[svn] / branches / release-1_3-branch / xvidcore / src / motion / gmc.c Repository:
ViewVC logotype

View of /branches/release-1_3-branch/xvidcore/src/motion/gmc.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2180 - (download) (annotate)
Tue Nov 12 14:48:35 2019 UTC (4 years, 4 months ago) by Isibaar
File size: 21743 byte(s)
Backporting patches from HEAD
/*****************************************************************************
 *
 *  XVID MPEG-4 VIDEO CODEC
 *  - GMC interpolation module -
 *
 *  Copyright(C) 2002-2003 Pascal Massimino <skal@planet-d.net>
 *
 *  This program is free software ; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation ; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY ; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program ; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 * $Id$
 *
 ****************************************************************************/

#include "../portab.h"
#include "../global.h"
#include "../encoder.h"
#include "gmc.h"
#include "../utils/emms.h"

#include <stdio.h>

  /* initialized by init_GMC(), for 3points */
static
void (*Predict_16x16_func)(const NEW_GMC_DATA * const This,
                           uint8_t *dst, const uint8_t *src,
                           int dststride, int srcstride, int x, int y, int rounding) = 0;
static
void (*Predict_8x8_func)(const NEW_GMC_DATA * const This,
                         uint8_t *uDst, const uint8_t *uSrc,
                         uint8_t *vDst, const uint8_t *vSrc,
                         int dststride, int srcstride, int x, int y, int rounding) = 0;

/****************************************************************************/
/* this is borrowed from   bitstream.c  until we find a common solution */
static uint32_t __inline
log2bin(uint32_t value)
{
/* Changed by Chenm001 */
#if !defined(_MSC_VER) || defined(ARCH_IS_X86_64)
  int n = 0;

  while (value) {
	value >>= 1;
	n++;
  }
  return n;
#else
  __asm {
	bsr eax, value
	inc eax
  }
#endif
}

/* 16*sizeof(int) -> 1 or 2 cachelines */
/* table lookup might be faster!  (still to be benchmarked) */

/*
static int log2bin_table[16] =
	{ 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4};
*/
/*	1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 */

#define RDIV(a,b) (((a)>0 ? (a) + ((b)>>1) : (a) - ((b)>>1))/(b))
#define RSHIFT(a,b) ( (a)>0 ? ((a) + (1<<((b)-1)))>>(b) : ((a) + (1<<((b)-1))-1)>>(b))

#define MLT(i)  (((16-(i))<<16) + (i))
static const uint32_t MTab[16] = {
  MLT( 0), MLT( 1), MLT( 2), MLT( 3), MLT( 4), MLT( 5), MLT( 6), MLT( 7),
  MLT( 8), MLT( 9), MLT(10), MLT(11), MLT(12), MLT(13), MLT(14), MLT(15)
};
#undef MLT

/* ************************************************************
 * Pts = 2 or 3
 *
 * Warning! *src is the global frame pointer (that is: adress
 * of pixel 0,0), not the macroblock one.
 * Conversely, *dst is the macroblock top-left adress.
 */

static
void Predict_16x16_C(const NEW_GMC_DATA * const This,
                     uint8_t *dst, const uint8_t *src,
                     int dststride, int srcstride, int x, int y, int rounding)
{
	const int W = This->sW;
	const int H	= This->sH;
	const int rho = 3 - This->accuracy;
	const int Rounder = ( (1<<7) - (rounding<<(2*rho)) ) << 16;

	const int dUx = This->dU[0];
	const int dVx = This->dV[0];
	const int dUy = This->dU[1];
	const int dVy = This->dV[1];

	int Uo = This->Uo + 16*(dUy*y + dUx*x);
	int Vo = This->Vo + 16*(dVy*y + dVx*x);

	int i, j;

	dst += 16;
	for (j=16; j>0; --j) {
		int U = Uo, V = Vo;
		Uo += dUy; Vo += dVy;
		for (i=-16; i<0; ++i) {
			unsigned int f0, f1, ri = 16, rj = 16;
			int Offset;
			int u = ( U >> 16 ) << rho;
			int v = ( V >> 16 ) << rho;

			U += dUx; V += dVx;

			if (u > 0 && u <= W) { ri = MTab[u&15]; Offset = u>>4;	}
			else {
				if (u > W) Offset = W>>4;
				else Offset = 0;
				ri = MTab[0];
			}

			if (v > 0 && v <= H) { rj = MTab[v&15]; Offset += (v>>4)*srcstride; }
			else {
				if (v > H) Offset += (H>>4)*srcstride;
				rj = MTab[0];
			}

			f0	= src[Offset + 0];
			f0 |= src[Offset + 1] << 16;
			f1	= src[Offset + srcstride + 0];
			f1 |= src[Offset + srcstride + 1] << 16;
			f0 = (ri*f0)>>16;
			f1 = (ri*f1) & 0x0fff0000;
			f0 |= f1;
			f0 = (rj*f0 + Rounder) >> 24;

			dst[i] = (uint8_t)f0;
		}
		dst += dststride;
	}
}

static
void Predict_8x8_C(const NEW_GMC_DATA * const This,
                   uint8_t *uDst, const uint8_t *uSrc,
                   uint8_t *vDst, const uint8_t *vSrc,
                   int dststride, int srcstride, int x, int y, int rounding)
{
	const int W	 = This->sW >> 1;
	const int H	 = This->sH >> 1;
	const int rho = 3-This->accuracy;
	const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;

	const int32_t dUx = This->dU[0];
	const int32_t dVx = This->dV[0];
	const int32_t dUy = This->dU[1];
	const int32_t dVy = This->dV[1];

	int32_t Uo = This->Uco + 8*(dUy*y + dUx*x);
	int32_t Vo = This->Vco + 8*(dVy*y + dVx*x);

	int i, j;

	uDst += 8;
	vDst += 8;
	for (j=8; j>0; --j) {
		int32_t U = Uo, V = Vo;
		Uo += dUy; Vo += dVy;

		for (i=-8; i<0; ++i) {
			int Offset;
			uint32_t f0, f1, ri, rj;
			int32_t u, v;

			u = ( U >> 16 ) << rho;
			v = ( V >> 16 ) << rho;
			U += dUx; V += dVx;

			if (u > 0 && u <= W) {
				ri = MTab[u&15];
				Offset = u>>4;
			} else {
				if (u>W) Offset = W>>4;
				else Offset = 0;
				ri = MTab[0];
			}

			if (v > 0 && v <= H) {
				rj = MTab[v&15];
				Offset += (v>>4)*srcstride;
			} else {
				if (v>H) Offset += (H>>4)*srcstride;
				rj = MTab[0];
			}

			f0	= uSrc[Offset + 0];
			f0 |= uSrc[Offset + 1] << 16;
			f1	= uSrc[Offset + srcstride + 0];
			f1 |= uSrc[Offset + srcstride + 1] << 16;
			f0 = (ri*f0)>>16;
			f1 = (ri*f1) & 0x0fff0000;
			f0 |= f1;
			f0 = (rj*f0 + Rounder) >> 24;

			uDst[i] = (uint8_t)f0;

			f0	= vSrc[Offset + 0];
			f0 |= vSrc[Offset + 1] << 16;
			f1	= vSrc[Offset + srcstride + 0];
			f1 |= vSrc[Offset + srcstride + 1] << 16;
			f0 = (ri*f0)>>16;
			f1 = (ri*f1) & 0x0fff0000;
			f0 |= f1;
			f0 = (rj*f0 + Rounder) >> 24;

			vDst[i] = (uint8_t)f0;
		}
		uDst += dststride;
		vDst += dststride;
	}
}

static
void get_average_mv_C(const NEW_GMC_DATA * const Dsp, VECTOR * const mv,
                      int x, int y, int qpel)
{
	int i, j;
	int vx = 0, vy = 0;
	int32_t uo = Dsp->Uo + 16*(Dsp->dU[1]*y + Dsp->dU[0]*x);
	int32_t vo = Dsp->Vo + 16*(Dsp->dV[1]*y + Dsp->dV[0]*x);
	for (j=16; j>0; --j)
	{
	int32_t U, V;
	U = uo; uo += Dsp->dU[1];
	V = vo; vo += Dsp->dV[1];
	for (i=16; i>0; --i)
	{
		int32_t u,v;
		u = U >> 16; U += Dsp->dU[0]; vx += u;
		v = V >> 16; V += Dsp->dV[0]; vy += v;
	}
	}
	vx -= (256*x+120) << (5+Dsp->accuracy);	/* 120 = 15*16/2 */
	vy -= (256*y+120) << (5+Dsp->accuracy);

	mv->x = RSHIFT( vx, 8+Dsp->accuracy - qpel );
	mv->y = RSHIFT( vy, 8+Dsp->accuracy - qpel );
}

/* ************************************************************
 * simplified version for 1 warp point
 */

static
void Predict_1pt_16x16_C(const NEW_GMC_DATA * const This,
                         uint8_t *Dst, const uint8_t *Src,
                         int dststride, int srcstride, int x, int y, int rounding)
{
	const int W	 = This->sW;
	const int H	 = This->sH;
	const int rho = 3-MIN(This->accuracy, 3);
	const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;


	int32_t uo = This->Uo + (x<<8);	 /* ((16*x)<<4) */
	int32_t vo = This->Vo + (y<<8);
	uint32_t ri = MTab[uo & 15];
	uint32_t rj = MTab[vo & 15];
	int i, j;

	int32_t Offset;
	if (vo>=(-16<<4) && vo<=H) Offset = (vo>>4)*srcstride;
	else {
		if (vo>H) Offset = ( H>>4)*srcstride;
		else Offset =-16*srcstride;
		rj = MTab[0];
	}
	if (uo>=(-16<<4) && uo<=W) Offset += (uo>>4);
	else {
		if (uo>W) Offset += (W>>4);
		else Offset -= 16;
		ri = MTab[0];
	}

	Dst += 16;

	for(j=16; j>0; --j, Offset+=srcstride-16)
	{
	for(i=-16; i<0; ++i, ++Offset)
	{
		uint32_t f0, f1;
		f0	= Src[ Offset		+0 ];
		f0 |= Src[ Offset		+1 ] << 16;
		f1	= Src[ Offset+srcstride +0 ];
		f1 |= Src[ Offset+srcstride +1 ] << 16;
		f0 = (ri*f0)>>16;
		f1 = (ri*f1) & 0x0fff0000;
		f0 |= f1;
		f0 = ( rj*f0 + Rounder ) >> 24;
		Dst[i] = (uint8_t)f0;
	}
	Dst += dststride;
	}
}

static
void Predict_1pt_8x8_C(const NEW_GMC_DATA * const This,
                       uint8_t *uDst, const uint8_t *uSrc,
                       uint8_t *vDst, const uint8_t *vSrc,
                       int dststride, int srcstride, int x, int y, int rounding)
{
	const int W	 = This->sW >> 1;
	const int H	 = This->sH >> 1;
	const int rho = 3-This->accuracy;
	const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;

	int32_t uo = This->Uco + (x<<7);
	int32_t vo = This->Vco + (y<<7);
	uint32_t rri = MTab[uo & 15];
	uint32_t rrj = MTab[vo & 15];
	int i, j;

	int32_t Offset;
	if (vo>=(-8<<4) && vo<=H) Offset = (vo>>4)*srcstride;
	else {
		if (vo>H) Offset = ( H>>4)*srcstride;
		else Offset =-8*srcstride;
		rrj = MTab[0];
	}
	if (uo>=(-8<<4) && uo<=W) Offset += (uo>>4);
	else {
		if (uo>W) Offset += ( W>>4);
		else Offset -= 8;
		rri = MTab[0];
	}

	uDst += 8;
	vDst += 8;
	for(j=8; j>0; --j, Offset+=srcstride-8)
	{
	for(i=-8; i<0; ++i, Offset++)
	{
		uint32_t f0, f1;
		f0	= uSrc[ Offset + 0 ];
		f0 |= uSrc[ Offset + 1 ] << 16;
		f1	= uSrc[ Offset + srcstride + 0 ];
		f1 |= uSrc[ Offset + srcstride + 1 ] << 16;
		f0 = (rri*f0)>>16;
		f1 = (rri*f1) & 0x0fff0000;
		f0 |= f1;
		f0 = ( rrj*f0 + Rounder ) >> 24;
		uDst[i] = (uint8_t)f0;

		f0	= vSrc[ Offset + 0 ];
		f0 |= vSrc[ Offset + 1 ] << 16;
		f1	= vSrc[ Offset + srcstride + 0 ];
		f1 |= vSrc[ Offset + srcstride + 1 ] << 16;
		f0 = (rri*f0)>>16;
		f1 = (rri*f1) & 0x0fff0000;
		f0 |= f1;
		f0 = ( rrj*f0 + Rounder ) >> 24;
		vDst[i] = (uint8_t)f0;
	}
	uDst += dststride;
	vDst += dststride;
	}
}

static
void get_average_mv_1pt_C(const NEW_GMC_DATA * const Dsp, VECTOR * const mv,
							int x, int y, int qpel)
{
	mv->x = RSHIFT(Dsp->Uo<<qpel, 3);
	mv->y = RSHIFT(Dsp->Vo<<qpel, 3);
}

#if defined(ARCH_IS_IA32) || defined(ARCH_IS_X86_64)
/* *************************************************************
 * MMX core function
 */

static
void (*GMC_Core_Lin_8)(uint8_t *Dst, const uint16_t * Offsets, 
                       const uint8_t * const Src0, const int BpS, const int Rounder) = 0;

extern void xvid_GMC_Core_Lin_8_mmx(uint8_t *Dst, const uint16_t * Offsets, 
                                    const uint8_t * const Src0, const int BpS, const int Rounder);

extern void xvid_GMC_Core_Lin_8_sse2(uint8_t *Dst, const uint16_t * Offsets, 
                                     const uint8_t * const Src0, const int BpS, const int Rounder);

extern void xvid_GMC_Core_Lin_8_sse41(uint8_t *Dst, const uint16_t * Offsets, 
                                      const uint8_t * const Src0, const int BpS, const int Rounder);

/* *************************************************************/

static void GMC_Core_Non_Lin_8(uint8_t *Dst, 
                               const uint16_t * Offsets,
                               const uint8_t * const Src0, const int srcstride,
                               const int Rounder)
{
  int i;
  for(i=0; i<8; ++i)
  {
    uint32_t u = Offsets[i   ];
    uint32_t v = Offsets[i+16];
    const uint32_t ri = MTab[u&0x0f];
    const uint32_t rj = MTab[v&0x0f];
    uint32_t f0, f1;
    const uint8_t * const Src = Src0 + (u>>4) + (v>>4)*srcstride;
    f0  = Src[0];
    f0 |= Src[1] << 16;
    f1  = Src[srcstride +0];
    f1 |= Src[srcstride +1] << 16;
    f0 = (ri*f0)>>16;
    f1 = (ri*f1) & 0x0fff0000;
    f0 |= f1;
    f0 = ( rj*f0 + Rounder ) >> 24;
    Dst[i] = (uint8_t)f0;
  }
}

//////////////////////////////////////////////////////////

static
void Predict_16x16_mmx(const NEW_GMC_DATA * const This,
                       uint8_t *dst, const uint8_t *src,
                       int dststride, int srcstride, int x, int y, int rounding)
{
  const int W = This->sW;
  const int H = This->sH;
  const int rho = 3 - This->accuracy;
  const int Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;
  const uint32_t W2 = W<<(16-rho);
  const uint32_t H2 = H<<(16-rho);
  
  const int dUx = This->dU[0];
  const int dVx = This->dV[0];
  const int dUy = This->dU[1];
  const int dVy = This->dV[1];

  int Uo = This->Uo + 16*(dUy*y + dUx*x);
  int Vo = This->Vo + 16*(dVy*y + dVx*x);

  int i, j;

  DECLARE_ALIGNED_MATRIX(Offsets, 2,16, uint16_t, CACHE_LINE);
  for(j=16; j>0; --j)
  {
    int32_t U = Uo, V = Vo;
    Uo += dUy; Vo += dVy;
    if ( W2>(uint32_t)U && W2>(uint32_t)(U+15*dUx) &&
         H2>(uint32_t)V && H2>(uint32_t)(V+15*dVx) )
    {
      uint32_t UV1, UV2;
      for(i=0; i<16; ++i)
      {
        uint32_t u = ( U >> 16 ) << rho;
        uint32_t v = ( V >> 16 ) << rho;
        U += dUx;  V += dVx;
        Offsets[   i] = u;
        Offsets[16+i] = v;
      }
          // batch 8 input pixels when linearity says it's ok

      UV1 = (Offsets[0] | (Offsets[16]<<16)) & 0xfff0fff0U;
      UV2 = (Offsets[7] | (Offsets[23]<<16)) & 0xfff0fff0U;
      if (UV1+7*16==UV2)
        GMC_Core_Lin_8(dst,    Offsets,    src + (Offsets[0]>>4) + (Offsets[16]>>4)*srcstride, srcstride, Rounder);
      else
        GMC_Core_Non_Lin_8(dst,   Offsets,   src, srcstride, Rounder);
      UV1 = (Offsets[ 8] | (Offsets[24]<<16)) & 0xfff0fff0U;
      UV2 = (Offsets[15] | (Offsets[31]<<16)) & 0xfff0fff0U;
      if (UV1+7*16==UV2)
        GMC_Core_Lin_8(dst+8,  Offsets+8,  src + (Offsets[8]>>4) + (Offsets[24]>>4)*srcstride, srcstride, Rounder);
      else
        GMC_Core_Non_Lin_8(dst+8, Offsets+8, src, srcstride, Rounder);
    }
    else
    {
      for(i=0; i<16; ++i)
      {
        int u = ( U >> 16 ) << rho;
        int v = ( V >> 16 ) << rho;
        U += dUx; V += dVx;

        Offsets[   i] = (u<0) ? 0 : (u>=W) ? W : u;
        Offsets[16+i] = (v<0) ? 0 : (v>=H) ? H : v;
      }
        // due to boundary clipping, we cannot infer the 8-pixels batchability
        // simply by using the linearity. Oh well, not a big deal...
      GMC_Core_Non_Lin_8(dst,   Offsets,   src, srcstride, Rounder);
      GMC_Core_Non_Lin_8(dst+8, Offsets+8, src, srcstride, Rounder);
    }
    dst += dststride;
  }
}

static
void Predict_8x8_mmx(const NEW_GMC_DATA * const This,
                     uint8_t *uDst, const uint8_t *uSrc,
                     uint8_t *vDst, const uint8_t *vSrc,
                     int dststride, int srcstride, int x, int y, int rounding)
{
  const int W   = This->sW >> 1;
  const int H   = This->sH >> 1;
  const int rho = 3-This->accuracy;
  const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;
  const uint32_t W2 = W<<(16-rho);
  const uint32_t H2 = H<<(16-rho);

  const int dUx = This->dU[0];
  const int dVx = This->dV[0];
  const int dUy = This->dU[1];
  const int dVy = This->dV[1];

  int Uo = This->Uco + 8*(dUy*y + dUx*x);
  int Vo = This->Vco + 8*(dVy*y + dVx*x);

  DECLARE_ALIGNED_MATRIX(Offsets, 2,16, uint16_t, CACHE_LINE);
  int i, j;
  for(j=8; j>0; --j)
  {
    int32_t U = Uo, V = Vo;
    Uo += dUy; Vo += dVy;
    if ( W2>(uint32_t)U && W2>(uint32_t)(U+15*dUx) &&
         H2>(uint32_t)V && H2>(uint32_t)(V+15*dVx) )
    {
      uint32_t UV1, UV2;
      for(i=0; i<8; ++i)
      {
        int32_t u = ( U >> 16 ) << rho;
        int32_t v = ( V >> 16 ) << rho;
        U += dUx; V += dVx;
        Offsets[   i] = u;
        Offsets[16+i] = v;
      }

          // batch 8 input pixels when linearity says it's ok
			UV1 = (Offsets[ 0] | (Offsets[16]<<16)) & 0xfff0fff0U;
			UV2 = (Offsets[ 7] | (Offsets[23]<<16)) & 0xfff0fff0U;
			if (UV1+7*16==UV2)
      {
				const uint32_t Off = (Offsets[0]>>4) + (Offsets[16]>>4)*srcstride;
				GMC_Core_Lin_8(uDst, Offsets, uSrc+Off, srcstride, Rounder);
				GMC_Core_Lin_8(vDst, Offsets, vSrc+Off, srcstride, Rounder);
      }
      else {
        GMC_Core_Non_Lin_8(uDst, Offsets, uSrc, srcstride, Rounder);
        GMC_Core_Non_Lin_8(vDst, Offsets, vSrc, srcstride, Rounder);
      }
    }
    else
    {
      for(i=0; i<8; ++i)
      {
        int u = ( U >> 16 ) << rho;
        int v = ( V >> 16 ) << rho;
        U += dUx; V += dVx;
        Offsets[   i] = (u<0) ? 0 : (u>=W) ? W : u;
        Offsets[16+i] = (v<0) ? 0 : (v>=H) ? H : v;
      }
      GMC_Core_Non_Lin_8(uDst, Offsets, uSrc, srcstride, Rounder);
      GMC_Core_Non_Lin_8(vDst, Offsets, vSrc, srcstride, Rounder);
    }
    uDst += dststride;
    vDst += dststride;
  }
}

#endif /* ARCH_IS_IA32 */

/* *************************************************************
 * will initialize internal pointers
 */

void init_GMC(const unsigned int cpu_flags)
{
      Predict_16x16_func = Predict_16x16_C;
      Predict_8x8_func   = Predict_8x8_C;

#if defined(ARCH_IS_IA32) || defined(ARCH_IS_X86_64)
      if ((cpu_flags & XVID_CPU_MMX)   || (cpu_flags & XVID_CPU_MMXEXT)   ||
          (cpu_flags & XVID_CPU_3DNOW) || (cpu_flags & XVID_CPU_3DNOWEXT) ||
          (cpu_flags & XVID_CPU_SSE)   || (cpu_flags & XVID_CPU_SSE2) ||
          (cpu_flags & XVID_CPU_SSE3)  || (cpu_flags & XVID_CPU_SSE41))
	{
	   Predict_16x16_func = Predict_16x16_mmx;
	   Predict_8x8_func   = Predict_8x8_mmx;

           if (cpu_flags & XVID_CPU_SSE41)
	     GMC_Core_Lin_8 = xvid_GMC_Core_Lin_8_sse41;
	   else if (cpu_flags & XVID_CPU_SSE2)
	     GMC_Core_Lin_8 = xvid_GMC_Core_Lin_8_sse2;
	   else
             GMC_Core_Lin_8 = xvid_GMC_Core_Lin_8_mmx;
	}
#endif
}

/* *************************************************************
 * Warning! It's Accuracy being passed, not 'resolution'!
 */

void generate_GMCparameters( int nb_pts, const int accuracy,
								 const WARPPOINTS *const pts,
								 const int width, const int height,
								 NEW_GMC_DATA *const gmc)
{
	gmc->sW = width	<< 4;
	gmc->sH = height << 4;
	gmc->accuracy = accuracy;
	gmc->num_wp = nb_pts;

	/* reduce the number of points, if possible */
	if (nb_pts<2 || (pts->duv[2].x==0 && pts->duv[2].y==0 && pts->duv[1].x==0 && pts->duv[1].y==0 )) {
  	if (nb_pts<2 || (pts->duv[1].x==0 && pts->duv[1].y==0)) {
	  	if (nb_pts<1 || (pts->duv[0].x==0 && pts->duv[0].y==0)) {
		    nb_pts = 0;
  		}
	  	else nb_pts = 1;
  	}
	  else nb_pts = 2;
  }

	/* now, nb_pts stores the actual number of points required for interpolation */

	if (nb_pts<=1)
	{
	if (nb_pts==1) {
		/* store as 4b fixed point */
		gmc->Uo = pts->duv[0].x << accuracy;
		gmc->Vo = pts->duv[0].y << accuracy;
		gmc->Uco = ((pts->duv[0].x>>1) | (pts->duv[0].x&1)) << accuracy;	 /* DIV2RND() */
		gmc->Vco = ((pts->duv[0].y>>1) | (pts->duv[0].y&1)) << accuracy;	 /* DIV2RND() */
	}
	else {	/* zero points?! */
		gmc->Uo	= gmc->Vo	= 0;
		gmc->Uco = gmc->Vco = 0;
	}

	gmc->predict_16x16	= Predict_1pt_16x16_C;
	gmc->predict_8x8	= Predict_1pt_8x8_C;
	gmc->get_average_mv = get_average_mv_1pt_C;
	}
	else {		/* 2 or 3 points */
	const int rho	 = 3 - accuracy;	/* = {3,2,1,0} for Acc={0,1,2,3} */
	int Alpha = log2bin(width-1);
	int Ws = 1 << Alpha;

	gmc->dU[0] = 16*Ws + RDIV( 8*Ws*pts->duv[1].x, width );	 /* dU/dx */
	gmc->dV[0] =		 RDIV( 8*Ws*pts->duv[1].y, width );	 /* dV/dx */

	if (nb_pts==2) {
		gmc->dU[1] = -gmc->dV[0];	/* -Sin */
		gmc->dV[1] =	gmc->dU[0] ;	/* Cos */
	}
	else
	{
		const int Beta = log2bin(height-1);
		const int Hs = 1<<Beta;
		gmc->dU[1] =		 RDIV( 8*Hs*pts->duv[2].x, height );	 /* dU/dy */
		gmc->dV[1] = 16*Hs + RDIV( 8*Hs*pts->duv[2].y, height );	 /* dV/dy */
		if (Beta>Alpha) {
		gmc->dU[0] <<= (Beta-Alpha);
		gmc->dV[0] <<= (Beta-Alpha);
		Alpha = Beta;
		Ws = Hs;
		}
		else {
		gmc->dU[1] <<= Alpha - Beta;
		gmc->dV[1] <<= Alpha - Beta;
		}
	}
	/* upscale to 16b fixed-point */
	gmc->dU[0] <<= (16-Alpha - rho);
	gmc->dU[1] <<= (16-Alpha - rho);
	gmc->dV[0] <<= (16-Alpha - rho);
	gmc->dV[1] <<= (16-Alpha - rho);

	gmc->Uo	= ( pts->duv[0].x	 <<(16+ accuracy)) + (1<<15);
	gmc->Vo	= ( pts->duv[0].y	 <<(16+ accuracy)) + (1<<15);
	gmc->Uco = ((pts->duv[0].x-1)<<(17+ accuracy)) + (1<<17);
	gmc->Vco = ((pts->duv[0].y-1)<<(17+ accuracy)) + (1<<17);
	gmc->Uco = (gmc->Uco + gmc->dU[0] + gmc->dU[1])>>2;
	gmc->Vco = (gmc->Vco + gmc->dV[0] + gmc->dV[1])>>2;

	gmc->predict_16x16	= Predict_16x16_func;
	gmc->predict_8x8	= Predict_8x8_func;
	gmc->get_average_mv = get_average_mv_C;
	}
}

/* *******************************************************************
 * quick and dirty routine to generate the full warped image
 * (pGMC != NULL) or just all average Motion Vectors (pGMC == NULL) */

void
generate_GMCimage(	const NEW_GMC_DATA *const gmc_data, /* [input] precalculated data */
					const IMAGE *const pRef,		/* [input] */
					const int mb_width,
					const int mb_height,
					const int stride,
					const int stride2,
					const int fcode, 				/* [input] some parameters... */
						const int32_t quarterpel,		/* [input] for rounding avgMV */
					const int reduced_resolution,	/* [input] ignored */
					const int32_t rounding,			/* [input] for rounding image data */
					MACROBLOCK *const pMBs, 		/* [output] average motion vectors */
					IMAGE *const pGMC)				/* [output] full warped image */
{

	unsigned int mj,mi;
	VECTOR avgMV;

	for (mj = 0; mj < (unsigned int)mb_height; mj++)
		for (mi = 0; mi < (unsigned int)mb_width; mi++) {
			const int mbnum = mj*mb_width+mi;
			if (pGMC)
			{
				gmc_data->predict_16x16(gmc_data,
							pGMC->y + mj*16*stride + mi*16, pRef->y,
							stride, stride, mi, mj, rounding);

				gmc_data->predict_8x8(gmc_data,
					pGMC->u + mj*8*stride2 + mi*8, pRef->u,
					pGMC->v + mj*8*stride2 + mi*8, pRef->v,
					stride2, stride2, mi, mj, rounding);
			}
			gmc_data->get_average_mv(gmc_data, &avgMV, mi, mj, quarterpel);

			pMBs[mbnum].amv.x = gmc_sanitize(avgMV.x, quarterpel, fcode);
			pMBs[mbnum].amv.y = gmc_sanitize(avgMV.y, quarterpel, fcode);

			pMBs[mbnum].mcsel = 0; /* until mode decision */
	}
  emms();
}

No admin address has been configured
ViewVC Help
Powered by ViewVC 1.0.4