride); + ptr + 8, stride); transfer_8to16sub(dct_codes+128, cur + y * stride + x + 8*stride, - ptr + 8*stride, stride); + ptr + 8*stride, stride); transfer_8to16sub(dct_codes+192, cur + y * stride + x + 8*stride+8, - ptr + 8*stride + 8, stride); + ptr + 8*stride + 8, stride); } else { //reduced_resolution - + x *= 2; y *= 2; ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); - + filter_18x18_to_8x8(dct_codes, cur+y*stride + x, stride); filter_diff_18x18_to_8x8(dct_codes, ptr, stride); @@ -168,49 +168,11 @@ filter_18x18_to_8x8(dct_codes, cur+y*stride + x, stride); filter_diff_18x18_to_8x8(dct_codes, ptr, stride); - + transfer16x16_copy(cur + y*stride + x, ptr, stride); } } - -static __inline void -compensate16x16_interpolate_ro(int16_t * const dct_codes, - const uint8_t * const cur, - const uint8_t * const ref, - const uint8_t * const refh, - const uint8_t * const refv, - const uint8_t * const refhv, - uint8_t * const tmp, - const uint32_t x, const uint32_t y, - const int32_t dx, const int32_t dy, - const int32_t stride, - const int quarterpel) -{ - const uint8_t * ptr; - - if(quarterpel) { - if ((dx&3) | (dy&3)) { - interpolate16x16_quarterpel(tmp - y * stride - x, - (uint8_t *) ref, tmp + 32, - tmp + 64, tmp + 96, x, y, dx, dy, stride, 0); - ptr = tmp; - } else ptr = ref + (y + dy/4)*stride + x + dx/4; // fullpixel position - - } else ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); - - transfer_8to16subro(dct_codes, cur + y * stride + x, - ptr, stride); - transfer_8to16subro(dct_codes+64, cur + y * stride + x + 8, - ptr + 8, stride); - transfer_8to16subro(dct_codes+128, cur + y * stride + x + 8*stride, - ptr + 8*stride, stride); - transfer_8to16subro(dct_codes+192, cur + y * stride + x + 8*stride+8, - ptr + 8*stride + 8, stride); - -} - - /* XXX: slow, inelegant... */ static void interpolate18x18_switch(uint8_t * const cur, @@ -249,11 +211,11 @@ if (!rrv) { transfer_8to16sub(coeff, Cur->u + 8 * j * stride + 8 * i, - interpolate8x8_switch2(temp, Ref->u, 8 * i, 8 * j, + interpolate8x8_switch2(temp, Ref->u, 8 * i, 8 * j, dx, dy, stride, rounding), stride); transfer_8to16sub(coeff + 64, Cur->v + 8 * j * stride + 8 * i, - interpolate8x8_switch2(temp, Ref->v, 8 * i, 8 * j, + interpolate8x8_switch2(temp, Ref->v, 8 * i, 8 * j, dx, dy, stride, rounding), stride); } else { @@ -276,35 +238,34 @@ void MBMotionCompensation(MACROBLOCK * const mb, - const uint32_t i, - const uint32_t j, - const IMAGE * const ref, - const IMAGE * const refh, - const IMAGE * const refv, - const IMAGE * const refhv, - const IMAGE * const refGMC, - IMAGE * const cur, - int16_t * dct_codes, - const uint32_t width, - const uint32_t height, - const uint32_t edged_width, - const int32_t quarterpel, - const int reduced_resolution, - const int32_t rounding) + const uint32_t i, + const uint32_t j, + const IMAGE * const ref, + const IMAGE * const refh, + const IMAGE * const refv, + const IMAGE * const refhv, + const IMAGE * const refGMC, + IMAGE * const cur, + int16_t * dct_codes, + const uint32_t width, + const uint32_t height, + const uint32_t edged_width, + const int32_t quarterpel, + const int reduced_resolution, + const int32_t rounding) { int32_t dx; int32_t dy; - uint8_t * const tmp = refv->u; if ( (!reduced_resolution) && (mb->mode == MODE_NOT_CODED) ) { /* quick copy for early SKIP */ /* early SKIP is only activated in P-VOPs, not in S-VOPs, so mcsel can never be 1 */ transfer16x16_copy(cur->y + 16 * (i + j * edged_width), - ref->y + 16 * (i + j * edged_width), - edged_width); - + ref->y + 16 * (i + j * edged_width), + edged_width); + transfer8x8_copy(cur->u + 8 * (i + j * edged_width/2), ref->u + 8 * (i + j * edged_width/2), edged_width / 2); @@ -314,23 +275,23 @@ return; } - if ((mb->mode == MODE_NOT_CODED || mb->mode == MODE_INTER + if ((mb->mode == MODE_NOT_CODED || mb->mode == MODE_INTER || mb->mode == MODE_INTER_Q)) { /* reduced resolution + GMC: not possible */ if (mb->mcsel) { - + /* call normal routine once, easier than "if (mcsel)"ing all the time */ - + transfer_8to16sub(&dct_codes[0*64], cur->y + 16*j*edged_width + 16*i, - refGMC->y + 16*j*edged_width + 16*i, edged_width); + refGMC->y + 16*j*edged_width + 16*i, edged_width); transfer_8to16sub(&dct_codes[1*64], cur->y + 16*j*edged_width + 16*i+8, - refGMC->y + 16*j*edged_width + 16*i+8, edged_width); + refGMC->y + 16*j*edged_width + 16*i+8, edged_width); transfer_8to16sub(&dct_codes[2*64], cur->y + (16*j+8)*edged_width + 16*i, - refGMC->y + (16*j+8)*edged_width + 16*i, edged_width); + refGMC->y + (16*j+8)*edged_width + 16*i, edged_width); transfer_8to16sub(&dct_codes[3*64], cur->y + (16*j+8)*edged_width + 16*i+8, - refGMC->y + (16*j+8)*edged_width + 16*i+8, edged_width); + refGMC->y + (16*j+8)*edged_width + 16*i+8, edged_width); /* lumi is needed earlier for mode decision, but chroma should be done block-based, but it isn't, yet. */ @@ -344,7 +305,7 @@ } /* ordinary compensation */ - + dx = (quarterpel ? mb->qmvs[0].x : mb->mvs[0].x); dy = (quarterpel ? mb->qmvs[0].y : mb->mvs[0].y); @@ -357,9 +318,8 @@ refv->y, refhv->y, tmp, 16 * i, 16 * j, dx, dy, edged_width, quarterpel, reduced_resolution, rounding); - dx /= (int)(1 + quarterpel); - dy /= (int)(1 + quarterpel); - + if (quarterpel) { dx /= 2; dy /= 2; } + dx = (dx >> 1) + roundtab_79[dx & 0x3]; dy = (dy >> 1) + roundtab_79[dy & 0x3]; @@ -370,8 +330,8 @@ for (k = 0; k < 4; k++) { dx = mvs[k].x; dy = mvs[k].y; - sumx += dx / (1 + quarterpel); - sumy += dy / (1 + quarterpel); + sumx += quarterpel ? dx/2 : dx; + sumy += quarterpel ? dy/2 : dy; if (reduced_resolution){ dx = RRV_MV_SCALEUP(dx); @@ -436,9 +396,9 @@ case MODE_BACKWARD: b_dx = bmvs->x; b_dy = bmvs->y; - compensate16x16_interpolate_ro(&dct_codes[0 * 64], cur->y, b_ref->y, b_refh->y, + compensate16x16_interpolate(&dct_codes[0 * 64], cur->y, b_ref->y, b_refh->y, b_refv->y, b_refhv->y, tmp, 16 * i, 16 * j, b_dx, - b_dy, edged_width, quarterpel); + b_dy, edged_width, quarterpel, 0, 0); if (quarterpel) { b_dx /= 2; b_dy /= 2; } @@ -455,7 +415,7 @@ b_dx = bmvs->x; b_dy = bmvs->y; if (quarterpel) { - + if ((dx&3) | (dy&3)) { interpolate16x16_quarterpel(tmp - i * 16 - j * 16 * edged_width, (uint8_t *) f_ref->y, tmp + 32, @@ -496,12 +456,12 @@ b_dy = (b_dy >> 1) + roundtab_79[b_dy & 0x3]; break; - - default: // MODE_DIRECT + + default: // MODE_DIRECT (or MODE_DIRECT_NONE_MV in case of bframes decoding) sumx = sumy = b_sumx = b_sumy = 0; for (k = 0; k < 4; k++) { - + dx = fmvs[k].x; dy = fmvs[k].y; b_dx = bmvs[k].x; b_dy = bmvs[k].y; @@ -511,8 +471,8 @@ if ((dx&3) | (dy&3)) { interpolate8x8_quarterpel(tmp - (i * 16+(k&1)*8) - (j * 16+((k>>1)*8)) * edged_width, - (uint8_t *) f_ref->y, - tmp + 32, tmp + 64, tmp + 96, + (uint8_t *) f_ref->y, + tmp + 32, tmp + 64, tmp + 96, 16*i + (k&1)*8, 16*j + (k>>1)*8, dx, dy, edged_width, 0); ptr1 = tmp; } else ptr1 = f_ref->y + (16*j + (k>>1)*8 + dy/4)*edged_width + 16*i + (k&1)*8 + dx/4; @@ -520,7 +480,7 @@ if ((b_dx&3) | (b_dy&3)) { interpolate8x8_quarterpel(tmp - (i * 16+(k&1)*8) - (j * 16+((k>>1)*8)) * edged_width + 16, (uint8_t *) b_ref->y, - tmp + 16, tmp + 32, tmp + 48, + tmp + 16, tmp + 32, tmp + 48, 16*i + (k&1)*8, 16*j + (k>>1)*8, b_dx, b_dy, edged_width, 0); ptr2 = tmp + 16; } else ptr2 = b_ref->y + (16*j + (k>>1)*8 + b_dy/4)*edged_width + 16*i + (k&1)*8 + b_dx/4; @@ -528,15 +488,15 @@ sumx += dx; sumy += dy; b_sumx += b_dx; b_sumy += b_dy; - ptr1 = get_ref(f_ref->y, f_refh->y, f_refv->y, f_refhv->y, + ptr1 = get_ref(f_ref->y, f_refh->y, f_refv->y, f_refhv->y, 2*i + (k&1), 2*j + (k>>1), 8, dx, dy, edged_width); - ptr2 = get_ref(b_ref->y, b_refh->y, b_refv->y, b_refhv->y, + ptr2 = get_ref(b_ref->y, b_refh->y, b_refv->y, b_refhv->y, 2*i + (k&1), 2*j + (k>>1), 8, b_dx, b_dy, edged_width); } transfer_8to16sub2(&dct_codes[k * 64], cur->y + (i * 16+(k&1)*8) + (j * 16+((k>>1)*8)) * edged_width, ptr1, ptr2, edged_width); - + } dx = (sumx >> 3) + roundtab_76[sumx & 0xf]; @@ -568,85 +528,83 @@ void generate_GMCparameters( const int num_wp, const int res, - const WARPPOINTS *const warp, - const int width, const int height, - GMC_DATA *const gmc) + const WARPPOINTS *const warp, + const int width, const int height, + GMC_DATA *const gmc) { - const int du0 = warp->duv[0].x; - const int dv0 = warp->duv[0].y; - const int du1 = warp->duv[1].x; - const int dv1 = warp->duv[1].y; - const int du2 = warp->duv[2].x; - const int dv2 = warp->duv[2].y; - - gmc->W = width; - gmc->H = height; - - gmc->rho = 4 - log2bin(res-1); // = {3,2,1,0} for res={2,4,8,16} - - gmc->alpha = log2bin(gmc->W-1); - gmc->Ws = (1 << gmc->alpha); - - gmc->dxF = 16*gmc->Ws + RDIV( 8*gmc->Ws*du1, gmc->W ); - gmc->dxG = RDIV( 8*gmc->Ws*dv1, gmc->W ); - gmc->Fo = (res*du0 + 1) << (gmc->alpha+gmc->rho-1); - gmc->Go = (res*dv0 + 1) << (gmc->alpha+gmc->rho-1); - - if (num_wp==2) { - gmc->dyF = -gmc->dxG; - gmc->dyG = gmc->dxF; - } - else if (num_wp==3) { - gmc->beta = log2bin(gmc->H-1); - gmc->Hs = (1 << gmc->beta); - gmc->dyF = RDIV( 8*gmc->Hs*du2, gmc->H ); - gmc->dyG = 16*gmc->Hs + RDIV( 8*gmc->Hs*dv2, gmc->H ); - if (gmc->beta > gmc->alpha) { - gmc->dxF <<= (gmc->beta - gmc->alpha); - gmc->dxG <<= (gmc->beta - gmc->alpha); - gmc->alpha = gmc->beta; - gmc->Ws = 1<< gmc->beta; - } - else { - gmc->dyF <<= gmc->alpha - gmc->beta; - gmc->dyG <<= gmc->alpha - gmc->beta; - } - } + const int du0 = warp->duv[0].x; + const int dv0 = warp->duv[0].y; + const int du1 = warp->duv[1].x; + const int dv1 = warp->duv[1].y; + const int du2 = warp->duv[2].x; + const int dv2 = warp->duv[2].y; - gmc->cFo = gmc->dxF + gmc->dyF + (1 << (gmc->alpha+gmc->rho+1)); - gmc->cFo += 16*gmc->Ws*(du0-1); + gmc->W = width; + gmc->H = height; - gmc->cGo = gmc->dxG + gmc->dyG + (1 << (gmc->alpha+gmc->rho+1)); - gmc->cGo += 16*gmc->Ws*(dv0-1); + gmc->rho = 4 - log2bin(res-1); // = {3,2,1,0} for res={2,4,8,16} + + gmc->alpha = log2bin(gmc->W-1); + gmc->Ws = (1 << gmc->alpha); + + gmc->dxF = 16*gmc->Ws + RDIV( 8*gmc->Ws*du1, gmc->W ); + gmc->dxG = RDIV( 8*gmc->Ws*dv1, gmc->W ); + gmc->Fo = (res*du0 + 1) << (gmc->alpha+gmc->rho-1); + gmc->Go = (res*dv0 + 1) << (gmc->alpha+gmc->rho-1); + + if (num_wp==2) { + gmc->dyF = -gmc->dxG; + gmc->dyG = gmc->dxF; + } else if (num_wp==3) { + gmc->beta = log2bin(gmc->H-1); + gmc->Hs = (1 << gmc->beta); + gmc->dyF = RDIV( 8*gmc->Hs*du2, gmc->H ); + gmc->dyG = 16*gmc->Hs + RDIV( 8*gmc->Hs*dv2, gmc->H ); + if (gmc->beta > gmc->alpha) { + gmc->dxF <<= (gmc->beta - gmc->alpha); + gmc->dxG <<= (gmc->beta - gmc->alpha); + gmc->alpha = gmc->beta; + gmc->Ws = 1<< gmc->beta; + } else { + gmc->dyF <<= gmc->alpha - gmc->beta; + gmc->dyG <<= gmc->alpha - gmc->beta; + } + } + + gmc->cFo = gmc->dxF + gmc->dyF + (1 << (gmc->alpha+gmc->rho+1)); + gmc->cFo += 16*gmc->Ws*(du0-1); + + gmc->cGo = gmc->dxG + gmc->dyG + (1 << (gmc->alpha+gmc->rho+1)); + gmc->cGo += 16*gmc->Ws*(dv0-1); } -void -generate_GMCimage( const GMC_DATA *const gmc_data, // [input] precalculated data - const IMAGE *const pRef, // [input] - const int mb_width, +void +generate_GMCimage( const GMC_DATA *const gmc_data, // [input] precalculated data + const IMAGE *const pRef, // [input] + const int mb_width, const int mb_height, const int stride, - const int stride2, - const int fcode, // [input] some parameters... - const int32_t quarterpel, // [input] for rounding avgMV - const int reduced_resolution, // [input] ignored + const int stride2, + const int fcode, // [input] some parameters... + const int32_t quarterpel, // [input] for rounding avgMV + const int reduced_resolution, // [input] ignored const int32_t rounding, // [input] for rounding image data - MACROBLOCK *const pMBs, // [output] average motion vectors - IMAGE *const pGMC) // [output] full warped image + MACROBLOCK *const pMBs, // [output] average motion vectors + IMAGE *const pGMC) // [output] full warped image { unsigned int mj,mi; VECTOR avgMV; - - for (mj=0;mj<(unsigned int)mb_height;mj++) - for (mi=0;mi<(unsigned int)mb_width; mi++) - { - avgMV = generate_GMCimageMB(gmc_data, pRef, mi, mj, - stride, stride2, quarterpel, rounding, pGMC); - pMBs[mj*mb_width+mi].amv.x = gmc_sanitize(avgMV.x, quarterpel, fcode); - pMBs[mj*mb_width+mi].amv.y = gmc_sanitize(avgMV.y, quarterpel, fcode); - pMBs[mj*mb_width+mi].mcsel = 0; /* until mode decision */ + for (mj = 0; mj < (unsigned int)mb_height; mj++) + for (mi = 0; mi < (unsigned int)mb_width; mi++) { + + avgMV = generate_GMCimageMB(gmc_data, pRef, mi, mj, + stride, stride2, quarterpel, rounding, pGMC); + + pMBs[mj*mb_width+mi].amv.x = gmc_sanitize(avgMV.x, quarterpel, fcode); + pMBs[mj*mb_width+mi].amv.y = gmc_sanitize(avgMV.y, quarterpel, fcode); + pMBs[mj*mb_width+mi].mcsel = 0; /* until mode decision */ } } @@ -660,176 +618,175 @@ #undef MLT VECTOR generate_GMCimageMB( const GMC_DATA *const gmc_data, - const IMAGE *const pRef, - const int mi, const int mj, - const int stride, - const int stride2, - const int quarterpel, - const int rounding, - IMAGE *const pGMC) + const IMAGE *const pRef, + const int mi, const int mj, + const int stride, + const int stride2, + const int quarterpel, + const int rounding, + IMAGE *const pGMC) { - const int W = gmc_data->W; - const int H = gmc_data->H; + const int W = gmc_data->W; + const int H = gmc_data->H; + + const int rho = gmc_data->rho; + const int alpha = gmc_data->alpha; + + const int rounder = ( 128 - (rounding<<(rho+rho)) ) << 16; - const int rho = gmc_data->rho; - const int alpha = gmc_data->alpha; + const int dxF = gmc_data->dxF; + const int dyF = gmc_data->dyF; + const int dxG = gmc_data->dxG; + const int dyG = gmc_data->dyG; - const int rounder = ( 128 - (rounding<<(rho+rho)) ) << 16; + uint8_t *dstY, *dstU, *dstV; - const int dxF = gmc_data->dxF; - const int dyF = gmc_data->dyF; - const int dxG = gmc_data->dxG; - const int dyG = gmc_data->dyG; - - uint8_t *dstY, *dstU, *dstV; - - int I,J; - VECTOR avgMV = {0,0}; - - int32_t Fj, Gj; - - dstY = &pGMC->y[(mj*16)*stride+mi*16] + 16; - - Fj = gmc_data->Fo + dyF*mj*16 + dxF*mi*16; - Gj = gmc_data->Go + dyG*mj*16 + dxG*mi*16; - for (J=16; J>0; --J) - { - int32_t Fi, Gi; - - Fi = Fj; Fj += dyF; - Gi = Gj; Gj += dyG; - for (I=-16; I<0; ++I) - { - int32_t F, G; - uint32_t ri, rj; - - F = ( Fi >> (alpha+rho) ) << rho; Fi += dxF; - G = ( Gi >> (alpha+rho) ) << rho; Gi += dxG; - - avgMV.x += F; - avgMV.y += G; - - ri = MTab[F&15]; - rj = MTab[G&15]; - - F >>= 4; - G >>= 4; - - if (F< -1) F=-1; - else if (F>W) F=W; - if (G< -1) G=-1; - else if (G>H) G=H; - - { // MMX-like bilinear... - const int offset = G*stride + F; - uint32_t f0, f1; - f0 = pRef->y[ offset +0 ]; - f0 |= pRef->y[ offset +1 ] << 16; - f1 = pRef->y[ offset+stride +0 ]; - f1 |= pRef->y[ offset+stride +1 ] << 16; - f0 = (ri*f0)>>16; - f1 = (ri*f1) & 0x0fff0000; - f0 |= f1; - f0 = ( rj*f0 + rounder ) >> 24; - - dstY[I] = (uint8_t)f0; - } - } - dstY += stride; - } - - dstU = &pGMC->u[(mj*8)*stride2+mi*8] + 8; - dstV = &pGMC->v[(mj*8)*stride2+mi*8] + 8; - - Fj = gmc_data->cFo + dyF*4 *mj*8 + dxF*4 *mi*8; - Gj = gmc_data->cGo + dyG*4 *mj*8 + dxG*4 *mi*8; - for (J=8; J>0; --J) - { - int32_t Fi, Gi; - Fi = Fj; Fj += 4*dyF; - Gi = Gj; Gj += 4*dyG; - - for (I=-8; I<0; ++I) - { - int32_t F, G; - uint32_t ri, rj; - - F = ( Fi >> (alpha+rho+2) ) << rho; Fi += 4*dxF; - G = ( Gi >> (alpha+rho+2) ) << rho; Gi += 4*dxG; - - ri = MTab[F&15]; - rj = MTab[G&15]; - - F >>= 4; - G >>= 4; - - if (F< -1) F=-1; - else if (F>=W/2) F=W/2; - if (G< -1) G=-1; - else if (G>=H/2) G=H/2; - - { - const int offset = G*stride2 + F; - uint32_t f0, f1; - - f0 = pRef->u[ offset +0 ]; - f0 |= pRef->u[ offset +1 ] << 16; - f1 = pRef->u[ offset+stride2 +0 ]; - f1 |= pRef->u[ offset+stride2 +1 ] << 16; - f0 = (ri*f0)>>16; - f1 = (ri*f1) & 0x0fff0000; - f0 |= f1; - f0 = ( rj*f0 + rounder ) >> 24; - - dstU[I] = (uint8_t)f0; - - - f0 = pRef->v[ offset +0 ]; - f0 |= pRef->v[ offset +1 ] << 16; - f1 = pRef->v[ offset+stride2 +0 ]; - f1 |= pRef->v[ offset+stride2 +1 ] << 16; - f0 = (ri*f0)>>16; - f1 = (ri*f1) & 0x0fff0000; - f0 |= f1; - f0 = ( rj*f0 + rounder ) >> 24; - - dstV[I] = (uint8_t)f0; - } - } - dstU += stride2; - dstV += stride2; - } + int I,J; + VECTOR avgMV = {0,0}; + int32_t Fj, Gj; - avgMV.x -= 16*((256*mi+120)<<4); // 120 = 15*16/2 - avgMV.y -= 16*((256*mj+120)<<4); + dstY = &pGMC->y[(mj*16)*stride+mi*16] + 16; + + Fj = gmc_data->Fo + dyF*mj*16 + dxF*mi*16; + Gj = gmc_data->Go + dyG*mj*16 + dxG*mi*16; + + for (J = 16; J > 0; --J) { + int32_t Fi, Gi; - avgMV.x = RSHIFT( avgMV.x, (4+7-quarterpel) ); - avgMV.y = RSHIFT( avgMV.y, (4+7-quarterpel) ); + Fi = Fj; Fj += dyF; + Gi = Gj; Gj += dyG; + for (I = -16; I < 0; ++I) { + int32_t F, G; + uint32_t ri, rj; + + F = ( Fi >> (alpha+rho) ) << rho; Fi += dxF; + G = ( Gi >> (alpha+rho) ) << rho; Gi += dxG; + + avgMV.x += F; + avgMV.y += G; + + ri = MTab[F&15]; + rj = MTab[G&15]; + + F >>= 4; + G >>= 4; + + if (F < -1) F = -1; + else if (F > W) F = W; + if (G< -1) G=-1; + else if (G>H) G=H; + + { // MMX-like bilinear... + const int offset = G*stride + F; + uint32_t f0, f1; + f0 = pRef->y[ offset +0 ]; + f0 |= pRef->y[ offset +1 ] << 16; + f1 = pRef->y[ offset+stride +0 ]; + f1 |= pRef->y[ offset+stride +1 ] << 16; + f0 = (ri*f0)>>16; + f1 = (ri*f1) & 0x0fff0000; + f0 |= f1; + f0 = ( rj*f0 + rounder ) >> 24; - return avgMV; + dstY[I] = (uint8_t)f0; + } + } + + dstY += stride; + } + + dstU = &pGMC->u[(mj*8)*stride2+mi*8] + 8; + dstV = &pGMC->v[(mj*8)*stride2+mi*8] + 8; + + Fj = gmc_data->cFo + dyF*4 *mj*8 + dxF*4 *mi*8; + Gj = gmc_data->cGo + dyG*4 *mj*8 + dxG*4 *mi*8; + + for (J = 8; J > 0; --J) { + int32_t Fi, Gi; + Fi = Fj; Fj += 4*dyF; + Gi = Gj; Gj += 4*dyG; + + for (I = -8; I < 0; ++I) { + int32_t F, G; + uint32_t ri, rj; + + F = ( Fi >> (alpha+rho+2) ) << rho; Fi += 4*dxF; + G = ( Gi >> (alpha+rho+2) ) << rho; Gi += 4*dxG; + + ri = MTab[F&15]; + rj = MTab[G&15]; + + F >>= 4; + G >>= 4; + + if (F < -1) F=-1; + else if (F >= W/2) F = W/2; + if (G < -1) G = -1; + else if (G >= H/2) G = H/2; + + { + const int offset = G*stride2 + F; + uint32_t f0, f1; + + f0 = pRef->u[ offset +0 ]; + f0 |= pRef->u[ offset +1 ] << 16; + f1 = pRef->u[ offset+stride2 +0 ]; + f1 |= pRef->u[ offset+stride2 +1 ] << 16; + f0 = (ri*f0)>>16; + f1 = (ri*f1) & 0x0fff0000; + f0 |= f1; + f0 = ( rj*f0 + rounder ) >> 24; + + dstU[I] = (uint8_t)f0; + + + f0 = pRef->v[ offset +0 ]; + f0 |= pRef->v[ offset +1 ] << 16; + f1 = pRef->v[ offset+stride2 +0 ]; + f1 |= pRef->v[ offset+stride2 +1 ] << 16; + f0 = (ri*f0)>>16; + f1 = (ri*f1) & 0x0fff0000; + f0 |= f1; + f0 = ( rj*f0 + rounder ) >> 24; + + dstV[I] = (uint8_t)f0; + } + } + dstU += stride2; + dstV += stride2; + } + + + avgMV.x -= 16*((256*mi+120)<<4); // 120 = 15*16/2 + avgMV.y -= 16*((256*mj+120)<<4); + + avgMV.x = RSHIFT( avgMV.x, (4+7-quarterpel) ); + avgMV.y = RSHIFT( avgMV.y, (4+7-quarterpel) ); + + return avgMV; } - - - + + + #ifdef OLD_GRUEL_GMC -void +void generate_GMCparameters( const int num_wp, // [input]: number of warppoints - const int res, // [input]: resolution - const WARPPOINTS *const warp, // [input]: warp points + const int res, // [input]: resolution + const WARPPOINTS *const warp, // [input]: warp points const int width, const int height, - GMC_DATA *const gmc) // [output] precalculated parameters + GMC_DATA *const gmc) // [output] precalculated parameters { -/* We follow mainly two sources: The original standard, which is ugly, and the - thesis from Andreas Dehnhardt, which is much nicer. - - Notation is: indices are written next to the variable, - primes in the standard are denoted by a suffix 'p'. - types are "c"=constant, "i"=input parameter, "f"=calculated, then fixed, - "o"=output data, " "=other, "u" = unused, "p"=calc for every pixel +/* We follow mainly two sources: The original standard, which is ugly, and the + thesis from Andreas Dehnhardt, which is much nicer. + + Notation is: indices are written next to the variable, + primes in the standard are denoted by a suffix 'p'. + types are "c"=constant, "i"=input parameter, "f"=calculated, then fixed, + "o"=output data, " "=other, "u" = unused, "p"=calc for every pixel -type | variable name | ISO name (TeX-style) | value or range | usage +type | variable name | ISO name (TeX-style) | value or range | usage ------------------------------------------------------------------------------------- c | H | H | [16 , ?] | image width (w/o edges) c | W | W | [16 , ?] | image height (w/o edges) @@ -839,37 +796,37 @@ c | i1 | i_1 | W | ref. point #2, X c | j1 | j_1 | 0 | ref. point #2, Y cu | i2 | i_2 | 0 | ref. point #3, X - cu | i2 | j_2 | H | ref. point #3, Y + cu | i2 | j_2 | H | ref. point #3, Y i | du0 | du[0] | [-16863,16863] | warp vector #1, Y i | dv0 | dv[0] | [-16863,16863] | warp vector #1, Y i | du1 | du[1] | [-16863,16863] | warp vector #2, Y i | dv1 | dv[1] | [-16863,16863] | warp vector #2, Y - iu | du2 | du[2] | [-16863,16863] | warp vector #3, Y + iu | du2 | du[2] | [-16863,16863] | warp vector #3, Y iu | dv2 | dv[2] | [-16863,16863] | warp vector #3, Y - - i | s | s | {2,4,8,16} | interpol. resolution - f | sigma | - | log2(s) | X / s == X >> sigma - f | r | r | =16/s | complementary res. - f | rho | \rho | log2(r) | X / r == X >> rho - - f | i0s | i'_0 | | - f | j0s | j'_0 | | - f | i1s | i'_1 | | - f | j1s | j'_1 | | - f | i2s | i'_2 | | - f | j2s | j'_2 | | - - f | alpha | \alpha | | 2^{alpha-1} < W <= 2^alpha - f | beta | \beta | | 2^{beta-1} < H <= 2^beta - - f | Ws | W' | W = 2^{alpha} | scaled width - f | Hs | H' | W = 2^{beta} | scaled height - - f | i1ss | i''_1 | "virtual sprite stuff" - f | j1ss | j''_1 | "virtual sprite stuff" - f | i2ss | i''_2 | "virtual sprite stuff" - f | j2ss | j''_2 | "virtual sprite stuff" + + i | s | s | {2,4,8,16} | interpol. resolution + f | sigma | - | log2(s) | X / s == X >> sigma + f | r | r | =16/s | complementary res. + f | rho | \rho | log2(r) | X / r == X >> rho + + f | i0s | i'_0 | | + f | j0s | j'_0 | | + f | i1s | i'_1 | | + f | j1s | j'_1 | | + f | i2s | i'_2 | | + f | j2s | j'_2 | | + + f | alpha | \alpha | | 2^{alpha-1} < W <= 2^alpha + f | beta | \beta | | 2^{beta-1} < H <= 2^beta + + f | Ws | W' | W = 2^{alpha} | scaled width + f | Hs | H' | W = 2^{beta} | scaled height + + f | i1ss | i''_1 | "virtual sprite stuff" + f | j1ss | j''_1 | "virtual sprite stuff" + f | i2ss | i''_2 | "virtual sprite stuff" + f | j2ss | j''_2 | "virtual sprite stuff" */ /* Some calculations are disabled because we only use 2 warppoints at the moment */ @@ -880,22 +837,22 @@ int dv1 = warp->duv[1].y; // int du2 = warp->duv[2].x; // int dv2 = warp->duv[2].y; - + gmc->num_wp = num_wp; gmc->s = res; /* scaling parameters 2,4,8 or 16 */ gmc->sigma = log2bin(res-1); /* log2bin(15)=4, log2bin(16)=5, log2bin(17)=5 */ - gmc->r = 16/res; + gmc->r = 16/res; gmc->rho = 4 - gmc->sigma; /* = log2bin(r-1) */ gmc->W = width; gmc->H = height; /* fixed reference coordinates */ gmc->alpha = log2bin(gmc->W-1); - gmc->Ws= 1<alpha; + gmc->Ws= 1<alpha; // gmc->beta = log2bin(gmc->H-1); -// gmc->Hs= 1<beta; +// gmc->Hs= 1<beta; // printf("du0=%d dv0=%d du1=%d dv1=%d s=%d sigma=%d W=%d alpha=%d, Ws=%d, rho=%d\n",du0,dv0,du1,dv1,gmc->s,gmc->sigma,gmc->W,gmc->alpha,gmc->Ws,gmc->rho); @@ -907,28 +864,26 @@ gmc->j1s = res/2 * ( dv1 + dv0 ); // gmc->i2s = res/2 * ( du2 + du0 ); // gmc->j2s = res/2 * (2*height + dv2 + dv0 ); - + /* i2s and i2ss are only needed for num_wp == 3, etc. */ /* the 'ss' values are in 1/16 pel resolution */ - gmc->i1ss = 16*gmc->Ws + ROUNDED_DIV(((gmc->W-gmc->Ws)*(gmc->r*gmc->i0s) + gmc->Ws*(gmc->r*gmc->i1s - 16*gmc->W)),gmc->W); - gmc->j1ss = ROUNDED_DIV( ((gmc->W - gmc->Ws)*(gmc->r*gmc->j0s) + gmc->Ws*gmc->r*gmc->j1s) ,gmc->W ); + gmc->i1ss = 16*gmc->Ws + ROUNDED_DIV(((gmc->W-gmc->Ws)*(gmc->r*gmc->i0s) + gmc->Ws*(gmc->r*gmc->i1s - 16*gmc->W)),gmc->W); + gmc->j1ss = ROUNDED_DIV( ((gmc->W - gmc->Ws)*(gmc->r*gmc->j0s) + gmc->Ws*gmc->r*gmc->j1s) ,gmc->W ); -// gmc->i2ss = ROUNDED_DIV( ((gmc->H - gmc->Hs)*(gmc->r*gmc->i0s) + gmc->Hs*(gmc->r*gmc->i2s)), gmc->H); +// gmc->i2ss = ROUNDED_DIV( ((gmc->H - gmc->Hs)*(gmc->r*gmc->i0s) + gmc->Hs*(gmc->r*gmc->i2s)), gmc->H); // gmc->j2ss = 16*gmc->Hs + ROUNDED_DIV( ((gmc->H-gmc->Hs)*(gmc->r*gmc->j0s) + gmc->Ws*(gmc->r*gmc->j2s - 16*gmc->H)), gmc->H); - return; + return; } - - -void +void generate_GMCimage( const GMC_DATA *const gmc_data, // [input] precalculated data - const IMAGE *const pRef, // [input] - const int mb_width, + const IMAGE *const pRef, // [input] + const int mb_width, const int mb_height, const int stride, - const int stride2, + const int stride2, const int fcode, // [input] some parameters... const int32_t quarterpel, // [input] for rounding avgMV const int reduced_resolution, // [input] ignored @@ -939,11 +894,11 @@ unsigned int mj,mi; VECTOR avgMV; - - for (mj=0;mjs; const int sigma = gmc_data->sigma; - + const int r = gmc_data->r; - const int rho = gmc_data->rho; - + const int rho = gmc_data->rho; + const int i0s = gmc_data->i0s; const int j0s = gmc_data->j0s; - + const int i1ss = gmc_data->i1ss; - const int j1ss = gmc_data->j1ss; -// const int i2ss = gmc_data->i2ss; -// const int j2ss = gmc_data->j2ss; + const int j1ss = gmc_data->j1ss; +// const int i2ss = gmc_data->i2ss; +// const int j2ss = gmc_data->j2ss; - const int alpha = gmc_data->alpha; - const int Ws = gmc_data->Ws; + const int alpha = gmc_data->alpha; + const int Ws = gmc_data->Ws; // const int beta = gmc_data->beta; -// const int Hs = gmc_data->Hs; +// const int Hs = gmc_data->Hs; int I,J; VECTOR avgMV = {0,0}; - + for (J=16*mj;J<16*(mj+1);J++) for (I=16*mi;I<16*(mi+1);I++) { int F= i0s + ( ((-r*i0s+i1ss)*I + (r*j0s-j1ss)*J + (1<<(alpha+rho-1))) >> (alpha+rho) ); int G= j0s + ( ((-r*j0s+j1ss)*I + (-r*i0s+i1ss)*J + (1<<(alpha+rho-1))) >> (alpha+rho) ); -/* this naive implementation (with lots of multiplications) isn't slower (rather faster) than +/* this naive implementation (with lots of multiplications) isn't slower (rather faster) than working incremental. Don't ask me why... maybe the whole this is memory bound? */ const int ri= F & (s-1); // fractional part of pelwise MV X const int rj= G & (s-1); // fractional part of pelwise MV Y - + int Y00,Y01,Y10,Y11; /* unclipped values are used for avgMV */ @@ -1029,7 +984,7 @@ F >>= sigma; G >>= sigma; -/* clip values to be in range. Since we have edges, clip to 1 less than lower boundary +/* clip values to be in range. Since we have edges, clip to 1 less than lower boundary this way positions F+1/G+1 are still right */ if (F< -1) @@ -1045,17 +1000,17 @@ Y01 = pRef->y[ G*stride + F+1 ]; Y10 = pRef->y[ G*stride + F+stride ]; Y11 = pRef->y[ G*stride + F+stride+1 ]; - + /* bilinear interpolation */ Y00 = ((s-ri)*Y00 + ri*Y01); Y10 = ((s-ri)*Y10 + ri*Y11); - Y00 = ((s-rj)*Y00 + rj*Y10 + s*s/2 - rounding ) >> (sigma+sigma); - + Y00 = ((s-rj)*Y00 + rj*Y10 + s*s/2 - rounding ) >> (sigma+sigma); + pGMC->y[J*stride+I] = (uint8_t)Y00; /* output 1 Y-pixel */ } - -/* doing chroma _here_ is even more stupid and slow, because won't be used until Compensation and + +/* doing chroma _here_ is even more stupid and slow, because won't be used until Compensation and most likely not even then (only if the block really _is_ GMC) */ @@ -1063,19 +1018,19 @@ for (I=8*mi;I<8*(mi+1);I++) /* For I_c we have to use I_c = 4*i_c+1 ! */ { /* same positions for both chroma components, U=Cb and V=Cr */ - int Fc=((-r*i0s+i1ss)*(4*I+1) + (r*j0s-j1ss)*(4*J+1) +2*Ws*r*i0s + int Fc=((-r*i0s+i1ss)*(4*I+1) + (r*j0s-j1ss)*(4*J+1) +2*Ws*r*i0s -16*Ws +(1<<(alpha+rho+1)))>>(alpha+rho+2); - int Gc=((-r*j0s+j1ss)*(4*I+1) +(-r*i0s+i1ss)*(4*J+1) +2*Ws*r*j0s + int Gc=((-r*j0s+j1ss)*(4*I+1) +(-r*i0s+i1ss)*(4*J+1) +2*Ws*r*j0s -16*Ws +(1<<(alpha+rho+1))) >>(alpha+rho+2); - + const int ri= Fc & (s-1); // fractional part of pelwise MV X const int rj= Gc & (s-1); // fractional part of pelwise MV Y int C00,C01,C10,C11; - + Fc >>= sigma; Gc >>= sigma; - + if (Fc< -1) Fc=-1; else if (Fc>=W/2) @@ -1085,40 +1040,40 @@ else if (Gc>=H/2) Gc=H/2; /* dito */ -/* now calculate U data */ +/* now calculate U data */ C00 = pRef->u[ Gc*stride2 + Fc ]; // chroma-value Cb C01 = pRef->u[ Gc*stride2 + Fc+1 ]; C10 = pRef->u[ (Gc+1)*stride2 + Fc ]; C11 = pRef->u[ (Gc+1)*stride2 + Fc+1 ]; - + /* bilinear interpolation */ C00 = ((s-ri)*C00 + ri*C01); C10 = ((s-ri)*C10 + ri*C11); - C00 = ((s-rj)*C00 + rj*C10 + s*s/2 - rounding ) >> (sigma+sigma); - + C00 = ((s-rj)*C00 + rj*C10 + s*s/2 - rounding ) >> (sigma+sigma); + pGMC->u[J*stride2+I] = (uint8_t)C00; /* output 1 U-pixel */ - + /* now calculate V data */ C00 = pRef->v[ Gc*stride2 + Fc ]; // chroma-value Cr C01 = pRef->v[ Gc*stride2 + Fc+1 ]; C10 = pRef->v[ (Gc+1)*stride2 + Fc ]; C11 = pRef->v[ (Gc+1)*stride2 + Fc+1 ]; - + /* bilinear interpolation */ C00 = ((s-ri)*C00 + ri*C01); C10 = ((s-ri)*C10 + ri*C11); - C00 = ((s-rj)*C00 + rj*C10 + s*s/2 - rounding ) >> (sigma+sigma); - + C00 = ((s-rj)*C00 + rj*C10 + s*s/2 - rounding ) >> (sigma+sigma); + pGMC->v[J*stride2+I] = (uint8_t)C00; /* output 1 V-pixel */ } - + /* The average vector is rounded from 1/s-pel to 1/2 or 1/4 using the '//' operator*/ avgMV.x = RSHIFT( avgMV.x, (sigma+7-quarterpel) ); avgMV.y = RSHIFT( avgMV.y, (sigma+7-quarterpel) ); /* ^^^^ this is the way MS Reference Software does it */ - + return avgMV; /* clipping to fcode area is done outside! */ }