--- trunk/xvidcore/src/motion/motion_comp.c 2003/03/22 13:41:11 935 +++ trunk/xvidcore/src/motion/motion_comp.c 2004/03/22 22:36:25 1382 @@ -1,24 +1,39 @@ -// 30.10.2002 corrected qpel chroma rounding -// 04.10.2002 added qpel support to MBMotionCompensation -// 01.05.2002 updated MBMotionCompensationBVOP -// 14.04.2002 bframe compensation +/***************************************************************************** + * + * XVID MPEG-4 VIDEO CODEC + * - Motion Compensation related code - + * + * Copyright(C) 2002 Peter Ross + * 2003 Christoph Lampert + * + * This program is free software ; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation ; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY ; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program ; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * $Id: motion_comp.c,v 1.20 2004-03-22 22:36:24 edgomez Exp $ + * + ****************************************************************************/ #include #include "../encoder.h" #include "../utils/mbfunctions.h" #include "../image/interpolate8x8.h" +#include "../image/qpel.h" #include "../image/reduced.h" #include "../utils/timer.h" #include "motion.h" -#ifndef ABS -#define ABS(X) (((X)>0)?(X):-(X)) -#endif -#ifndef SIGN -#define SIGN(X) (((X)>0)?1:-1) -#endif - #ifndef RSHIFT #define RSHIFT(a,b) ((a) > 0 ? ((a) + (1<<((b)-1)))>>(b) : ((a) + (1<<((b)-1))-1)>>(b)) #endif @@ -29,21 +44,7 @@ #endif -/* This is borrowed from decoder.c */ -static __inline int gmc_sanitize(int value, int quarterpel, int fcode) -{ - int length = 1 << (fcode+4); - -// if (quarterpel) value *= 2; - - if (value < -length) - return -length; - else if (value >= length) - return length-1; - else return value; -} - -/* And this is borrowed from bitstream.c until we find a common solution */ +/* This is borrowed from bitstream.c until we find a common solution */ static uint32_t __inline log2bin(uint32_t value) @@ -65,6 +66,35 @@ #endif } +/* + * getref: calculate reference image pointer + * the decision to use interpolation h/v/hv or the normal image is + * based on dx & dy. + */ + +static __inline const uint8_t * +get_ref(const uint8_t * const refn, + const uint8_t * const refh, + const uint8_t * const refv, + const uint8_t * const refhv, + const uint32_t x, + const uint32_t y, + const uint32_t block, + const int32_t dx, + const int32_t dy, + const int32_t stride) +{ + switch (((dx & 1) << 1) + (dy & 1)) { + case 0: + return refn + (int) ((x * block + dx / 2) + (y * block + dy / 2) * stride); + case 1: + return refv + (int) ((x * block + dx / 2) + (y * block + (dy - 1) / 2) * stride); + case 2: + return refh + (int) ((x * block + (dx - 1) / 2) + (y * block + dy / 2) * stride); + default: + return refhv + (int) ((x * block + (dx - 1) / 2) + (y * block + (dy - 1) / 2) * stride); + } +} static __inline void compensate16x16_interpolate(int16_t * const dct_codes, @@ -89,11 +119,17 @@ if(quarterpel) { if ((dx&3) | (dy&3)) { +#if defined(ARCH_IS_IA32) /* new_interpolate is only faster on x86 (MMX) machines */ + new_interpolate16x16_quarterpel(tmp - y * stride - x, + (uint8_t *) ref, tmp + 32, + tmp + 64, tmp + 96, x, y, dx, dy, stride, rounding); +#else interpolate16x16_quarterpel(tmp - y * stride - x, (uint8_t *) ref, tmp + 32, tmp + 64, tmp + 96, x, y, dx, dy, stride, rounding); +#endif ptr = tmp; - } else ptr = ref + (y + dy/4)*stride + x + dx/4; // fullpixel position + } else ptr = ref + (y + dy/4)*stride + x + dx/4; /* fullpixel position */ } else ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); @@ -106,7 +142,7 @@ transfer_8to16sub(dct_codes+192, cur + y * stride + x + 8*stride+8, ptr + 8*stride + 8, stride); - } else { //reduced_resolution + } else { /* reduced_resolution */ x *= 2; y *= 2; @@ -151,16 +187,22 @@ if(quarterpel) { if ((dx&3) | (dy&3)) { +#if defined(ARCH_IS_IA32) /* new_interpolate is only faster on x86 (MMX) machines */ + new_interpolate8x8_quarterpel(tmp - y*stride - x, + (uint8_t *) ref, tmp + 32, + tmp + 64, tmp + 96, x, y, dx, dy, stride, rounding); +#else interpolate8x8_quarterpel(tmp - y*stride - x, (uint8_t *) ref, tmp + 32, tmp + 64, tmp + 96, x, y, dx, dy, stride, rounding); +#endif ptr = tmp; - } else ptr = ref + (y + dy/4)*stride + x + dx/4; // fullpixel position + } else ptr = ref + (y + dy/4)*stride + x + dx/4; /* fullpixel position */ } else ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); transfer_8to16sub(dct_codes, cur + y * stride + x, ptr, stride); - } else { //reduced_resolution + } else { /* reduced_resolution */ x *= 2; y *= 2; @@ -323,7 +365,7 @@ dx = (dx >> 1) + roundtab_79[dx & 0x3]; dy = (dy >> 1) + roundtab_79[dy & 0x3]; - } else { // mode == MODE_INTER4V + } else { /* mode == MODE_INTER4V */ int k, sumx = 0, sumy = 0; const VECTOR * const mvs = (quarterpel ? mb->qmvs : mb->mvs); @@ -370,7 +412,7 @@ const uint32_t edged_width = pParam->edged_width; int32_t dx, dy, b_dx, b_dy, sumx, sumy, b_sumx, b_sumy; int k; - const int quarterpel = pParam->m_quarterpel; + const int quarterpel = pParam->vol_flags & XVID_VOL_QUARTERPEL; const uint8_t * ptr1, * ptr2; uint8_t * const tmp = f_refv->u; const VECTOR * const fmvs = (quarterpel ? mb->qmvs : mb->mvs); @@ -421,14 +463,14 @@ (uint8_t *) f_ref->y, tmp + 32, tmp + 64, tmp + 96, 16*i, 16*j, dx, dy, edged_width, 0); ptr1 = tmp; - } else ptr1 = f_ref->y + (16*j + dy/4)*edged_width + 16*i + dx/4; // fullpixel position + } else ptr1 = f_ref->y + (16*j + dy/4)*edged_width + 16*i + dx/4; /* fullpixel position */ if ((b_dx&3) | (b_dy&3)) { interpolate16x16_quarterpel(tmp - i * 16 - j * 16 * edged_width + 16, (uint8_t *) b_ref->y, tmp + 32, tmp + 64, tmp + 96, 16*i, 16*j, b_dx, b_dy, edged_width, 0); ptr2 = tmp + 16; - } else ptr2 = b_ref->y + (16*j + b_dy/4)*edged_width + 16*i + b_dx/4; // fullpixel position + } else ptr2 = b_ref->y + (16*j + b_dy/4)*edged_width + 16*i + b_dx/4; /* fullpixel position */ b_dx /= 2; b_dy /= 2; @@ -457,7 +499,7 @@ break; - default: // MODE_DIRECT (or MODE_DIRECT_NONE_MV in case of bframes decoding) + default: /* MODE_DIRECT (or MODE_DIRECT_NONE_MV in case of bframes decoding) */ sumx = sumy = b_sumx = b_sumy = 0; for (k = 0; k < 4; k++) { @@ -507,7 +549,7 @@ break; } - // uv block-based chroma interpolation for direct and interpolate modes + /* v block-based chroma interpolation for direct and interpolate modes */ transfer_8to16sub2(&dct_codes[4 * 64], cur->u + (j * 8) * edged_width / 2 + (i * 8), interpolate8x8_switch2(tmp, b_ref->u, 8 * i, 8 * j, @@ -524,557 +566,3 @@ dx, dy, edged_width / 2, 0), edged_width / 2); } - - - -void generate_GMCparameters( const int num_wp, const int res, - const WARPPOINTS *const warp, - const int width, const int height, - GMC_DATA *const gmc) -{ - const int du0 = warp->duv[0].x; - const int dv0 = warp->duv[0].y; - const int du1 = warp->duv[1].x; - const int dv1 = warp->duv[1].y; - const int du2 = warp->duv[2].x; - const int dv2 = warp->duv[2].y; - - gmc->W = width; - gmc->H = height; - - gmc->rho = 4 - log2bin(res-1); // = {3,2,1,0} for res={2,4,8,16} - - gmc->alpha = log2bin(gmc->W-1); - gmc->Ws = (1 << gmc->alpha); - - gmc->dxF = 16*gmc->Ws + RDIV( 8*gmc->Ws*du1, gmc->W ); - gmc->dxG = RDIV( 8*gmc->Ws*dv1, gmc->W ); - gmc->Fo = (res*du0 + 1) << (gmc->alpha+gmc->rho-1); - gmc->Go = (res*dv0 + 1) << (gmc->alpha+gmc->rho-1); - - if (num_wp==2) { - gmc->dyF = -gmc->dxG; - gmc->dyG = gmc->dxF; - } else if (num_wp==3) { - gmc->beta = log2bin(gmc->H-1); - gmc->Hs = (1 << gmc->beta); - gmc->dyF = RDIV( 8*gmc->Hs*du2, gmc->H ); - gmc->dyG = 16*gmc->Hs + RDIV( 8*gmc->Hs*dv2, gmc->H ); - if (gmc->beta > gmc->alpha) { - gmc->dxF <<= (gmc->beta - gmc->alpha); - gmc->dxG <<= (gmc->beta - gmc->alpha); - gmc->alpha = gmc->beta; - gmc->Ws = 1<< gmc->beta; - } else { - gmc->dyF <<= gmc->alpha - gmc->beta; - gmc->dyG <<= gmc->alpha - gmc->beta; - } - } - - gmc->cFo = gmc->dxF + gmc->dyF + (1 << (gmc->alpha+gmc->rho+1)); - gmc->cFo += 16*gmc->Ws*(du0-1); - - gmc->cGo = gmc->dxG + gmc->dyG + (1 << (gmc->alpha+gmc->rho+1)); - gmc->cGo += 16*gmc->Ws*(dv0-1); -} - -void -generate_GMCimage( const GMC_DATA *const gmc_data, // [input] precalculated data - const IMAGE *const pRef, // [input] - const int mb_width, - const int mb_height, - const int stride, - const int stride2, - const int fcode, // [input] some parameters... - const int32_t quarterpel, // [input] for rounding avgMV - const int reduced_resolution, // [input] ignored - const int32_t rounding, // [input] for rounding image data - MACROBLOCK *const pMBs, // [output] average motion vectors - IMAGE *const pGMC) // [output] full warped image -{ - - unsigned int mj,mi; - VECTOR avgMV; - - for (mj = 0; mj < (unsigned int)mb_height; mj++) - for (mi = 0; mi < (unsigned int)mb_width; mi++) { - - avgMV = generate_GMCimageMB(gmc_data, pRef, mi, mj, - stride, stride2, quarterpel, rounding, pGMC); - - pMBs[mj*mb_width+mi].amv.x = gmc_sanitize(avgMV.x, quarterpel, fcode); - pMBs[mj*mb_width+mi].amv.y = gmc_sanitize(avgMV.y, quarterpel, fcode); - pMBs[mj*mb_width+mi].mcsel = 0; /* until mode decision */ - } -} - - - -#define MLT(i) (((16-(i))<<16) + (i)) -static const uint32_t MTab[16] = { - MLT( 0), MLT( 1), MLT( 2), MLT( 3), MLT( 4), MLT( 5), MLT( 6), MLT(7), - MLT( 8), MLT( 9), MLT(10), MLT(11), MLT(12), MLT(13), MLT(14), MLT(15) -}; -#undef MLT - -VECTOR generate_GMCimageMB( const GMC_DATA *const gmc_data, - const IMAGE *const pRef, - const int mi, const int mj, - const int stride, - const int stride2, - const int quarterpel, - const int rounding, - IMAGE *const pGMC) -{ - const int W = gmc_data->W; - const int H = gmc_data->H; - - const int rho = gmc_data->rho; - const int alpha = gmc_data->alpha; - - const int rounder = ( 128 - (rounding<<(rho+rho)) ) << 16; - - const int dxF = gmc_data->dxF; - const int dyF = gmc_data->dyF; - const int dxG = gmc_data->dxG; - const int dyG = gmc_data->dyG; - - uint8_t *dstY, *dstU, *dstV; - - int I,J; - VECTOR avgMV = {0,0}; - - int32_t Fj, Gj; - - dstY = &pGMC->y[(mj*16)*stride+mi*16] + 16; - - Fj = gmc_data->Fo + dyF*mj*16 + dxF*mi*16; - Gj = gmc_data->Go + dyG*mj*16 + dxG*mi*16; - - for (J = 16; J > 0; --J) { - int32_t Fi, Gi; - - Fi = Fj; Fj += dyF; - Gi = Gj; Gj += dyG; - for (I = -16; I < 0; ++I) { - int32_t F, G; - uint32_t ri, rj; - - F = ( Fi >> (alpha+rho) ) << rho; Fi += dxF; - G = ( Gi >> (alpha+rho) ) << rho; Gi += dxG; - - avgMV.x += F; - avgMV.y += G; - - ri = MTab[F&15]; - rj = MTab[G&15]; - - F >>= 4; - G >>= 4; - - if (F < -1) F = -1; - else if (F > W) F = W; - if (G< -1) G=-1; - else if (G>H) G=H; - - { // MMX-like bilinear... - const int offset = G*stride + F; - uint32_t f0, f1; - f0 = pRef->y[ offset +0 ]; - f0 |= pRef->y[ offset +1 ] << 16; - f1 = pRef->y[ offset+stride +0 ]; - f1 |= pRef->y[ offset+stride +1 ] << 16; - f0 = (ri*f0)>>16; - f1 = (ri*f1) & 0x0fff0000; - f0 |= f1; - f0 = ( rj*f0 + rounder ) >> 24; - - dstY[I] = (uint8_t)f0; - } - } - - dstY += stride; - } - - dstU = &pGMC->u[(mj*8)*stride2+mi*8] + 8; - dstV = &pGMC->v[(mj*8)*stride2+mi*8] + 8; - - Fj = gmc_data->cFo + dyF*4 *mj*8 + dxF*4 *mi*8; - Gj = gmc_data->cGo + dyG*4 *mj*8 + dxG*4 *mi*8; - - for (J = 8; J > 0; --J) { - int32_t Fi, Gi; - Fi = Fj; Fj += 4*dyF; - Gi = Gj; Gj += 4*dyG; - - for (I = -8; I < 0; ++I) { - int32_t F, G; - uint32_t ri, rj; - - F = ( Fi >> (alpha+rho+2) ) << rho; Fi += 4*dxF; - G = ( Gi >> (alpha+rho+2) ) << rho; Gi += 4*dxG; - - ri = MTab[F&15]; - rj = MTab[G&15]; - - F >>= 4; - G >>= 4; - - if (F < -1) F=-1; - else if (F >= W/2) F = W/2; - if (G < -1) G = -1; - else if (G >= H/2) G = H/2; - - { - const int offset = G*stride2 + F; - uint32_t f0, f1; - - f0 = pRef->u[ offset +0 ]; - f0 |= pRef->u[ offset +1 ] << 16; - f1 = pRef->u[ offset+stride2 +0 ]; - f1 |= pRef->u[ offset+stride2 +1 ] << 16; - f0 = (ri*f0)>>16; - f1 = (ri*f1) & 0x0fff0000; - f0 |= f1; - f0 = ( rj*f0 + rounder ) >> 24; - - dstU[I] = (uint8_t)f0; - - - f0 = pRef->v[ offset +0 ]; - f0 |= pRef->v[ offset +1 ] << 16; - f1 = pRef->v[ offset+stride2 +0 ]; - f1 |= pRef->v[ offset+stride2 +1 ] << 16; - f0 = (ri*f0)>>16; - f1 = (ri*f1) & 0x0fff0000; - f0 |= f1; - f0 = ( rj*f0 + rounder ) >> 24; - - dstV[I] = (uint8_t)f0; - } - } - dstU += stride2; - dstV += stride2; - } - - - avgMV.x -= 16*((256*mi+120)<<4); // 120 = 15*16/2 - avgMV.y -= 16*((256*mj+120)<<4); - - avgMV.x = RSHIFT( avgMV.x, (4+7-quarterpel) ); - avgMV.y = RSHIFT( avgMV.y, (4+7-quarterpel) ); - - return avgMV; -} - - - -#ifdef OLD_GRUEL_GMC -void -generate_GMCparameters( const int num_wp, // [input]: number of warppoints - const int res, // [input]: resolution - const WARPPOINTS *const warp, // [input]: warp points - const int width, const int height, - GMC_DATA *const gmc) // [output] precalculated parameters -{ - -/* We follow mainly two sources: The original standard, which is ugly, and the - thesis from Andreas Dehnhardt, which is much nicer. - - Notation is: indices are written next to the variable, - primes in the standard are denoted by a suffix 'p'. - types are "c"=constant, "i"=input parameter, "f"=calculated, then fixed, - "o"=output data, " "=other, "u" = unused, "p"=calc for every pixel - -type | variable name | ISO name (TeX-style) | value or range | usage -------------------------------------------------------------------------------------- - c | H | H | [16 , ?] | image width (w/o edges) - c | W | W | [16 , ?] | image height (w/o edges) - - c | i0 | i_0 | 0 | ref. point #1, X - c | j0 | j_0 | 0 | ref. point #1, Y - c | i1 | i_1 | W | ref. point #2, X - c | j1 | j_1 | 0 | ref. point #2, Y - cu | i2 | i_2 | 0 | ref. point #3, X - cu | i2 | j_2 | H | ref. point #3, Y - - i | du0 | du[0] | [-16863,16863] | warp vector #1, Y - i | dv0 | dv[0] | [-16863,16863] | warp vector #1, Y - i | du1 | du[1] | [-16863,16863] | warp vector #2, Y - i | dv1 | dv[1] | [-16863,16863] | warp vector #2, Y - iu | du2 | du[2] | [-16863,16863] | warp vector #3, Y - iu | dv2 | dv[2] | [-16863,16863] | warp vector #3, Y - - i | s | s | {2,4,8,16} | interpol. resolution - f | sigma | - | log2(s) | X / s == X >> sigma - f | r | r | =16/s | complementary res. - f | rho | \rho | log2(r) | X / r == X >> rho - - f | i0s | i'_0 | | - f | j0s | j'_0 | | - f | i1s | i'_1 | | - f | j1s | j'_1 | | - f | i2s | i'_2 | | - f | j2s | j'_2 | | - - f | alpha | \alpha | | 2^{alpha-1} < W <= 2^alpha - f | beta | \beta | | 2^{beta-1} < H <= 2^beta - - f | Ws | W' | W = 2^{alpha} | scaled width - f | Hs | H' | W = 2^{beta} | scaled height - - f | i1ss | i''_1 | "virtual sprite stuff" - f | j1ss | j''_1 | "virtual sprite stuff" - f | i2ss | i''_2 | "virtual sprite stuff" - f | j2ss | j''_2 | "virtual sprite stuff" -*/ - -/* Some calculations are disabled because we only use 2 warppoints at the moment */ - - int du0 = warp->duv[0].x; - int dv0 = warp->duv[0].y; - int du1 = warp->duv[1].x; - int dv1 = warp->duv[1].y; -// int du2 = warp->duv[2].x; -// int dv2 = warp->duv[2].y; - - gmc->num_wp = num_wp; - - gmc->s = res; /* scaling parameters 2,4,8 or 16 */ - gmc->sigma = log2bin(res-1); /* log2bin(15)=4, log2bin(16)=5, log2bin(17)=5 */ - gmc->r = 16/res; - gmc->rho = 4 - gmc->sigma; /* = log2bin(r-1) */ - - gmc->W = width; - gmc->H = height; /* fixed reference coordinates */ - - gmc->alpha = log2bin(gmc->W-1); - gmc->Ws= 1<alpha; - -// gmc->beta = log2bin(gmc->H-1); -// gmc->Hs= 1<beta; - -// printf("du0=%d dv0=%d du1=%d dv1=%d s=%d sigma=%d W=%d alpha=%d, Ws=%d, rho=%d\n",du0,dv0,du1,dv1,gmc->s,gmc->sigma,gmc->W,gmc->alpha,gmc->Ws,gmc->rho); - - /* i2s is only needed for num_wp >= 3, etc. */ - /* the 's' values are in 1/s pel resolution */ - gmc->i0s = res/2 * ( du0 ); - gmc->j0s = res/2 * ( dv0 ); - gmc->i1s = res/2 * (2*width + du1 + du0 ); - gmc->j1s = res/2 * ( dv1 + dv0 ); -// gmc->i2s = res/2 * ( du2 + du0 ); -// gmc->j2s = res/2 * (2*height + dv2 + dv0 ); - - /* i2s and i2ss are only needed for num_wp == 3, etc. */ - - /* the 'ss' values are in 1/16 pel resolution */ - gmc->i1ss = 16*gmc->Ws + ROUNDED_DIV(((gmc->W-gmc->Ws)*(gmc->r*gmc->i0s) + gmc->Ws*(gmc->r*gmc->i1s - 16*gmc->W)),gmc->W); - gmc->j1ss = ROUNDED_DIV( ((gmc->W - gmc->Ws)*(gmc->r*gmc->j0s) + gmc->Ws*gmc->r*gmc->j1s) ,gmc->W ); - -// gmc->i2ss = ROUNDED_DIV( ((gmc->H - gmc->Hs)*(gmc->r*gmc->i0s) + gmc->Hs*(gmc->r*gmc->i2s)), gmc->H); -// gmc->j2ss = 16*gmc->Hs + ROUNDED_DIV( ((gmc->H-gmc->Hs)*(gmc->r*gmc->j0s) + gmc->Ws*(gmc->r*gmc->j2s - 16*gmc->H)), gmc->H); - - return; -} - -void -generate_GMCimage( const GMC_DATA *const gmc_data, // [input] precalculated data - const IMAGE *const pRef, // [input] - const int mb_width, - const int mb_height, - const int stride, - const int stride2, - const int fcode, // [input] some parameters... - const int32_t quarterpel, // [input] for rounding avgMV - const int reduced_resolution, // [input] ignored - const int32_t rounding, // [input] for rounding image data - MACROBLOCK *const pMBs, // [output] average motion vectors - IMAGE *const pGMC) // [output] full warped image -{ - - unsigned int mj,mi; - VECTOR avgMV; - - for (mj = 0;mj < mb_height; mj++) - for (mi = 0;mi < mb_width; mi++) { - - avgMV = generate_GMCimageMB(gmc_data, pRef, mi, mj, - stride, stride2, quarterpel, rounding, pGMC); - - pMBs[mj*mb_width+mi].amv.x = gmc_sanitize(avgMV.x, quarterpel, fcode); - pMBs[mj*mb_width+mi].amv.y = gmc_sanitize(avgMV.y, quarterpel, fcode); - pMBs[mj*mb_width+mi].mcsel = 0; /* until mode decision */ - } -} - - -VECTOR generate_GMCimageMB( const GMC_DATA *const gmc_data, /* [input] all precalc data */ - const IMAGE *const pRef, /* [input] */ - const int mi, const int mj, /* [input] MB position */ - const int stride, /* [input] Lumi stride */ - const int stride2, /* [input] chroma stride */ - const int quarterpel, /* [input] for rounding of avgMV */ - const int rounding, /* [input] for rounding of imgae data */ - IMAGE *const pGMC) /* [outut] generate image */ - -/* -type | variable name | ISO name (TeX-style) | value or range | usage -------------------------------------------------------------------------------------- - p | F | F(i,j) | | pelwise motion vector X in s-th pel - p | G | G(i,j) | | pelwise motion vector Y in s-th pel - p | Fc | F_c(i,j) | | - p | Gc | G_c(i,j) | | same for chroma - - p | Y00 | Y_{00} | [0,255*s*s] | first: 4 neighbouring Y-values - p | Y01 | Y_{01} | [0,255] | at fullpel position, around the - p | Y10 | Y_{10} | [0,255*s] | position where pelweise MV points to - p | Y11 | Y_{11} | [0,255] | later: bilinear interpol Y-values in Y00 - - p | C00 | C_{00} | [0,255*s*s] | same for chroma Cb and Cr - p | C01 | C_{01} | [0,255] | - p | C10 | C_{10} | [0,255*s] | - p | C11 | C_{11} | [0,255] | - -*/ -{ - const int W = gmc_data->W; - const int H = gmc_data->H; - - const int s = gmc_data->s; - const int sigma = gmc_data->sigma; - - const int r = gmc_data->r; - const int rho = gmc_data->rho; - - const int i0s = gmc_data->i0s; - const int j0s = gmc_data->j0s; - - const int i1ss = gmc_data->i1ss; - const int j1ss = gmc_data->j1ss; -// const int i2ss = gmc_data->i2ss; -// const int j2ss = gmc_data->j2ss; - - const int alpha = gmc_data->alpha; - const int Ws = gmc_data->Ws; - -// const int beta = gmc_data->beta; -// const int Hs = gmc_data->Hs; - - int I,J; - VECTOR avgMV = {0,0}; - - for (J=16*mj;J<16*(mj+1);J++) - for (I=16*mi;I<16*(mi+1);I++) - { - int F= i0s + ( ((-r*i0s+i1ss)*I + (r*j0s-j1ss)*J + (1<<(alpha+rho-1))) >> (alpha+rho) ); - int G= j0s + ( ((-r*j0s+j1ss)*I + (-r*i0s+i1ss)*J + (1<<(alpha+rho-1))) >> (alpha+rho) ); - -/* this naive implementation (with lots of multiplications) isn't slower (rather faster) than - working incremental. Don't ask me why... maybe the whole this is memory bound? */ - - const int ri= F & (s-1); // fractional part of pelwise MV X - const int rj= G & (s-1); // fractional part of pelwise MV Y - - int Y00,Y01,Y10,Y11; - -/* unclipped values are used for avgMV */ - avgMV.x += F-(I<>= sigma; - G >>= sigma; - -/* clip values to be in range. Since we have edges, clip to 1 less than lower boundary - this way positions F+1/G+1 are still right */ - - if (F< -1) - F=-1; - else if (F>W) - F=W; /* W or W-1 doesn't matter, so save 1 subtract ;-) */ - if (G< -1) - G=-1; - else if (G>H) - G=H; /* dito */ - - Y00 = pRef->y[ G*stride + F ]; // Lumi values - Y01 = pRef->y[ G*stride + F+1 ]; - Y10 = pRef->y[ G*stride + F+stride ]; - Y11 = pRef->y[ G*stride + F+stride+1 ]; - - /* bilinear interpolation */ - Y00 = ((s-ri)*Y00 + ri*Y01); - Y10 = ((s-ri)*Y10 + ri*Y11); - Y00 = ((s-rj)*Y00 + rj*Y10 + s*s/2 - rounding ) >> (sigma+sigma); - - pGMC->y[J*stride+I] = (uint8_t)Y00; /* output 1 Y-pixel */ - } - - -/* doing chroma _here_ is even more stupid and slow, because won't be used until Compensation and - most likely not even then (only if the block really _is_ GMC) -*/ - - for (J=8*mj;J<8*(mj+1);J++) /* this plays the role of j_c,i_c in the standard */ - for (I=8*mi;I<8*(mi+1);I++) /* For I_c we have to use I_c = 4*i_c+1 ! */ - { - /* same positions for both chroma components, U=Cb and V=Cr */ - int Fc=((-r*i0s+i1ss)*(4*I+1) + (r*j0s-j1ss)*(4*J+1) +2*Ws*r*i0s - -16*Ws +(1<<(alpha+rho+1)))>>(alpha+rho+2); - int Gc=((-r*j0s+j1ss)*(4*I+1) +(-r*i0s+i1ss)*(4*J+1) +2*Ws*r*j0s - -16*Ws +(1<<(alpha+rho+1))) >>(alpha+rho+2); - - const int ri= Fc & (s-1); // fractional part of pelwise MV X - const int rj= Gc & (s-1); // fractional part of pelwise MV Y - - int C00,C01,C10,C11; - - Fc >>= sigma; - Gc >>= sigma; - - if (Fc< -1) - Fc=-1; - else if (Fc>=W/2) - Fc=W/2; /* W or W-1 doesn't matter, so save 1 subtraction ;-) */ - if (Gc< -1) - Gc=-1; - else if (Gc>=H/2) - Gc=H/2; /* dito */ - -/* now calculate U data */ - C00 = pRef->u[ Gc*stride2 + Fc ]; // chroma-value Cb - C01 = pRef->u[ Gc*stride2 + Fc+1 ]; - C10 = pRef->u[ (Gc+1)*stride2 + Fc ]; - C11 = pRef->u[ (Gc+1)*stride2 + Fc+1 ]; - - /* bilinear interpolation */ - C00 = ((s-ri)*C00 + ri*C01); - C10 = ((s-ri)*C10 + ri*C11); - C00 = ((s-rj)*C00 + rj*C10 + s*s/2 - rounding ) >> (sigma+sigma); - - pGMC->u[J*stride2+I] = (uint8_t)C00; /* output 1 U-pixel */ - -/* now calculate V data */ - C00 = pRef->v[ Gc*stride2 + Fc ]; // chroma-value Cr - C01 = pRef->v[ Gc*stride2 + Fc+1 ]; - C10 = pRef->v[ (Gc+1)*stride2 + Fc ]; - C11 = pRef->v[ (Gc+1)*stride2 + Fc+1 ]; - - /* bilinear interpolation */ - C00 = ((s-ri)*C00 + ri*C01); - C10 = ((s-ri)*C10 + ri*C11); - C00 = ((s-rj)*C00 + rj*C10 + s*s/2 - rounding ) >> (sigma+sigma); - - pGMC->v[J*stride2+I] = (uint8_t)C00; /* output 1 V-pixel */ - } - -/* The average vector is rounded from 1/s-pel to 1/2 or 1/4 using the '//' operator*/ - - avgMV.x = RSHIFT( avgMV.x, (sigma+7-quarterpel) ); - avgMV.y = RSHIFT( avgMV.y, (sigma+7-quarterpel) ); - - /* ^^^^ this is the way MS Reference Software does it */ - - return avgMV; /* clipping to fcode area is done outside! */ -} - -#endif