/***************************************************************************** * * XVID MPEG-4 VIDEO CODEC * - Motion Estimation for B-VOPs - * * Copyright(C) 2002 Christoph Lampert * 2002 Michael Militzer * 2002-2003 Radoslaw Czyz * * This program is free software ; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation ; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY ; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program ; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: estimation_bvop.c,v 1.8 2004-07-10 11:23:41 syskin Exp $ * ****************************************************************************/ #include #include #include #include /* memcpy */ #include "../encoder.h" #include "../global.h" #include "../image/interpolate8x8.h" #include "estimation.h" #include "motion.h" #include "sad.h" #include "motion_inlines.h" static int32_t ChromaSAD2(const int fx, const int fy, const int bx, const int by, SearchData * const data) { int sad; const uint32_t stride = data->iEdgedWidth/2; uint8_t *f_refu, *f_refv, *b_refu, *b_refv; int offset, filter; const INTERPOLATE8X8_PTR interpolate8x8_halfpel[] = { NULL, interpolate8x8_halfpel_v, interpolate8x8_halfpel_h, interpolate8x8_halfpel_hv }; if (data->chromaX == fx && data->chromaY == fy && data->b_chromaX == bx && data->b_chromaY == by) return data->chromaSAD; offset = (fx>>1) + (fy>>1)*stride; filter = ((fx & 1) << 1) | (fy & 1); if (filter != 0) { f_refu = data->RefQ + 64; f_refv = data->RefQ + 64 + 8; if (data->chromaX != fx || data->chromaY != fy) { interpolate8x8_halfpel[filter](f_refu, data->RefP[4] + offset, stride, data->rounding); interpolate8x8_halfpel[filter](f_refv, data->RefP[5] + offset, stride, data->rounding); } } else { f_refu = (uint8_t*)data->RefP[4] + offset; f_refv = (uint8_t*)data->RefP[5] + offset; } data->chromaX = fx; data->chromaY = fy; offset = (bx>>1) + (by>>1)*stride; filter = ((bx & 1) << 1) | (by & 1); if (filter != 0) { b_refu = data->RefQ + 64 + 16; b_refv = data->RefQ + 64 + 24; if (data->b_chromaX != bx || data->b_chromaY != by) { interpolate8x8_halfpel[filter](b_refu, data->b_RefP[4] + offset, stride, data->rounding); interpolate8x8_halfpel[filter](b_refv, data->b_RefP[5] + offset, stride, data->rounding); } } else { b_refu = (uint8_t*)data->b_RefP[4] + offset; b_refv = (uint8_t*)data->b_RefP[5] + offset; } data->b_chromaX = bx; data->b_chromaY = by; sad = sad8bi(data->CurU, b_refu, f_refu, stride); sad += sad8bi(data->CurV, b_refv, f_refv, stride); data->chromaSAD = sad; return sad; } static void CheckCandidateInt(const int x, const int y, SearchData * const data, const unsigned int Direction) { int32_t sad, xf, yf, xb, yb, xcf, ycf, xcb, ycb; uint32_t t; const uint8_t *ReferenceF, *ReferenceB; VECTOR *current; if ((x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy)) return; if (Direction == 1) { /* x and y mean forward vector */ VECTOR backward = data->qpel_precision ? data->currentQMV[1] : data->currentMV[1]; xb = backward.x; yb = backward.y; xf = x; yf = y; } else { /* x and y mean backward vector */ VECTOR forward = data->qpel_precision ? data->currentQMV[0] : data->currentMV[0]; xf = forward.x; yf = forward.y; xb = x; yb = y; } if (!data->qpel_precision) { ReferenceF = GetReference(xf, yf, data); ReferenceB = GetReferenceB(xb, yb, 1, data); current = data->currentMV + Direction - 1; xcf = xf; ycf = yf; xcb = xb; ycb = yb; } else { ReferenceF = xvid_me_interpolate16x16qpel(xf, yf, 0, data); current = data->currentQMV + Direction - 1; ReferenceB = xvid_me_interpolate16x16qpel(xb, yb, 1, data); xcf = xf/2; ycf = yf/2; xcb = xb/2; ycb = yb/2; } t = d_mv_bits(xf, yf, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0) + d_mv_bits(xb, yb, data->bpredMV, data->iFcode, data->qpel^data->qpel_precision, 0); sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth); sad += (data->lambda16 * t * sad)>>10; if (data->chroma && sad < *data->iMinSAD) sad += ChromaSAD2((xcf >> 1) + roundtab_79[xcf & 0x3], (ycf >> 1) + roundtab_79[ycf & 0x3], (xcb >> 1) + roundtab_79[xcb & 0x3], (ycb >> 1) + roundtab_79[ycb & 0x3], data); if (sad < *(data->iMinSAD)) { *data->iMinSAD = sad; current->x = x; current->y = y; data->dir = Direction; } } static void CheckCandidateDirect(const int x, const int y, SearchData * const data, const unsigned int Direction) { int32_t sad = 0, xcf = 0, ycf = 0, xcb = 0, ycb = 0; uint32_t k; const uint8_t *ReferenceF; const uint8_t *ReferenceB; VECTOR mvs, b_mvs; const int blocks[4] = {0, 8, 8*data->iEdgedWidth, 8*data->iEdgedWidth+8}; if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return; for (k = 0; k < 4; k++) { mvs.x = data->directmvF[k].x + x; b_mvs.x = ((x == 0) ? data->directmvB[k].x : mvs.x - data->referencemv[k].x); mvs.y = data->directmvF[k].y + y; b_mvs.y = ((y == 0) ? data->directmvB[k].y : mvs.y - data->referencemv[k].y); if ((mvs.x > data->max_dx) || (mvs.x < data->min_dx) || (mvs.y > data->max_dy) || (mvs.y < data->min_dy) || (b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx) || (b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) ) return; if (data->qpel) { xcf += mvs.x/2; ycf += mvs.y/2; xcb += b_mvs.x/2; ycb += b_mvs.y/2; if (data->qpel_precision) { ReferenceF = xvid_me_interpolate8x8qpel(mvs.x, mvs.y, k, 0, data); ReferenceB = xvid_me_interpolate8x8qpel(b_mvs.x, b_mvs.y, k, 1, data); goto done; } mvs.x >>=1; mvs.y >>=1; b_mvs.x >>=1; b_mvs.y >>=1; // qpel->hpel } else { xcf += mvs.x; ycf += mvs.y; xcb += b_mvs.x; ycb += b_mvs.y; } ReferenceF = GetReference(mvs.x, mvs.y, data) + blocks[k]; ReferenceB = GetReferenceB(b_mvs.x, b_mvs.y, 1, data) + blocks[k]; done: sad += data->iMinSAD[k+1] = sad8bi(data->Cur + blocks[k], ReferenceF, ReferenceB, data->iEdgedWidth); if (sad > *(data->iMinSAD)) return; } sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10; if (data->chroma && sad < *data->iMinSAD) sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf], (ycf >> 3) + roundtab_76[ycf & 0xf], (xcb >> 3) + roundtab_76[xcb & 0xf], (ycb >> 3) + roundtab_76[ycb & 0xf], data); if (sad < *(data->iMinSAD)) { data->iMinSAD[0] = sad; data->currentMV->x = x; data->currentMV->y = y; data->dir = Direction; } } static void CheckCandidateDirectno4v(const int x, const int y, SearchData * const data, const unsigned int Direction) { int32_t sad, xcf, ycf, xcb, ycb; const uint8_t *ReferenceF; const uint8_t *ReferenceB; VECTOR mvs, b_mvs; if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return; mvs.x = data->directmvF[0].x + x; b_mvs.x = ((x == 0) ? data->directmvB[0].x : mvs.x - data->referencemv[0].x); mvs.y = data->directmvF[0].y + y; b_mvs.y = ((y == 0) ? data->directmvB[0].y : mvs.y - data->referencemv[0].y); if ( (mvs.x > data->max_dx) || (mvs.x < data->min_dx) || (mvs.y > data->max_dy) || (mvs.y < data->min_dy) || (b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx) || (b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) ) return; if (data->qpel) { xcf = 4*(mvs.x/2); ycf = 4*(mvs.y/2); xcb = 4*(b_mvs.x/2); ycb = 4*(b_mvs.y/2); if (data->qpel_precision) { ReferenceF = xvid_me_interpolate16x16qpel(mvs.x, mvs.y, 0, data); ReferenceB = xvid_me_interpolate16x16qpel(b_mvs.x, b_mvs.y, 1, data); goto done; } mvs.x >>=1; mvs.y >>=1; b_mvs.x >>=1; b_mvs.y >>=1; // qpel->hpel } else { xcf = 4*mvs.x; ycf = 4*mvs.y; xcb = 4*b_mvs.x; ycb = 4*b_mvs.y; } ReferenceF = GetReference(mvs.x, mvs.y, data); ReferenceB = GetReferenceB(b_mvs.x, b_mvs.y, 1, data); done: sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth); sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10; if (data->chroma && sad < *data->iMinSAD) sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf], (ycf >> 3) + roundtab_76[ycf & 0xf], (xcb >> 3) + roundtab_76[xcb & 0xf], (ycb >> 3) + roundtab_76[ycb & 0xf], data); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV->x = x; data->currentMV->y = y; data->dir = Direction; } } void CheckCandidate16no4v(const int x, const int y, SearchData * const data, const unsigned int Direction) { int32_t sad, xc, yc; const uint8_t * Reference; uint32_t t; VECTOR * current; if ( (x > data->max_dx) || ( x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; if (data->rrv && (!(x&1) && x !=0) | (!(y&1) && y !=0) ) return; /* non-zero even value */ if (data->qpel_precision) { /* x and y are in 1/4 precision */ Reference = xvid_me_interpolate16x16qpel(x, y, 0, data); current = data->currentQMV; xc = x/2; yc = y/2; } else { Reference = GetReference(x, y, data); current = data->currentMV; xc = x; yc = y; } t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, data->rrv); sad = sad16(data->Cur, Reference, data->iEdgedWidth, 256*4096); sad += (data->lambda16 * t * sad)>>10; if (data->chroma && sad < *data->iMinSAD) sad += xvid_me_ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3], (yc >> 1) + roundtab_79[yc & 0x3], data); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; current->x = x; current->y = y; data->dir = Direction; } } static void initialize_searchData(SearchData * Data_d, SearchData * Data_f, SearchData * Data_b, SearchData * Data_i, int x, int y, const IMAGE * const f_Ref, const uint8_t * const f_RefH, const uint8_t * const f_RefV, const uint8_t * const f_RefHV, const IMAGE * const b_Ref, const uint8_t * const b_RefH, const uint8_t * const b_RefV, const uint8_t * const b_RefHV, const IMAGE * const pCur, const MACROBLOCK * const b_mb) { /* per-macroblock SearchData initialization - too many things would be repeated 4 times */ const uint8_t * RefP[6], * b_RefP[6], * Cur[3]; const uint32_t iEdgedWidth = Data_d->iEdgedWidth; unsigned int lambda; int i; /* luma */ int offset = (x + iEdgedWidth*y) * 16; RefP[0] = f_Ref->y + offset; RefP[2] = f_RefH + offset; RefP[1] = f_RefV + offset; RefP[3] = f_RefHV + offset; b_RefP[0] = b_Ref->y + offset; b_RefP[2] = b_RefH + offset; b_RefP[1] = b_RefV + offset; b_RefP[3] = b_RefHV + offset; Cur[0] = pCur->y + offset; /* chroma */ offset = (x + (iEdgedWidth/2)*y) * 8; RefP[4] = f_Ref->u + offset; RefP[5] = f_Ref->v + offset; b_RefP[4] = b_Ref->u + offset; b_RefP[5] = b_Ref->v + offset; Cur[1] = pCur->u + offset; Cur[2] = pCur->v + offset; lambda = xvid_me_lambda_vec16[b_mb->quant]; for (i = 0; i < 6; i++) { Data_d->RefP[i] = Data_f->RefP[i] = Data_i->RefP[i] = RefP[i]; Data_d->b_RefP[i] = Data_b->RefP[i] = Data_i->b_RefP[i] = b_RefP[i]; } Data_d->Cur = Data_f->Cur = Data_b->Cur = Data_i->Cur = Cur[0]; Data_d->CurU = Data_f->CurU = Data_b->CurU = Data_i->CurU = Cur[1]; Data_d->CurV = Data_f->CurV = Data_b->CurV = Data_i->CurV = Cur[2]; Data_d->lambda16 = lambda/4; Data_f->lambda16 = Data_b->lambda16 = Data_i->lambda16 = lambda; /* reset chroma-sad cache */ Data_d->b_chromaX = Data_d->b_chromaY = Data_d->chromaX = Data_d->chromaY = Data_d->chromaSAD = 256*4096; Data_i->b_chromaX = Data_i->b_chromaY = Data_i->chromaX = Data_i->chromaY = Data_i->chromaSAD = 256*4096; Data_f->chromaX = Data_f->chromaY = Data_f->chromaSAD = 256*4096; Data_b->chromaX = Data_b->chromaY = Data_b->chromaSAD = 256*4096; *Data_d->iMinSAD = *Data_b->iMinSAD = *Data_f->iMinSAD = *Data_i->iMinSAD = 4096*256; } static __inline VECTOR ChoosePred(const MACROBLOCK * const pMB, const uint32_t mode) { /* the stupidiest function ever */ return (mode == MODE_FORWARD ? pMB->mvs[0] : pMB->b_mvs[0]); } static void __inline PreparePredictionsBF(VECTOR * const pmv, const int x, const int y, const uint32_t iWcount, const MACROBLOCK * const pMB, const uint32_t mode_curr, const VECTOR hint) { /* [0] is prediction */ pmv[0].x = (pmv[0].x); pmv[0].y = (pmv[0].y); pmv[1].x = pmv[1].y = 0; /* [1] is zero */ pmv[2].x = hint.x; pmv[2].y = hint.y; if ((y != 0)&&(x != (int)(iWcount+1))) { /* [3] top-right neighbour */ pmv[3] = ChoosePred(pMB+1-iWcount, mode_curr); } else pmv[3].x = pmv[3].y = 0; if (y != 0) { pmv[4] = ChoosePred(pMB-iWcount, mode_curr); } else pmv[4].x = pmv[4].y = 0; if (x != 0) { pmv[5] = ChoosePred(pMB-1, mode_curr); } else pmv[5].x = pmv[5].y = 0; if (x != 0 && y != 0) { pmv[6] = ChoosePred(pMB-1-iWcount, mode_curr); } else pmv[6].x = pmv[6].y = 0; } /* search backward or forward */ static void SearchBF_initial(const int x, const int y, const uint32_t MotionFlags, const uint32_t iFcode, const MBParam * const pParam, MACROBLOCK * const pMB, const VECTOR * const predMV, int32_t * const best_sad, const int32_t mode_current, SearchData * const Data, VECTOR hint) { int i; VECTOR pmv[7]; *Data->iMinSAD = MV_MAX_ERROR; Data->qpel_precision = 0; Data->predMV = *predMV; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 4, pParam->width, pParam->height, iFcode - Data->qpel, 1, 0); pmv[0] = Data->predMV; if (Data->qpel) { pmv[0].x /= 2; pmv[0].y /= 2; hint.x /= 2; hint.y /= 2; } PreparePredictionsBF(pmv, x, y, pParam->mb_width, pMB, mode_current, hint); Data->currentMV->x = Data->currentMV->y = 0; /* main loop. checking all predictions */ for (i = 0; i < 7; i++) if (!vector_repeats(pmv, i) ) CheckCandidate16no4v(pmv[i].x, pmv[i].y, Data, i); if (*Data->iMinSAD > 512) { unsigned int mask = make_mask(pmv, 7, Data->dir); MainSearchFunc *MainSearchPtr; if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = xvid_me_SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = xvid_me_AdvDiamondSearch; else MainSearchPtr = xvid_me_DiamondSearch; MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, mask, CheckCandidate16no4v); } if (Data->iMinSAD[0] < *best_sad) *best_sad = Data->iMinSAD[0]; } static void SearchBF_final(const int x, const int y, const uint32_t MotionFlags, const MBParam * const pParam, int32_t * const best_sad, SearchData * const Data) { if(!Data->qpel) { /* halfpel mode */ if (MotionFlags & XVID_ME_HALFPELREFINE16) xvid_me_SubpelRefine(Data->currentMV[0], Data, CheckCandidate16no4v, 0); } else { /* qpel mode */ if(MotionFlags & XVID_ME_FASTREFINE16) { /* fast */ get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 4, pParam->width, pParam->height, Data->iFcode, 2, 0); FullRefine_Fast(Data, CheckCandidate16no4v, 0); } else { Data->currentQMV->x = 2*Data->currentMV->x; Data->currentQMV->y = 2*Data->currentMV->y; if(MotionFlags & XVID_ME_QUARTERPELREFINE16) { /* full */ if (MotionFlags & XVID_ME_HALFPELREFINE16) { xvid_me_SubpelRefine(Data->currentMV[0], Data, CheckCandidate16no4v, 0); /* hpel part */ Data->currentQMV->x = 2*Data->currentMV->x; Data->currentQMV->y = 2*Data->currentMV->y; } get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 4, pParam->width, pParam->height, Data->iFcode, 2, 0); Data->qpel_precision = 1; xvid_me_SubpelRefine(Data->currentQMV[0], Data, CheckCandidate16no4v, 0); /* qpel part */ } } } if (Data->iMinSAD[0] < *best_sad) *best_sad = Data->iMinSAD[0]; } static void SkipDecisionB(MACROBLOCK * const pMB, const SearchData * const Data) { int k; pMB->mode = MODE_DIRECT; /* just to initialize it */ if (!Data->chroma) { int dx = 0, dy = 0, b_dx = 0, b_dy = 0; int32_t sum; const uint32_t stride = Data->iEdgedWidth/2; /* this is not full chroma compensation, only it's fullpel approximation. should work though */ for (k = 0; k < 4; k++) { dy += Data->directmvF[k].y >> Data->qpel; dx += Data->directmvF[k].x >> Data->qpel; b_dy += Data->directmvB[k].y >> Data->qpel; b_dx += Data->directmvB[k].x >> Data->qpel; } dy = (dy >> 3) + roundtab_76[dy & 0xf]; dx = (dx >> 3) + roundtab_76[dx & 0xf]; b_dy = (b_dy >> 3) + roundtab_76[b_dy & 0xf]; b_dx = (b_dx >> 3) + roundtab_76[b_dx & 0xf]; sum = sad8bi(Data->CurU, Data->RefP[4] + (dy/2) * stride + dx/2, Data->b_RefP[4] + (b_dy/2) * stride + b_dx/2, stride); if (sum >= MAX_CHROMA_SAD_FOR_SKIP * (int)Data->iQuant) return; /* no skip */ sum += sad8bi(Data->CurV, Data->RefP[5] + (dy/2) * stride + dx/2, Data->b_RefP[5] + (b_dy/2) * stride + b_dx/2, stride); if (sum >= MAX_CHROMA_SAD_FOR_SKIP * (int)Data->iQuant) return; /* no skip */ } else { int sum = Data->chromaSAD; /* chroma-sad SAD caching keeps it there */ if (sum >= MAX_CHROMA_SAD_FOR_SKIP * (int)Data->iQuant) return; /* no skip */ } /* skip */ pMB->mode = MODE_DIRECT_NONE_MV; /* skipped */ for (k = 0; k < 4; k++) { pMB->qmvs[k] = pMB->mvs[k] = Data->directmvF[k]; pMB->b_qmvs[k] = pMB->b_mvs[k] = Data->directmvB[k]; } } static uint32_t SearchDirect_initial(const int x, const int y, const uint32_t MotionFlags, const int32_t TRB, const int32_t TRD, const MBParam * const pParam, MACROBLOCK * const pMB, const MACROBLOCK * const b_mb, int32_t * const best_sad, SearchData * const Data) { int32_t skip_sad; int k = (x + Data->iEdgedWidth*y) * 16; k = Data->qpel ? 4 : 2; Data->max_dx = k * (pParam->width - x * 16); Data->max_dy = k * (pParam->height - y * 16); Data->min_dx = -k * (16 + x * 16); Data->min_dy = -k * (16 + y * 16); Data->referencemv = Data->qpel ? b_mb->qmvs : b_mb->mvs; for (k = 0; k < 4; k++) { Data->directmvF[k].x = ((TRB * Data->referencemv[k].x) / TRD); Data->directmvB[k].x = ((TRB - TRD) * Data->referencemv[k].x) / TRD; Data->directmvF[k].y = ((TRB * Data->referencemv[k].y) / TRD); Data->directmvB[k].y = ((TRB - TRD) * Data->referencemv[k].y) / TRD; if ( (Data->directmvB[k].x > Data->max_dx) | (Data->directmvB[k].x < Data->min_dx) | (Data->directmvB[k].y > Data->max_dy) | (Data->directmvB[k].y < Data->min_dy) ) { Data->iMinSAD[0] = *best_sad = 256*4096; /* in that case, we won't use direct mode */ return 256*4096; } if (b_mb->mode != MODE_INTER4V) { Data->directmvF[1] = Data->directmvF[2] = Data->directmvF[3] = Data->directmvF[0]; Data->directmvB[1] = Data->directmvB[2] = Data->directmvB[3] = Data->directmvB[0]; break; } } Data->qpel_precision = Data->qpel; /* this initial check is done with full precision, to find real SKIP sad */ CheckCandidateDirect(0, 0, Data, 255); /* will also fill iMinSAD[1..4] with 8x8 SADs */ /* initial (fast) skip decision */ if (Data->iMinSAD[1] < (int)Data->iQuant * INITIAL_SKIP_THRESH && Data->iMinSAD[2] < (int)Data->iQuant * INITIAL_SKIP_THRESH && Data->iMinSAD[3] < (int)Data->iQuant * INITIAL_SKIP_THRESH && Data->iMinSAD[4] < (int)Data->iQuant * INITIAL_SKIP_THRESH) { /* possible skip */ SkipDecisionB(pMB, Data); if (pMB->mode == MODE_DIRECT_NONE_MV) return *Data->iMinSAD; /* skipped */ } skip_sad = 4*MAX(MAX(Data->iMinSAD[1],Data->iMinSAD[2]), MAX(Data->iMinSAD[3],Data->iMinSAD[4])); if (Data->chroma) skip_sad += Data->chromaSAD; Data->currentMV[1].x = Data->directmvF[0].x + Data->currentMV->x; /* hints for forward and backward searches */ Data->currentMV[1].y = Data->directmvF[0].y + Data->currentMV->y; Data->currentMV[2].x = ((Data->currentMV->x == 0) ? Data->directmvB[0].x : Data->currentMV[1].x - Data->referencemv[0].x); Data->currentMV[2].y = ((Data->currentMV->y == 0) ? Data->directmvB[0].y : Data->currentMV[1].y - Data->referencemv[0].y); return skip_sad; } static void SearchDirect_final( const uint32_t MotionFlags, const MACROBLOCK * const b_mb, int32_t * const best_sad, SearchData * const Data) { CheckFunc * CheckCandidate = b_mb->mode == MODE_INTER4V ? CheckCandidateDirect : CheckCandidateDirectno4v; MainSearchFunc *MainSearchPtr; if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = xvid_me_SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = xvid_me_AdvDiamondSearch; else MainSearchPtr = xvid_me_DiamondSearch; Data->qpel_precision = 0; MainSearchPtr(0, 0, Data, 255, CheckCandidate); Data->qpel_precision = Data->qpel; if(Data->qpel) { *Data->iMinSAD = 256*4096; /* this old SAD was not real, it was in hpel precision */ CheckCandidate(Data->currentMV->x, Data->currentMV->y, Data, 255); } xvid_me_SubpelRefine(Data->currentMV[0], Data, CheckCandidate, 0); if (Data->iMinSAD[0] < *best_sad) { *best_sad = Data->iMinSAD[0]; } } static __inline void set_range(int * range, SearchData * Data) { Data->min_dx = range[0]; Data->max_dx = range[1]; Data->min_dy = range[2]; Data->max_dy = range[3]; } static void SearchInterpolate_initial( const int x, const int y, const uint32_t MotionFlags, const MBParam * const pParam, const VECTOR * const f_predMV, const VECTOR * const b_predMV, int32_t * const best_sad, SearchData * const Data, const VECTOR startF, const VECTOR startB) { int b_range[4], f_range[4]; Data->qpel_precision = 0; Data->predMV = *f_predMV; Data->bpredMV = *b_predMV; Data->currentMV[0] = startF; Data->currentMV[1] = startB; get_range(f_range, f_range+1, f_range+2, f_range+3, x, y, 4, pParam->width, pParam->height, Data->iFcode - Data->qpel, 1, 0); get_range(b_range, b_range+1, b_range+2, b_range+3, x, y, 4, pParam->width, pParam->height, Data->bFcode - Data->qpel, 1, 0); if (Data->currentMV[0].x > f_range[1]) Data->currentMV[0].x = f_range[1]; if (Data->currentMV[0].x < f_range[0]) Data->currentMV[0].x = f_range[0]; if (Data->currentMV[0].y > f_range[3]) Data->currentMV[0].y = f_range[3]; if (Data->currentMV[0].y < f_range[2]) Data->currentMV[0].y = f_range[2]; if (Data->currentMV[1].x > b_range[1]) Data->currentMV[1].x = b_range[1]; if (Data->currentMV[1].x < b_range[0]) Data->currentMV[1].x = b_range[0]; if (Data->currentMV[1].y > b_range[3]) Data->currentMV[1].y = b_range[3]; if (Data->currentMV[1].y < b_range[2]) Data->currentMV[1].y = b_range[2]; set_range(f_range, Data); CheckCandidateInt(Data->currentMV[0].x, Data->currentMV[0].y, Data, 1); if (Data->iMinSAD[0] < *best_sad) *best_sad = Data->iMinSAD[0]; } static void SearchInterpolate_final(const int x, const int y, const uint32_t MotionFlags, const MBParam * const pParam, int32_t * const best_sad, SearchData * const Data) { int i, j; int b_range[4], f_range[4]; get_range(f_range, f_range+1, f_range+2, f_range+3, x, y, 4, pParam->width, pParam->height, Data->iFcode - Data->qpel, 1, 0); get_range(b_range, b_range+1, b_range+2, b_range+3, x, y, 4, pParam->width, pParam->height, Data->bFcode - Data->qpel, 1, 0); /* diamond */ do { Data->dir = 0; /* forward MV moves */ i = Data->currentMV[0].x; j = Data->currentMV[0].y; CheckCandidateInt(i + 1, j, Data, 1); CheckCandidateInt(i, j + 1, Data, 1); CheckCandidateInt(i - 1, j, Data, 1); CheckCandidateInt(i, j - 1, Data, 1); /* backward MV moves */ set_range(b_range, Data); i = Data->currentMV[1].x; j = Data->currentMV[1].y; CheckCandidateInt(i + 1, j, Data, 2); CheckCandidateInt(i, j + 1, Data, 2); CheckCandidateInt(i - 1, j, Data, 2); CheckCandidateInt(i, j - 1, Data, 2); set_range(f_range, Data); } while (Data->dir != 0); /* qpel refinement */ if (Data->qpel) { Data->qpel_precision = 1; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 4, pParam->width, pParam->height, Data->iFcode, 2, 0); Data->currentQMV[0].x = 2 * Data->currentMV[0].x; Data->currentQMV[0].y = 2 * Data->currentMV[0].y; Data->currentQMV[1].x = 2 * Data->currentMV[1].x; Data->currentQMV[1].y = 2 * Data->currentMV[1].y; if (MotionFlags & XVID_ME_QUARTERPELREFINE16) { xvid_me_SubpelRefine(Data->currentQMV[0], Data, CheckCandidateInt, 1); get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 4, pParam->width, pParam->height, Data->bFcode, 2, 0); xvid_me_SubpelRefine(Data->currentQMV[1], Data, CheckCandidateInt, 2); } } if (Data->iMinSAD[0] < *best_sad) *best_sad = Data->iMinSAD[0]; } static void ModeDecision_BVOP_SAD(const SearchData * const Data_d, const SearchData * const Data_b, const SearchData * const Data_f, const SearchData * const Data_i, MACROBLOCK * const pMB, const MACROBLOCK * const b_mb, VECTOR * f_predMV, VECTOR * b_predMV) { int mode = MODE_DIRECT, k; int best_sad, f_sad, b_sad, i_sad; const int qpel = Data_d->qpel; /* evaluate cost of all modes - quite simple in SAD */ best_sad = Data_d->iMinSAD[0] + 1*Data_d->lambda16; b_sad = Data_b->iMinSAD[0] + 3*Data_d->lambda16; f_sad = Data_f->iMinSAD[0] + 4*Data_d->lambda16; i_sad = Data_i->iMinSAD[0] + 2*Data_d->lambda16; if (b_sad < best_sad) { mode = MODE_BACKWARD; best_sad = b_sad; } if (f_sad < best_sad) { mode = MODE_FORWARD; best_sad = f_sad; } if (i_sad < best_sad) { mode = MODE_INTERPOLATE; best_sad = i_sad; } pMB->sad16 = best_sad; pMB->mode = mode; switch (mode) { case MODE_DIRECT: if (!qpel && b_mb->mode != MODE_INTER4V) pMB->mode = MODE_DIRECT_NO4V; /* for faster compensation */ pMB->pmvs[3] = Data_d->currentMV[0]; for (k = 0; k < 4; k++) { pMB->mvs[k].x = Data_d->directmvF[k].x + Data_d->currentMV->x; pMB->b_mvs[k].x = ( (Data_d->currentMV->x == 0) ? Data_d->directmvB[k].x :pMB->mvs[k].x - Data_d->referencemv[k].x); pMB->mvs[k].y = (Data_d->directmvF[k].y + Data_d->currentMV->y); pMB->b_mvs[k].y = ((Data_d->currentMV->y == 0) ? Data_d->directmvB[k].y : pMB->mvs[k].y - Data_d->referencemv[k].y); if (qpel) { pMB->qmvs[k].x = pMB->mvs[k].x; pMB->mvs[k].x /= 2; pMB->b_qmvs[k].x = pMB->b_mvs[k].x; pMB->b_mvs[k].x /= 2; pMB->qmvs[k].y = pMB->mvs[k].y; pMB->mvs[k].y /= 2; pMB->b_qmvs[k].y = pMB->b_mvs[k].y; pMB->b_mvs[k].y /= 2; } if (b_mb->mode != MODE_INTER4V) { pMB->mvs[3] = pMB->mvs[2] = pMB->mvs[1] = pMB->mvs[0]; pMB->b_mvs[3] = pMB->b_mvs[2] = pMB->b_mvs[1] = pMB->b_mvs[0]; pMB->qmvs[3] = pMB->qmvs[2] = pMB->qmvs[1] = pMB->qmvs[0]; pMB->b_qmvs[3] = pMB->b_qmvs[2] = pMB->b_qmvs[1] = pMB->b_qmvs[0]; break; } } break; case MODE_FORWARD: if (qpel) { pMB->pmvs[0].x = Data_f->currentQMV->x - f_predMV->x; pMB->pmvs[0].y = Data_f->currentQMV->y - f_predMV->y; pMB->qmvs[0] = *Data_f->currentQMV; *f_predMV = Data_f->currentQMV[0]; } else { pMB->pmvs[0].x = Data_f->currentMV->x - f_predMV->x; pMB->pmvs[0].y = Data_f->currentMV->y - f_predMV->y; *f_predMV = Data_f->currentMV[0]; } pMB->mvs[0] = *Data_f->currentMV; break; case MODE_BACKWARD: if (qpel) { pMB->pmvs[0].x = Data_b->currentQMV->x - b_predMV->x; pMB->pmvs[0].y = Data_b->currentQMV->y - b_predMV->y; pMB->b_qmvs[0] = *Data_b->currentQMV; *b_predMV = Data_b->currentQMV[0]; } else { pMB->pmvs[0].x = Data_b->currentMV->x - b_predMV->x; pMB->pmvs[0].y = Data_b->currentMV->y - b_predMV->y; *b_predMV = Data_b->currentMV[0]; } pMB->b_mvs[0] = *Data_b->currentMV; break; case MODE_INTERPOLATE: pMB->mvs[0] = Data_i->currentMV[0]; pMB->b_mvs[0] = Data_i->currentMV[1]; if (qpel) { pMB->qmvs[0] = Data_i->currentQMV[0]; pMB->b_qmvs[0] = Data_i->currentQMV[1]; pMB->pmvs[1].x = pMB->qmvs[0].x - f_predMV->x; pMB->pmvs[1].y = pMB->qmvs[0].y - f_predMV->y; pMB->pmvs[0].x = pMB->b_qmvs[0].x - b_predMV->x; pMB->pmvs[0].y = pMB->b_qmvs[0].y - b_predMV->y; *f_predMV = Data_i->currentQMV[0]; *b_predMV = Data_i->currentQMV[1]; } else { pMB->pmvs[1].x = pMB->mvs[0].x - f_predMV->x; pMB->pmvs[1].y = pMB->mvs[0].y - f_predMV->y; pMB->pmvs[0].x = pMB->b_mvs[0].x - b_predMV->x; pMB->pmvs[0].y = pMB->b_mvs[0].y - b_predMV->y; *f_predMV = Data_i->currentMV[0]; *b_predMV = Data_i->currentMV[1]; } break; } } void MotionEstimationBVOP(MBParam * const pParam, FRAMEINFO * const frame, const int32_t time_bp, const int32_t time_pp, /* forward (past) reference */ const MACROBLOCK * const f_mbs, const IMAGE * const f_ref, const IMAGE * const f_refH, const IMAGE * const f_refV, const IMAGE * const f_refHV, /* backward (future) reference */ const FRAMEINFO * const b_reference, const IMAGE * const b_ref, const IMAGE * const b_refH, const IMAGE * const b_refV, const IMAGE * const b_refHV) { uint32_t i, j; int32_t best_sad, sad2; uint32_t skip_sad; const MACROBLOCK * const b_mbs = b_reference->mbs; VECTOR f_predMV, b_predMV; const int32_t TRB = time_pp - time_bp; const int32_t TRD = time_pp; /* some pre-inintialized data for the rest of the search */ SearchData Data_d, Data_f, Data_b, Data_i; memset(&Data_d, 0, sizeof(SearchData)); Data_d.iEdgedWidth = pParam->edged_width; Data_d.qpel = pParam->vol_flags & XVID_VOL_QUARTERPEL ? 1 : 0; Data_d.rounding = 0; Data_d.chroma = frame->motion_flags & XVID_ME_CHROMA_BVOP; Data_d.iQuant = frame->quant; Data_d.RefQ = f_refV->u; /* a good place, also used in MC (for similar purpose) */ memcpy(&Data_f, &Data_d, sizeof(SearchData)); memcpy(&Data_b, &Data_d, sizeof(SearchData)); memcpy(&Data_i, &Data_d, sizeof(SearchData)); Data_f.iFcode = Data_i.iFcode = frame->fcode; Data_b.iFcode = Data_i.bFcode = frame->bcode; for (j = 0; j < pParam->mb_height; j++) { f_predMV = b_predMV = zeroMV; /* prediction is reset at left boundary */ for (i = 0; i < pParam->mb_width; i++) { MACROBLOCK * const pMB = frame->mbs + i + j * pParam->mb_width; const MACROBLOCK * const b_mb = b_mbs + i + j * pParam->mb_width; int interpol_search = 0; int bf_search = 0; int bf_thresh = 0; pMB->mode = -1; initialize_searchData(&Data_d, &Data_f, &Data_b, &Data_i, i, j, f_ref, f_refH->y, f_refV->y, f_refHV->y, b_ref, b_refH->y, b_refV->y, b_refHV->y, &frame->image, b_mb); /* special case, if collocated block is SKIPed in P-VOP: encoding is forward (0,0), cpb=0 without further ado */ if (b_reference->coding_type != S_VOP) if (b_mb->mode == MODE_NOT_CODED) { pMB->mode = MODE_NOT_CODED; pMB->mvs[0] = pMB->b_mvs[0] = zeroMV; pMB->sad16 = 0; continue; } /* direct search comes first, because it (1) checks for SKIP-mode and (2) sets very good predictions for forward and backward search */ skip_sad = SearchDirect_initial(i, j, frame->motion_flags, TRB, TRD, pParam, pMB, b_mb, &best_sad, &Data_d); if (pMB->mode == MODE_DIRECT_NONE_MV) { pMB->sad16 = best_sad; continue; } SearchBF_initial(i, j, frame->motion_flags, frame->fcode, pParam, pMB, &f_predMV, &best_sad, MODE_FORWARD, &Data_f, Data_d.currentMV[1]); SearchBF_initial(i, j, frame->motion_flags, frame->bcode, pParam, pMB, &b_predMV, &best_sad, MODE_BACKWARD, &Data_b, Data_d.currentMV[2]); sad2 = best_sad; if (Data_f.iMinSAD[0] < 2*sad2+1500) SearchBF_final(i, j, frame->motion_flags, pParam, &best_sad, &Data_f); if (Data_b.iMinSAD[0] < 2*sad2+1500) SearchBF_final(i, j, frame->motion_flags, pParam, &best_sad, &Data_b); SearchInterpolate_initial(i, j, frame->motion_flags, pParam, &f_predMV, &b_predMV, &best_sad, &Data_i, Data_f.currentMV[0], Data_b.currentMV[0]); if (((Data_i.iMinSAD[0] < 2*best_sad+2000) && (!(frame->motion_flags&XVID_ME_FAST_MODEINTERPOLATE)) || Data_i.iMinSAD[0] <= best_sad)) SearchInterpolate_final(i, j, frame->motion_flags, pParam, &best_sad, &Data_i); if ((Data_d.iMinSAD[0] <= best_sad) && (!(frame->motion_flags&XVID_ME_SKIP_DELTASEARCH))) SearchDirect_final(frame->motion_flags, b_mb, &best_sad, &Data_d); /* final skip decision */ if ( (skip_sad < Data_d.iQuant * MAX_SAD00_FOR_SKIP ) && ((100*best_sad)/(skip_sad+1) > FINAL_SKIP_THRESH) ) { SkipDecisionB(pMB, &Data_d); if (pMB->mode == MODE_DIRECT_NONE_MV) { /* skipped? */ pMB->sad16 = best_sad; continue; } } ModeDecision_BVOP_SAD(&Data_d, &Data_b, &Data_f, &Data_i, pMB, b_mb, &f_predMV, &b_predMV); } } }