/****************************************************************************** * * * This file is part of XviD, a free MPEG-4 video encoder/decoder * * * * XviD is an implementation of a part of one or more MPEG-4 Video tools * * as specified in ISO/IEC 14496-2 standard. Those intending to use this * * software module in hardware or software products are advised that its * * use may infringe existing patents or copyrights, and any such use * * would be at such party's own risk. The original developer of this * * software module and his/her company, and subsequent editors and their * * companies, will have no liability for use of this software or * * modifications or derivatives thereof. * * * * XviD is free software; you can redistribute it and/or modify it * * under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * XviD is distributed in the hope that it will be useful, but * * WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the Free Software * * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * ******************************************************************************/ /****************************************************************************** * * * mbcoding.c * * * * Copyright (C) 2002 - Michael Militzer * * * * For more information visit the XviD homepage: http://www.xvid.org * * * ******************************************************************************/ /****************************************************************************** * * * Revision history: * * * * 14.04.2002 bframe encoding * * 08.03.2002 initial version; isibaar * * * ******************************************************************************/ #include #include "../portab.h" #include "bitstream.h" #include "zigzag.h" #include "vlc_codes.h" #include "mbcoding.h" #include "../utils/mbfunctions.h" #define ABS(X) (((X)>0)?(X):-(X)) #define CLIP(X,A) (X > A) ? (A) : (X) VLC intra_table[524032]; VLC inter_table[524032]; VLC DCT3Dintra[4096]; VLC DCT3Dinter[4096]; void init_vlc_tables(void) { int32_t k, l, i, intra, last; VLC *vlc[2]; VLC **coeff_ptr; VLC *vlc1, *vlc2; vlc1 = DCT3Dintra; vlc2 = DCT3Dinter; vlc[0] = intra_table; vlc[1] = inter_table; // generate encoding vlc lookup tables // the lookup table idea is taken from the excellent fame project by Vivien Chapellier for (i = 0; i < 4; i++) { intra = i % 2; last = i / 2; coeff_ptr = coeff_vlc[last + 2 * intra]; for (k = -2047; k < 2048; k++) { // level int8_t *max_level_ptr = max_level[last + 2 * intra]; int8_t *max_run_ptr = max_run[last + 2 * intra]; for (l = 0; l < 64; l++) { // run int32_t level = k; uint32_t run = l; if ((abs(level) <= max_level_ptr[run]) && (run <= (uint32_t) max_run_ptr[abs(level)])) { // level < max_level and run < max_run vlc[intra]->code = 0; vlc[intra]->len = 0; goto loop_end; } else { if (level > 0) // correct level level -= max_level_ptr[run]; else level += max_level_ptr[run]; if ((abs(level) <= max_level_ptr[run]) && (run <= (uint32_t) max_run_ptr[abs(level)])) { vlc[intra]->code = 0x06; vlc[intra]->len = 8; goto loop_end; } if (level > 0) // still here? level += max_level_ptr[run]; // restore level else level -= max_level_ptr[run]; run -= max_run_ptr[abs(level)] + 1; // and change run if ((abs(level) <= max_level_ptr[run]) && (run <= (uint32_t) max_run_ptr[abs(level)])) { vlc[intra]->code = 0x0e; vlc[intra]->len = 9; goto loop_end; } run += max_run_ptr[abs(level)] + 1; } vlc[intra]->code = (uint32_t) ((l << 14) | (0x1e + last) << 20) | (1 << 13) | ((k & 0xfff) << 1) | 1; vlc[intra]->len = 30; vlc[intra]++; continue; loop_end: if (level != 0) { vlc[intra]->code = (vlc[intra]-> code << (coeff_ptr[run][abs(level) - 1].len + 1)) | (coeff_ptr[run][abs(level) - 1].code << 1); vlc[intra]->len = (coeff_ptr[run][abs(level) - 1].len + 1) + vlc[intra]->len; if (level < 0) vlc[intra]->code += 1; } vlc[intra]++; } } } for (i = 0; i < 4096; i++) { if (i >= 512) { *vlc1 = DCT3Dtab3[(i >> 5) - 16]; *vlc2 = DCT3Dtab0[(i >> 5) - 16]; } else if (i >= 128) { *vlc1 = DCT3Dtab4[(i >> 2) - 32]; *vlc2 = DCT3Dtab1[(i >> 2) - 32]; } else if (i >= 8) { *vlc1 = DCT3Dtab5[i - 8]; *vlc2 = DCT3Dtab2[i - 8]; } else { *vlc1 = ERRtab[i]; *vlc2 = ERRtab[i]; } vlc1++; vlc2++; } DCT3D[0] = DCT3Dinter; DCT3D[1] = DCT3Dintra; } static __inline void CodeVector(Bitstream * bs, int32_t value, int32_t f_code, Statistics * pStat) { const int scale_factor = 1 << (f_code - 1); const int cmp = scale_factor << 5; if (value < (-1 * cmp)) value += 64 * scale_factor; if (value > (cmp - 1)) value -= 64 * scale_factor; pStat->iMvSum += value * value; pStat->iMvCount++; if (value == 0) { BitstreamPutBits(bs, mb_motion_table[32].code, mb_motion_table[32].len); } else { uint16_t length, code, mv_res, sign; length = 16 << f_code; f_code--; sign = (value < 0); if (value >= length) value -= 2 * length; else if (value < -length) value += 2 * length; if (sign) value = -value; value--; mv_res = value & ((1 << f_code) - 1); code = ((value - mv_res) >> f_code) + 1; if (sign) code = -code; code += 32; BitstreamPutBits(bs, mb_motion_table[code].code, mb_motion_table[code].len); if (f_code) BitstreamPutBits(bs, mv_res, f_code); } } static __inline void CodeCoeff(Bitstream * bs, const int16_t qcoeff[64], VLC * table, const uint16_t * zigzag, uint16_t intra) { uint32_t j, last; short v; VLC *vlc; j = intra; last = intra; while (j < 64 && (v = qcoeff[zigzag[j]]) == 0) j++; do { vlc = table + 64 * 2047 + (v << 6) + j - last; last = ++j; // count zeroes while (j < 64 && (v = qcoeff[zigzag[j]]) == 0) j++; // write code if (j != 64) { BitstreamPutBits(bs, vlc->code, vlc->len); } else { vlc += 64 * 4095; BitstreamPutBits(bs, vlc->code, vlc->len); break; } } while (1); } static void CodeBlockIntra(const FRAMEINFO * frame, const MACROBLOCK * pMB, int16_t qcoeff[6 * 64], Bitstream * bs, Statistics * pStat) { uint32_t i, mcbpc, cbpy, bits; cbpy = pMB->cbp >> 2; // write mcbpc if (frame->coding_type == I_VOP) { mcbpc = ((pMB->mode >> 1) & 3) | ((pMB->cbp & 3) << 2); BitstreamPutBits(bs, mcbpc_intra_tab[mcbpc].code, mcbpc_intra_tab[mcbpc].len); } else { mcbpc = (pMB->mode & 7) | ((pMB->cbp & 3) << 3); BitstreamPutBits(bs, mcbpc_inter_tab[mcbpc].code, mcbpc_inter_tab[mcbpc].len); } // ac prediction flag if (pMB->acpred_directions[0]) BitstreamPutBits(bs, 1, 1); else BitstreamPutBits(bs, 0, 1); // write cbpy BitstreamPutBits(bs, cbpy_tab[cbpy].code, cbpy_tab[cbpy].len); // write dquant if (pMB->mode == MODE_INTRA_Q) BitstreamPutBits(bs, pMB->dquant, 2); // write interlacing if (frame->global_flags & XVID_INTERLACING) { BitstreamPutBit(bs, pMB->field_dct); } // code block coeffs for (i = 0; i < 6; i++) { if (i < 4) BitstreamPutBits(bs, dcy_tab[qcoeff[i * 64 + 0] + 255].code, dcy_tab[qcoeff[i * 64 + 0] + 255].len); else BitstreamPutBits(bs, dcc_tab[qcoeff[i * 64 + 0] + 255].code, dcc_tab[qcoeff[i * 64 + 0] + 255].len); if (pMB->cbp & (1 << (5 - i))) { bits = BitstreamPos(bs); CodeCoeff(bs, &qcoeff[i * 64], intra_table, scan_tables[pMB->acpred_directions[i]], 1); bits = BitstreamPos(bs) - bits; pStat->iTextBits += bits; } } } static void CodeBlockInter(const FRAMEINFO * frame, const MACROBLOCK * pMB, int16_t qcoeff[6 * 64], Bitstream * bs, Statistics * pStat) { int32_t i; uint32_t bits, mcbpc, cbpy; mcbpc = (pMB->mode & 7) | ((pMB->cbp & 3) << 3); cbpy = 15 - (pMB->cbp >> 2); // write mcbpc BitstreamPutBits(bs, mcbpc_inter_tab[mcbpc].code, mcbpc_inter_tab[mcbpc].len); // write cbpy BitstreamPutBits(bs, cbpy_tab[cbpy].code, cbpy_tab[cbpy].len); // write dquant if (pMB->mode == MODE_INTER_Q) BitstreamPutBits(bs, pMB->dquant, 2); // interlacing if (frame->global_flags & XVID_INTERLACING) { BitstreamPutBit(bs, pMB->field_dct); DEBUG1("codep: field_dct: ", pMB->field_dct); // if inter block, write field ME flag if (pMB->mode == MODE_INTER || pMB->mode == MODE_INTER_Q) { BitstreamPutBit(bs, pMB->field_pred); DEBUG1("codep: field_pred: ", pMB->field_pred); // write field prediction references if (pMB->field_pred) { BitstreamPutBit(bs, pMB->field_for_top); BitstreamPutBit(bs, pMB->field_for_bot); } } } // code motion vector(s) for (i = 0; i < (pMB->mode == MODE_INTER4V ? 4 : 1); i++) { CodeVector(bs, pMB->pmvs[i].x, frame->fcode, pStat); CodeVector(bs, pMB->pmvs[i].y, frame->fcode, pStat); } bits = BitstreamPos(bs); // code block coeffs for (i = 0; i < 6; i++) if (pMB->cbp & (1 << (5 - i))) CodeCoeff(bs, &qcoeff[i * 64], inter_table, scan_tables[0], 0); bits = BitstreamPos(bs) - bits; pStat->iTextBits += bits; } void MBCoding(const FRAMEINFO * frame, MACROBLOCK * pMB, int16_t qcoeff[6 * 64], Bitstream * bs, Statistics * pStat) { int intra = (pMB->mode == MODE_INTRA || pMB->mode == MODE_INTRA_Q); if (frame->coding_type == P_VOP) { if (pMB->cbp == 0 && pMB->mode == MODE_INTER && pMB->mvs[0].x == 0 && pMB->mvs[0].y == 0) { BitstreamPutBit(bs, 1); // not_coded return; } else BitstreamPutBit(bs, 0); // coded } if (intra) CodeBlockIntra(frame, pMB, qcoeff, bs, pStat); else CodeBlockInter(frame, pMB, qcoeff, bs, pStat); } /*************************************************************** * bframe encoding start ***************************************************************/ /* mbtype 0 1b direct(h263) mvdb 1 01b interpolate mc+q dbquant, mvdf, mvdb 2 001b backward mc+q dbquant, mvdb 3 0001b forward mc+q dbquant, mvdf */ void put_bvop_mbtype(Bitstream * bs, int value) { switch (value) { case 0: BitstreamPutBit(bs, 1); return; case 1: BitstreamPutBit(bs, 0); BitstreamPutBit(bs, 1); return; case 2: BitstreamPutBit(bs, 0); BitstreamPutBit(bs, 0); BitstreamPutBit(bs, 1); return; case 3: BitstreamPutBit(bs, 0); BitstreamPutBit(bs, 0); BitstreamPutBit(bs, 0); BitstreamPutBit(bs, 1); return; default:; // invalid! } } /* dbquant -2 10b 0 0b +2 11b */ void put_bvop_dbquant(Bitstream * bs, int value) { switch (value) { case 0: BitstreamPutBit(bs, 0); return; case -2: BitstreamPutBit(bs, 1); BitstreamPutBit(bs, 0); return; case 2: BitstreamPutBit(bs, 1); BitstreamPutBit(bs, 1); return; default:; // invalid } } void MBCodingBVOP(const MACROBLOCK * mb, const int16_t qcoeff[6 * 64], const int32_t fcode, const int32_t bcode, Bitstream * bs, Statistics * pStat) { int i; /* ------------------------------------------------------------------ when a block is skipped it is decoded DIRECT(0,) hence are interpolated from forward & backward frames ------------------------------------------------------------------ */ if (mb->mode == 5) { BitstreamPutBit(bs, 1); // skipped return; } BitstreamPutBit(bs, 0); // not skipped if (mb->cbp == 0) { BitstreamPutBit(bs, 1); // cbp == 0 } else { BitstreamPutBit(bs, 0); // cbp == xxx } put_bvop_mbtype(bs, mb->mode); if (mb->cbp) { BitstreamPutBits(bs, mb->cbp, 6); } if (mb->mode != MODE_DIRECT && mb->cbp != 0) { put_bvop_dbquant(bs, 0); // todo: mb->dquant = 0 } if (mb->mode == MODE_INTERPOLATE || mb->mode == MODE_FORWARD) { CodeVector(bs, mb->pmvs[0].x, fcode, pStat); CodeVector(bs, mb->pmvs[0].y, fcode, pStat); } if (mb->mode == MODE_INTERPOLATE || mb->mode == MODE_BACKWARD) { CodeVector(bs, mb->b_pmvs[0].x, bcode, pStat); CodeVector(bs, mb->b_pmvs[0].y, bcode, pStat); } if (mb->mode == MODE_DIRECT) { // TODO: direct } for (i = 0; i < 6; i++) { if (mb->cbp & (1 << (5 - i))) { CodeCoeff(bs, &qcoeff[i * 64], inter_table, scan_tables[0], 0); } } } /*************************************************************** * decoding stuff starts here * ***************************************************************/ int get_mcbpc_intra(Bitstream * bs) { uint32_t index; while ((index = BitstreamShowBits(bs, 9)) == 1) BitstreamSkip(bs, 9); index >>= 3; BitstreamSkip(bs, mcbpc_intra_table[index].len); return mcbpc_intra_table[index].code; } int get_mcbpc_inter(Bitstream * bs) { uint32_t index; while ((index = CLIP(BitstreamShowBits(bs, 9), 256)) == 1) BitstreamSkip(bs, 9); BitstreamSkip(bs, mcbpc_inter_table[index].len); return mcbpc_inter_table[index].code; } int get_cbpy(Bitstream * bs, int intra) { int cbpy; uint32_t index = BitstreamShowBits(bs, 6); BitstreamSkip(bs, cbpy_table[index].len); cbpy = cbpy_table[index].code; if (!intra) cbpy = 15 - cbpy; return cbpy; } int get_mv_data(Bitstream * bs) { uint32_t index; if (BitstreamGetBit(bs)) return 0; index = BitstreamShowBits(bs, 12); if (index >= 512) { index = (index >> 8) - 2; BitstreamSkip(bs, TMNMVtab0[index].len); return TMNMVtab0[index].code; } if (index >= 128) { index = (index >> 2) - 32; BitstreamSkip(bs, TMNMVtab1[index].len); return TMNMVtab1[index].code; } index -= 4; BitstreamSkip(bs, TMNMVtab2[index].len); return TMNMVtab2[index].code; } int get_mv(Bitstream * bs, int fcode) { int data; int res; int mv; int scale_fac = 1 << (fcode - 1); data = get_mv_data(bs); if (scale_fac == 1 || data == 0) return data; res = BitstreamGetBits(bs, fcode - 1); mv = ((ABS(data) - 1) * scale_fac) + res + 1; return data < 0 ? -mv : mv; } int get_dc_dif(Bitstream * bs, uint32_t dc_size) { int code = BitstreamGetBits(bs, dc_size); int msb = code >> (dc_size - 1); if (msb == 0) return (-1 * (code ^ ((1 << dc_size) - 1))); return code; } int get_dc_size_lum(Bitstream * bs) { int code, i; code = BitstreamShowBits(bs, 11); for (i = 11; i > 3; i--) { if (code == 1) { BitstreamSkip(bs, i); return i + 1; } code >>= 1; } BitstreamSkip(bs, dc_lum_tab[code].len); return dc_lum_tab[code].code; } int get_dc_size_chrom(Bitstream * bs) { uint32_t code, i; code = BitstreamShowBits(bs, 12); for (i = 12; i > 2; i--) { if (code == 1) { BitstreamSkip(bs, i); return i; } code >>= 1; } return 3 - BitstreamGetBits(bs, 2); } void get_intra_block(Bitstream * bs, int16_t * block, int direction, int coeff) { const uint16_t *scan = scan_tables[direction]; int level; int run; int last; do { level = get_coeff(bs, &run, &last, 1, 0); if (run == -1) { DEBUG("fatal: invalid run"); break; } coeff += run; block[scan[coeff]] = level; if (level < -127 || level > 127) { DEBUG1("warning: intra_overflow", level); } coeff++; } while (!last); } void get_inter_block(Bitstream * bs, int16_t * block) { const uint16_t *scan = scan_tables[0]; int p; int level; int run; int last; p = 0; do { level = get_coeff(bs, &run, &last, 0, 0); if (run == -1) { DEBUG("fatal: invalid run"); break; } p += run; block[scan[p]] = level; if (level < -127 || level > 127) { DEBUG1("warning: inter_overflow", level); } p++; } while (!last); }