--- trunk/xvidcore/src/prediction/mbprediction.c 2002/12/15 01:21:12 723 +++ trunk/xvidcore/src/prediction/mbprediction.c 2004/03/22 22:36:25 1382 @@ -1,74 +1,40 @@ /***************************************************************************** * * XVID MPEG-4 VIDEO CODEC - * - Prediction functions - + * - Prediction module - * - * Copyright(C) 2001-2002 - Michael Militzer - * Copyright(C) 2001-2002 - Peter Ross + * Copyright (C) 2001-2003 Michael Militzer + * 2001-2003 Peter Ross * - * This file is part of XviD, a free MPEG-4 video encoder/decoder - * - * XviD is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or + * This program is free software ; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation ; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of + * but WITHOUT ANY WARRANTY ; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software + * along with this program ; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * - * Under section 8 of the GNU General Public License, the copyright - * holders of XVID explicitly forbid distribution in the following - * countries: - * - * - Japan - * - United States of America - * - * Linking XviD statically or dynamically with other modules is making a - * combined work based on XviD. Thus, the terms and conditions of the - * GNU General Public License cover the whole combination. - * - * As a special exception, the copyright holders of XviD give you - * permission to link XviD with independent modules that communicate with - * XviD solely through the VFW1.1 and DShow interfaces, regardless of the - * license terms of these independent modules, and to copy and distribute - * the resulting combined work under terms of your choice, provided that - * every copy of the combined work is accompanied by a complete copy of - * the source code of XviD (the version of XviD used to produce the - * combined work), being distributed under the terms of the GNU General - * Public License plus this exception. An independent module is a module - * which is not derived from or based on XviD. - * - * Note that people who make modified versions of XviD are not obligated - * to grant this special exception for their modified versions; it is - * their choice whether to do so. The GNU General Public License gives - * permission to release a modified version without this exception; this - * exception also makes it possible to release a modified version which - * carries forward this exception. - * - * $Id: mbprediction.c,v 1.12 2002-12-15 01:21:12 edgomez Exp $ + * $Id: mbprediction.c,v 1.14 2004-03-22 22:36:24 edgomez Exp $ * ****************************************************************************/ +#include + +#include "../global.h" #include "../encoder.h" #include "mbprediction.h" #include "../utils/mbfunctions.h" #include "../bitstream/cbp.h" +#include "../bitstream/mbcoding.h" +#include "../bitstream/zigzag.h" -#define ABS(X) (((X)>0)?(X):-(X)) -#define DIV_DIV(A,B) ( (A) > 0 ? ((A)+((B)>>1))/(B) : ((A)-((B)>>1))/(B) ) - - -/***************************************************************************** - * Local inlined function - ****************************************************************************/ - static int __inline rescale(int predict_quant, int current_quant, @@ -79,10 +45,6 @@ } -/***************************************************************************** - * Local data - ****************************************************************************/ - static const int16_t default_acdc_values[15] = { 1024, 0, 0, 0, 0, 0, 0, 0, @@ -90,11 +52,6 @@ }; -/***************************************************************************** - * Functions - ****************************************************************************/ - - /* get dc/ac prediction direction for a single block and place predictor values into MB->pred_values[j][..] */ @@ -131,7 +88,7 @@ /* grab left,top and diag macroblocks */ - /* left macroblock */ + /* left macroblock */ if (x && mbpos >= bound + 1 && (pMBs[index - 1].mode == MODE_INTRA || @@ -139,7 +96,6 @@ left = pMBs[index - 1].pred_values[0]; left_quant = pMBs[index - 1].quant; - /*DEBUGI("LEFT", *(left+MBPRED_SIZE)); */ } /* top macroblock */ @@ -150,7 +106,7 @@ top = pMBs[index - mb_width].pred_values[0]; top_quant = pMBs[index - mb_width].quant; } - /* diag macroblock */ + /* diag macroblock */ if (x && mbpos >= bound + (int)mb_width + 1 && (pMBs[index - 1 - mb_width].mode == MODE_INTRA || @@ -161,7 +117,7 @@ current = pMBs[index].pred_values[0]; - /* now grab pLeft, pTop, pDiag _blocks_ */ + /* now grab pLeft, pTop, pDiag _blocks_ */ switch (block) { @@ -228,18 +184,20 @@ break; } - /* determine ac prediction direction & ac/dc predictor */ - /* place rescaled ac/dc predictions into predictors[] for later use */ + /* + * determine ac prediction direction & ac/dc predictor place rescaled ac/dc + * predictions into predictors[] for later use + */ - if (ABS(pLeft[0] - pDiag[0]) < ABS(pDiag[0] - pTop[0])) { + if (abs(pLeft[0] - pDiag[0]) < abs(pDiag[0] - pTop[0])) { *acpred_direction = 1; /* vertical */ - predictors[0] = (int16_t)(DIV_DIV(pTop[0], iDcScaler)); + predictors[0] = DIV_DIV(pTop[0], iDcScaler); for (i = 1; i < 8; i++) { predictors[i] = rescale(top_quant, current_quant, pTop[i]); } } else { *acpred_direction = 2; /* horizontal */ - predictors[0] = (int16_t)(DIV_DIV(pLeft[0], iDcScaler)); + predictors[0] = DIV_DIV(pLeft[0], iDcScaler); for (i = 1; i < 8; i++) { predictors[i] = rescale(left_quant, current_quant, pLeft[i + 7]); } @@ -248,7 +206,7 @@ /* decoder: add predictors to dct_codes[] and - store current coeffs to pred_values[] for future prediction + store current coeffs to pred_values[] for future prediction */ @@ -263,16 +221,16 @@ int16_t *pCurrent = pMB->pred_values[block]; uint32_t i; - DPRINTF(DPRINTF_COEFF,"predictor[0] %i", predictors[0]); + DPRINTF(XVID_DEBUG_COEFF,"predictor[0] %i\n", predictors[0]); dct_codes[0] += predictors[0]; /* dc prediction */ - pCurrent[0] = (int16_t)(dct_codes[0] * iDcScaler); + pCurrent[0] = dct_codes[0] * iDcScaler; if (acpred_direction == 1) { for (i = 1; i < 8; i++) { int level = dct_codes[i] + predictors[i]; - DPRINTF(DPRINTF_COEFF,"predictor[%i] %i",i, predictors[i]); + DPRINTF(XVID_DEBUG_COEFF,"predictor[%i] %i\n",i, predictors[i]); dct_codes[i] = level; pCurrent[i] = level; @@ -281,7 +239,7 @@ } else if (acpred_direction == 2) { for (i = 1; i < 8; i++) { int level = dct_codes[i * 8] + predictors[i]; - DPRINTF(DPRINTF_COEFF,"predictor[%i] %i",i*8, predictors[i]); + DPRINTF(XVID_DEBUG_COEFF,"predictor[%i] %i\n",i*8, predictors[i]); dct_codes[i * 8] = level; pCurrent[i + 7] = level; @@ -297,21 +255,19 @@ -/* ****************************************************************** */ -/* ****************************************************************** */ +/***************************************************************************** + ****************************************************************************/ /* encoder: subtract predictors from qcoeff[] and calculate S1/S2 -todo: perform [-127,127] clamping after prediction -clamping must adjust the coeffs, so dequant is done correctly - -S1/S2 are used to determine if its worth predicting for AC +returns sum of coeefficients *saved* if prediction is enabled + S1 = sum of all (qcoeff - prediction) S2 = sum of all qcoeff */ -uint32_t -calc_acdc(MACROBLOCK * pMB, +int +calc_acdc_coeff(MACROBLOCK * pMB, uint32_t block, int16_t qcoeff[64], uint32_t iDcScaler, @@ -319,12 +275,12 @@ { int16_t *pCurrent = pMB->pred_values[block]; uint32_t i; - uint32_t S1 = 0, S2 = 0; + int S1 = 0, S2 = 0; /* store current coeffs to pred_values[] for future prediction */ - pCurrent[0] = (int16_t)(qcoeff[0] * iDcScaler); + pCurrent[0] = qcoeff[0] * iDcScaler; for (i = 1; i < 8; i++) { pCurrent[i] = qcoeff[i]; pCurrent[i + 7] = qcoeff[i * 8]; @@ -339,9 +295,9 @@ int16_t level; level = qcoeff[i]; - S2 += ABS(level); + S2 += abs(level); level -= predictors[i]; - S1 += ABS(level); + S1 += abs(level); predictors[i] = level; } } else /* acpred_direction == 2 */ @@ -350,9 +306,9 @@ int16_t level; level = qcoeff[i * 8]; - S2 += ABS(level); + S2 += abs(level); level -= predictors[i]; - S1 += ABS(level); + S1 += abs(level); predictors[i] = level; } @@ -363,6 +319,65 @@ } + +/* returns the bits *saved* if prediction is enabled */ + +int +calc_acdc_bits(MACROBLOCK * pMB, + uint32_t block, + int16_t qcoeff[64], + uint32_t iDcScaler, + int16_t predictors[8]) +{ + const int direction = pMB->acpred_directions[block]; + int16_t *pCurrent = pMB->pred_values[block]; + int16_t tmp[8]; + unsigned int i; + int Z1, Z2; + + /* store current coeffs to pred_values[] for future prediction */ + pCurrent[0] = qcoeff[0] * iDcScaler; + for (i = 1; i < 8; i++) { + pCurrent[i] = qcoeff[i]; + pCurrent[i + 7] = qcoeff[i * 8]; + } + + + /* dc prediction */ + qcoeff[0] = qcoeff[0] - predictors[0]; + + /* calc cost before ac prediction */ + Z2 = CodeCoeffIntra_CalcBits(qcoeff, scan_tables[0]); + + /* apply ac prediction & calc cost*/ + if (direction == 1) { + for (i = 1; i < 8; i++) { + tmp[i] = qcoeff[i]; + qcoeff[i] -= predictors[i]; + predictors[i] = qcoeff[i]; + } + }else{ /* acpred_direction == 2 */ + for (i = 1; i < 8; i++) { + tmp[i] = qcoeff[i*8]; + qcoeff[i*8] -= predictors[i]; + predictors[i] = qcoeff[i*8]; + } + } + + Z1 = CodeCoeffIntra_CalcBits(qcoeff, scan_tables[direction]); + + /* undo prediction */ + if (direction == 1) { + for (i = 1; i < 8; i++) + qcoeff[i] = tmp[i]; + }else{ /* acpred_direction == 2 */ + for (i = 1; i < 8; i++) + qcoeff[i*8] = tmp[i]; + } + + return Z2-Z1; +} + /* apply predictors[] to qcoeff */ void @@ -371,16 +386,14 @@ int16_t qcoeff[64], int16_t predictors[8]) { - uint32_t i; + unsigned int i; if (pMB->acpred_directions[block] == 1) { - for (i = 1; i < 8; i++) { + for (i = 1; i < 8; i++) qcoeff[i] = predictors[i]; - } } else { - for (i = 1; i < 8; i++) { + for (i = 1; i < 8; i++) qcoeff[i * 8] = predictors[i]; - } } } @@ -394,35 +407,188 @@ { int32_t j; - int32_t iDcScaler, iQuant = frame->quant; - int32_t S = 0; + int32_t iDcScaler, iQuant; + int S = 0; int16_t predictors[6][8]; MACROBLOCK *pMB = &frame->mbs[x + y * mb_width]; + iQuant = pMB->quant; if ((pMB->mode == MODE_INTRA) || (pMB->mode == MODE_INTRA_Q)) { for (j = 0; j < 6; j++) { - iDcScaler = get_dc_scaler(iQuant, (j < 4) ? 1 : 0); + iDcScaler = get_dc_scaler(iQuant, j<4); predict_acdc(frame->mbs, x, y, mb_width, j, &qcoeff[j * 64], iQuant, iDcScaler, predictors[j], 0); - S += calc_acdc(pMB, j, &qcoeff[j * 64], iDcScaler, predictors[j]); + if ((frame->vop_flags & XVID_VOP_HQACPRED)) + S += calc_acdc_bits(pMB, j, &qcoeff[j * 64], iDcScaler, predictors[j]); + else + S += calc_acdc_coeff(pMB, j, &qcoeff[j * 64], iDcScaler, predictors[j]); } - if (S < 0) /* dont predict */ - { - for (j = 0; j < 6; j++) { + if (S<=0) { /* dont predict */ + for (j = 0; j < 6; j++) pMB->acpred_directions[j] = 0; - } - } else { - for (j = 0; j < 6; j++) { + }else{ + for (j = 0; j < 6; j++) apply_acdc(pMB, j, &qcoeff[j * 64], predictors[j]); - } } + pMB->cbp = calc_cbp(qcoeff); } +} + +static const VECTOR zeroMV = { 0, 0 }; + +VECTOR +get_pmv2(const MACROBLOCK * const mbs, + const int mb_width, + const int bound, + const int x, + const int y, + const int block) +{ + int lx, ly, lz; /* left */ + int tx, ty, tz; /* top */ + int rx, ry, rz; /* top-right */ + int lpos, tpos, rpos; + int num_cand = 0, last_cand = 1; + + VECTOR pmv[4]; /* left neighbour, top neighbour, top-right neighbour */ + + switch (block) { + case 0: + lx = x - 1; ly = y; lz = 1; + tx = x; ty = y - 1; tz = 2; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 1: + lx = x; ly = y; lz = 0; + tx = x; ty = y - 1; tz = 3; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 2: + lx = x - 1; ly = y; lz = 3; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + break; + default: + lx = x; ly = y; lz = 2; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + } + + lpos = lx + ly * mb_width; + rpos = rx + ry * mb_width; + tpos = tx + ty * mb_width; + + if (lpos >= bound && lx >= 0) { + num_cand++; + pmv[1] = mbs[lpos].mvs[lz]; + } else pmv[1] = zeroMV; + + if (tpos >= bound) { + num_cand++; + last_cand = 2; + pmv[2] = mbs[tpos].mvs[tz]; + } else pmv[2] = zeroMV; + + if (rpos >= bound && rx < mb_width) { + num_cand++; + last_cand = 3; + pmv[3] = mbs[rpos].mvs[rz]; + } else pmv[3] = zeroMV; + + /* If there're more than one candidate, we return the median vector */ + + if (num_cand > 1) { + /* set median */ + pmv[0].x = + MIN(MAX(pmv[1].x, pmv[2].x), + MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); + pmv[0].y = + MIN(MAX(pmv[1].y, pmv[2].y), + MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); + return pmv[0]; + } + + return pmv[last_cand]; /* no point calculating median mv */ +} + +VECTOR +get_qpmv2(const MACROBLOCK * const mbs, + const int mb_width, + const int bound, + const int x, + const int y, + const int block) +{ + int lx, ly, lz; /* left */ + int tx, ty, tz; /* top */ + int rx, ry, rz; /* top-right */ + int lpos, tpos, rpos; + int num_cand = 0, last_cand = 1; + + VECTOR pmv[4]; /* left neighbour, top neighbour, top-right neighbour */ + + switch (block) { + case 0: + lx = x - 1; ly = y; lz = 1; + tx = x; ty = y - 1; tz = 2; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 1: + lx = x; ly = y; lz = 0; + tx = x; ty = y - 1; tz = 3; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 2: + lx = x - 1; ly = y; lz = 3; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + break; + default: + lx = x; ly = y; lz = 2; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + } + + lpos = lx + ly * mb_width; + rpos = rx + ry * mb_width; + tpos = tx + ty * mb_width; + + if (lpos >= bound && lx >= 0) { + num_cand++; + pmv[1] = mbs[lpos].qmvs[lz]; + } else pmv[1] = zeroMV; + + if (tpos >= bound) { + num_cand++; + last_cand = 2; + pmv[2] = mbs[tpos].qmvs[tz]; + } else pmv[2] = zeroMV; + + if (rpos >= bound && rx < mb_width) { + num_cand++; + last_cand = 3; + pmv[3] = mbs[rpos].qmvs[rz]; + } else pmv[3] = zeroMV; + + /* If there're more than one candidate, we return the median vector */ + + if (num_cand > 1) { + /* set median */ + pmv[0].x = + MIN(MAX(pmv[1].x, pmv[2].x), + MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); + pmv[0].y = + MIN(MAX(pmv[1].y, pmv[2].y), + MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); + return pmv[0]; + } + return pmv[last_cand]; /* no point calculating median mv */ }