--- trunk/xvidcore/src/prediction/mbprediction.c 2002/06/30 10:46:29 252 +++ branches/release-1_0-branch/xvidcore/src/prediction/mbprediction.c 2004/03/22 23:56:55 1387 @@ -1,63 +1,38 @@ - /****************************************************************************** - * * - * This file is part of XviD, a free MPEG-4 video encoder/decoder * - * * - * XviD is an implementation of a part of one or more MPEG-4 Video tools * - * as specified in ISO/IEC 14496-2 standard. Those intending to use this * - * software module in hardware or software products are advised that its * - * use may infringe existing patents or copyrights, and any such use * - * would be at such party's own risk. The original developer of this * - * software module and his/her company, and subsequent editors and their * - * companies, will have no liability for use of this software or * - * modifications or derivatives thereof. * - * * - * XviD is free software; you can redistribute it and/or modify it * - * under the terms of the GNU General Public License as published by * - * the Free Software Foundation; either version 2 of the License, or * - * (at your option) any later version. * - * * - * XviD is distributed in the hope that it will be useful, but * - * WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * - * GNU General Public License for more details. * - * * - * You should have received a copy of the GNU General Public License * - * along with this program; if not, write to the Free Software * - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * - * * - ******************************************************************************/ - - /****************************************************************************** - * * - * mbprediction.c * - * * - * Copyright (C) 2001 - Michael Militzer * - * Copyright (C) 2001 - Peter Ross * - * * - * For more information visit the XviD homepage: http://www.xvid.org * - * * - ******************************************************************************/ - - /****************************************************************************** - * * - * Revision history: * - * * - * 29.06.2002 predict_acdc() bounding * - * 12.12.2001 improved calc_acdc_prediction; removed need for memcpy * - * 15.12.2001 moved pmv displacement to motion estimation * - * 30.11.2001 mmx cbp support * - * 17.11.2001 initial version * - * * - ******************************************************************************/ +/***************************************************************************** + * + * XVID MPEG-4 VIDEO CODEC + * - Prediction module - + * + * Copyright (C) 2001-2003 Michael Militzer + * 2001-2003 Peter Ross + * + * This program is free software ; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation ; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY ; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program ; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * $Id: mbprediction.c,v 1.14 2004-03-22 22:36:24 edgomez Exp $ + * + ****************************************************************************/ +#include + +#include "../global.h" #include "../encoder.h" #include "mbprediction.h" #include "../utils/mbfunctions.h" #include "../bitstream/cbp.h" - - -#define ABS(X) (((X)>0)?(X):-(X)) -#define DIV_DIV(A,B) ( (A) > 0 ? ((A)+((B)>>1))/(B) : ((A)-((B)>>1))/(B) ) +#include "../bitstream/mbcoding.h" +#include "../bitstream/zigzag.h" static int __inline @@ -105,15 +80,15 @@ const int16_t *pTop = default_acdc_values; const int16_t *pDiag = default_acdc_values; - uint32_t index = x + y * mb_width; // current macroblock + uint32_t index = x + y * mb_width; /* current macroblock */ int *acpred_direction = &pMBs[index].acpred_directions[block]; uint32_t i; left = top = diag = current = 0; - // grab left,top and diag macroblocks + /* grab left,top and diag macroblocks */ - // left macroblock + /* left macroblock */ if (x && mbpos >= bound + 1 && (pMBs[index - 1].mode == MODE_INTRA || @@ -121,9 +96,8 @@ left = pMBs[index - 1].pred_values[0]; left_quant = pMBs[index - 1].quant; - //DEBUGI("LEFT", *(left+MBPRED_SIZE)); } - // top macroblock + /* top macroblock */ if (mbpos >= bound + (int)mb_width && (pMBs[index - mb_width].mode == MODE_INTRA || @@ -132,7 +106,7 @@ top = pMBs[index - mb_width].pred_values[0]; top_quant = pMBs[index - mb_width].quant; } - // diag macroblock + /* diag macroblock */ if (x && mbpos >= bound + (int)mb_width + 1 && (pMBs[index - 1 - mb_width].mode == MODE_INTRA || @@ -143,7 +117,7 @@ current = pMBs[index].pred_values[0]; - // now grab pLeft, pTop, pDiag _blocks_ + /* now grab pLeft, pTop, pDiag _blocks_ */ switch (block) { @@ -210,17 +184,19 @@ break; } - // determine ac prediction direction & ac/dc predictor - // place rescaled ac/dc predictions into predictors[] for later use + /* + * determine ac prediction direction & ac/dc predictor place rescaled ac/dc + * predictions into predictors[] for later use + */ - if (ABS(pLeft[0] - pDiag[0]) < ABS(pDiag[0] - pTop[0])) { - *acpred_direction = 1; // vertical + if (abs(pLeft[0] - pDiag[0]) < abs(pDiag[0] - pTop[0])) { + *acpred_direction = 1; /* vertical */ predictors[0] = DIV_DIV(pTop[0], iDcScaler); for (i = 1; i < 8; i++) { predictors[i] = rescale(top_quant, current_quant, pTop[i]); } } else { - *acpred_direction = 2; // horizontal + *acpred_direction = 2; /* horizontal */ predictors[0] = DIV_DIV(pLeft[0], iDcScaler); for (i = 1; i < 8; i++) { predictors[i] = rescale(left_quant, current_quant, pLeft[i + 7]); @@ -230,7 +206,7 @@ /* decoder: add predictors to dct_codes[] and - store current coeffs to pred_values[] for future prediction + store current coeffs to pred_values[] for future prediction */ @@ -245,16 +221,16 @@ int16_t *pCurrent = pMB->pred_values[block]; uint32_t i; - DPRINTF(DPRINTF_COEFF,"predictor[0] %i", predictors[0]); + DPRINTF(XVID_DEBUG_COEFF,"predictor[0] %i\n", predictors[0]); - dct_codes[0] += predictors[0]; // dc prediction + dct_codes[0] += predictors[0]; /* dc prediction */ pCurrent[0] = dct_codes[0] * iDcScaler; if (acpred_direction == 1) { for (i = 1; i < 8; i++) { int level = dct_codes[i] + predictors[i]; - DPRINTF(DPRINTF_COEFF,"predictor[%i] %i",i, predictors[i]); + DPRINTF(XVID_DEBUG_COEFF,"predictor[%i] %i\n",i, predictors[i]); dct_codes[i] = level; pCurrent[i] = level; @@ -263,7 +239,7 @@ } else if (acpred_direction == 2) { for (i = 1; i < 8; i++) { int level = dct_codes[i * 8] + predictors[i]; - DPRINTF(DPRINTF_COEFF,"predictor[%i] %i",i*8, predictors[i]); + DPRINTF(XVID_DEBUG_COEFF,"predictor[%i] %i\n",i*8, predictors[i]); dct_codes[i * 8] = level; pCurrent[i + 7] = level; @@ -279,21 +255,19 @@ -// ****************************************************************** -// ****************************************************************** +/***************************************************************************** + ****************************************************************************/ /* encoder: subtract predictors from qcoeff[] and calculate S1/S2 -todo: perform [-127,127] clamping after prediction -clamping must adjust the coeffs, so dequant is done correctly - -S1/S2 are used to determine if its worth predicting for AC +returns sum of coeefficients *saved* if prediction is enabled + S1 = sum of all (qcoeff - prediction) S2 = sum of all qcoeff */ -uint32_t -calc_acdc(MACROBLOCK * pMB, +int +calc_acdc_coeff(MACROBLOCK * pMB, uint32_t block, int16_t qcoeff[64], uint32_t iDcScaler, @@ -301,7 +275,7 @@ { int16_t *pCurrent = pMB->pred_values[block]; uint32_t i; - uint32_t S1 = 0, S2 = 0; + int S1 = 0, S2 = 0; /* store current coeffs to pred_values[] for future prediction */ @@ -321,20 +295,20 @@ int16_t level; level = qcoeff[i]; - S2 += ABS(level); + S2 += abs(level); level -= predictors[i]; - S1 += ABS(level); + S1 += abs(level); predictors[i] = level; } - } else // acpred_direction == 2 + } else /* acpred_direction == 2 */ { for (i = 1; i < 8; i++) { int16_t level; level = qcoeff[i * 8]; - S2 += ABS(level); + S2 += abs(level); level -= predictors[i]; - S1 += ABS(level); + S1 += abs(level); predictors[i] = level; } @@ -345,6 +319,65 @@ } + +/* returns the bits *saved* if prediction is enabled */ + +int +calc_acdc_bits(MACROBLOCK * pMB, + uint32_t block, + int16_t qcoeff[64], + uint32_t iDcScaler, + int16_t predictors[8]) +{ + const int direction = pMB->acpred_directions[block]; + int16_t *pCurrent = pMB->pred_values[block]; + int16_t tmp[8]; + unsigned int i; + int Z1, Z2; + + /* store current coeffs to pred_values[] for future prediction */ + pCurrent[0] = qcoeff[0] * iDcScaler; + for (i = 1; i < 8; i++) { + pCurrent[i] = qcoeff[i]; + pCurrent[i + 7] = qcoeff[i * 8]; + } + + + /* dc prediction */ + qcoeff[0] = qcoeff[0] - predictors[0]; + + /* calc cost before ac prediction */ + Z2 = CodeCoeffIntra_CalcBits(qcoeff, scan_tables[0]); + + /* apply ac prediction & calc cost*/ + if (direction == 1) { + for (i = 1; i < 8; i++) { + tmp[i] = qcoeff[i]; + qcoeff[i] -= predictors[i]; + predictors[i] = qcoeff[i]; + } + }else{ /* acpred_direction == 2 */ + for (i = 1; i < 8; i++) { + tmp[i] = qcoeff[i*8]; + qcoeff[i*8] -= predictors[i]; + predictors[i] = qcoeff[i*8]; + } + } + + Z1 = CodeCoeffIntra_CalcBits(qcoeff, scan_tables[direction]); + + /* undo prediction */ + if (direction == 1) { + for (i = 1; i < 8; i++) + qcoeff[i] = tmp[i]; + }else{ /* acpred_direction == 2 */ + for (i = 1; i < 8; i++) + qcoeff[i*8] = tmp[i]; + } + + return Z2-Z1; +} + /* apply predictors[] to qcoeff */ void @@ -353,16 +386,14 @@ int16_t qcoeff[64], int16_t predictors[8]) { - uint32_t i; + unsigned int i; if (pMB->acpred_directions[block] == 1) { - for (i = 1; i < 8; i++) { + for (i = 1; i < 8; i++) qcoeff[i] = predictors[i]; - } } else { - for (i = 1; i < 8; i++) { + for (i = 1; i < 8; i++) qcoeff[i * 8] = predictors[i]; - } } } @@ -376,214 +407,188 @@ { int32_t j; - int32_t iDcScaler, iQuant = frame->quant; - int32_t S = 0; + int32_t iDcScaler, iQuant; + int S = 0; int16_t predictors[6][8]; MACROBLOCK *pMB = &frame->mbs[x + y * mb_width]; + iQuant = pMB->quant; if ((pMB->mode == MODE_INTRA) || (pMB->mode == MODE_INTRA_Q)) { for (j = 0; j < 6; j++) { - iDcScaler = get_dc_scaler(iQuant, (j < 4) ? 1 : 0); + iDcScaler = get_dc_scaler(iQuant, j<4); predict_acdc(frame->mbs, x, y, mb_width, j, &qcoeff[j * 64], iQuant, iDcScaler, predictors[j], 0); - S += calc_acdc(pMB, j, &qcoeff[j * 64], iDcScaler, predictors[j]); + if ((frame->vop_flags & XVID_VOP_HQACPRED)) + S += calc_acdc_bits(pMB, j, &qcoeff[j * 64], iDcScaler, predictors[j]); + else + S += calc_acdc_coeff(pMB, j, &qcoeff[j * 64], iDcScaler, predictors[j]); } - if (S < 0) // dont predict - { - for (j = 0; j < 6; j++) { + if (S<=0) { /* dont predict */ + for (j = 0; j < 6; j++) pMB->acpred_directions[j] = 0; - } - } else { - for (j = 0; j < 6; j++) { + }else{ + for (j = 0; j < 6; j++) apply_acdc(pMB, j, &qcoeff[j * 64], predictors[j]); - } } + pMB->cbp = calc_cbp(qcoeff); } - } +static const VECTOR zeroMV = { 0, 0 }; +VECTOR +get_pmv2(const MACROBLOCK * const mbs, + const int mb_width, + const int bound, + const int x, + const int y, + const int block) +{ + int lx, ly, lz; /* left */ + int tx, ty, tz; /* top */ + int rx, ry, rz; /* top-right */ + int lpos, tpos, rpos; + int num_cand = 0, last_cand = 1; + VECTOR pmv[4]; /* left neighbour, top neighbour, top-right neighbour */ -/* - get_pmvdata2: get_pmvdata with bounding -*/ -#define OFFSET(x,y,stride) ((x)+((y)*(stride))) + switch (block) { + case 0: + lx = x - 1; ly = y; lz = 1; + tx = x; ty = y - 1; tz = 2; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 1: + lx = x; ly = y; lz = 0; + tx = x; ty = y - 1; tz = 3; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 2: + lx = x - 1; ly = y; lz = 3; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + break; + default: + lx = x; ly = y; lz = 2; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + } -int -get_pmvdata2(const MACROBLOCK * const pMBs, - const uint32_t x, - const uint32_t y, - const uint32_t x_dim, - const uint32_t block, - VECTOR * const pmv, - int32_t * const psad, - const int bound) -{ - const int mbpos = OFFSET(x, y ,x_dim); + lpos = lx + ly * mb_width; + rpos = rx + ry * mb_width; + tpos = tx + ty * mb_width; - /* - * pmv are filled with: - * [0]: Median (or whatever is correct in a special case) - * [1]: left neighbour - * [2]: top neighbour - * [3]: topright neighbour - * psad are filled with: - * [0]: minimum of [1] to [3] - * [1]: left neighbour's SAD (NB:[1] to [3] are actually not needed) - * [2]: top neighbour's SAD - * [3]: topright neighbour's SAD - */ + if (lpos >= bound && lx >= 0) { + num_cand++; + pmv[1] = mbs[lpos].mvs[lz]; + } else pmv[1] = zeroMV; + + if (tpos >= bound) { + num_cand++; + last_cand = 2; + pmv[2] = mbs[tpos].mvs[tz]; + } else pmv[2] = zeroMV; + + if (rpos >= bound && rx < mb_width) { + num_cand++; + last_cand = 3; + pmv[3] = mbs[rpos].mvs[rz]; + } else pmv[3] = zeroMV; - int xin1, xin2, xin3; - int yin1, yin2, yin3; - int vec1, vec2, vec3; - - int pos1, pos2, pos3; - int num_cand = 0; // number of candidates - int last_cand; // last candidate + /* If there're more than one candidate, we return the median vector */ - uint32_t index = x + y * x_dim; - const VECTOR zeroMV = { 0, 0 }; + if (num_cand > 1) { + /* set median */ + pmv[0].x = + MIN(MAX(pmv[1].x, pmv[2].x), + MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); + pmv[0].y = + MIN(MAX(pmv[1].y, pmv[2].y), + MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); + return pmv[0]; + } - /* - * MODE_INTER, vm18 page 48 - * MODE_INTER4V vm18 page 51 - * - * (x,y-1) (x+1,y-1) - * [ | ] [ | ] - * [ 2 | 3 ] [ 2 | ] - * - * (x-1,y) (x,y) (x+1,y) - * [ | 1 ] [ 0 | 1 ] [ 0 | ] - * [ | 3 ] [ 2 | 3 ] [ | ] - */ + return pmv[last_cand]; /* no point calculating median mv */ +} + +VECTOR +get_qpmv2(const MACROBLOCK * const mbs, + const int mb_width, + const int bound, + const int x, + const int y, + const int block) +{ + int lx, ly, lz; /* left */ + int tx, ty, tz; /* top */ + int rx, ry, rz; /* top-right */ + int lpos, tpos, rpos; + int num_cand = 0, last_cand = 1; + + VECTOR pmv[4]; /* left neighbour, top neighbour, top-right neighbour */ switch (block) { case 0: - xin1 = x - 1; - yin1 = y; - vec1 = 1; /* left */ - xin2 = x; - yin2 = y - 1; - vec2 = 2; /* top */ - xin3 = x + 1; - yin3 = y - 1; - vec3 = 2; /* top right */ + lx = x - 1; ly = y; lz = 1; + tx = x; ty = y - 1; tz = 2; + rx = x + 1; ry = y - 1; rz = 2; break; case 1: - xin1 = x; - yin1 = y; - vec1 = 0; - xin2 = x; - yin2 = y - 1; - vec2 = 3; - xin3 = x + 1; - yin3 = y - 1; - vec3 = 2; + lx = x; ly = y; lz = 0; + tx = x; ty = y - 1; tz = 3; + rx = x + 1; ry = y - 1; rz = 2; break; case 2: - xin1 = x - 1; - yin1 = y; - vec1 = 3; - xin2 = x; - yin2 = y; - vec2 = 0; - xin3 = x; - yin3 = y; - vec3 = 1; + lx = x - 1; ly = y; lz = 3; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; break; default: - xin1 = x; - yin1 = y; - vec1 = 2; - xin2 = x; - yin2 = y; - vec2 = 0; - xin3 = x; - yin3 = y; - vec3 = 1; - } - - pos1 = OFFSET(xin1, yin1, x_dim); - pos2 = OFFSET(xin2, yin2, x_dim); - pos3 = OFFSET(xin3, yin3, x_dim); - - // left - if (xin1 < 0 || pos1 < bound) { - pmv[1] = zeroMV; - psad[1] = MV_MAX_ERROR; - } else { - pmv[1] = pMBs[xin1 + yin1 * x_dim].mvs[vec1]; - psad[1] = pMBs[xin1 + yin1 * x_dim].sad8[vec1]; - num_cand++; - last_cand = 1; + lx = x; ly = y; lz = 2; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; } - // top - if (yin2 < 0 || pos2 < bound) { - pmv[2] = zeroMV; - psad[2] = MV_MAX_ERROR; - } else { - pmv[2] = pMBs[xin2 + yin2 * x_dim].mvs[vec2]; - psad[2] = pMBs[xin2 + yin2 * x_dim].sad8[vec2]; + lpos = lx + ly * mb_width; + rpos = rx + ry * mb_width; + tpos = tx + ty * mb_width; + + if (lpos >= bound && lx >= 0) { num_cand++; - last_cand = 2; - } + pmv[1] = mbs[lpos].qmvs[lz]; + } else pmv[1] = zeroMV; + if (tpos >= bound) { + num_cand++; + last_cand = 2; + pmv[2] = mbs[tpos].qmvs[tz]; + } else pmv[2] = zeroMV; - // top right - if (yin3 < 0 || pos3 < bound || xin3 >= (int)x_dim) { - pmv[3] = zeroMV; - psad[3] = MV_MAX_ERROR; - //DPRINTF(DPRINTF_MV, "top-right"); - } else { - pmv[3] = pMBs[xin3 + yin3 * x_dim].mvs[vec3]; - psad[3] = pMBs[xin2 + yin2 * x_dim].sad8[vec3]; + if (rpos >= bound && rx < mb_width) { num_cand++; last_cand = 3; - } + pmv[3] = mbs[rpos].qmvs[rz]; + } else pmv[3] = zeroMV; - if (num_cand == 1) - { - /* DPRINTF(DPRINTF_MV,"cand0=(%i,%i), cand1=(%i,%i) cand2=(%i,%i) last=%i", - pmv[1].x, pmv[1].y, - pmv[2].x, pmv[2].y, - pmv[3].x, pmv[3].y, last_cand - 1); - */ - - pmv[0] = pmv[last_cand]; - psad[0] = psad[last_cand]; - return 0; - } - - /* DPRINTF(DPRINTF_MV,"cand0=(%i,%i), cand1=(%i,%i) cand2=(%i,%i)", - pmv[1].x, pmv[1].y, - pmv[2].x, pmv[2].y, - pmv[3].x, pmv[3].y);*/ - - if ((MVequal(pmv[1], pmv[2])) && (MVequal(pmv[1], pmv[3]))) { - pmv[0] = pmv[1]; - psad[0] = MIN(MIN(psad[1], psad[2]), psad[3]); - return 1; - } - - /* median,minimum */ - - pmv[0].x = - MIN(MAX(pmv[1].x, pmv[2].x), - MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); - pmv[0].y = - MIN(MAX(pmv[1].y, pmv[2].y), - MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); - psad[0] = MIN(MIN(psad[1], psad[2]), psad[3]); + /* If there're more than one candidate, we return the median vector */ + + if (num_cand > 1) { + /* set median */ + pmv[0].x = + MIN(MAX(pmv[1].x, pmv[2].x), + MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); + pmv[0].y = + MIN(MAX(pmv[1].y, pmv[2].y), + MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); + return pmv[0]; + } - return 0; + return pmv[last_cand]; /* no point calculating median mv */ }