--- trunk/xvidcore/src/prediction/mbprediction.c 2002/09/07 13:43:00 445 +++ branches/release-1_0-branch/xvidcore/src/prediction/mbprediction.c 2004/05/03 23:28:29 1446 @@ -1,52 +1,40 @@ /***************************************************************************** * * XVID MPEG-4 VIDEO CODEC - * - Prediction functions - + * - Prediction module - * - * Copyright(C) 2001-2002 - Michael Militzer - * Copyright(C) 2001-2002 - Peter Ross + * Copyright (C) 2001-2003 Michael Militzer + * 2001-2003 Peter Ross * - * This program is an implementation of a part of one or more MPEG-4 - * Video tools as specified in ISO/IEC 14496-2 standard. Those intending - * to use this software module in hardware or software products are - * advised that its use may infringe existing patents or copyrights, and - * any such use would be at such party's own risk. The original - * developer of this software module and his/her company, and subsequent - * editors and their companies, will have no liability for use of this - * software or modifications or derivatives thereof. - * - * This program is free software; you can redistribute it and/or modify + * This program is free software ; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or + * the Free Software Foundation ; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of + * but WITHOUT ANY WARRANTY ; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software + * along with this program ; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * - * $Id: mbprediction.c,v 1.8 2002-09-07 13:43:00 edgomez Exp $ + * $Id: mbprediction.c,v 1.14.2.1 2004-05-03 23:28:29 edgomez Exp $ * ****************************************************************************/ +#include + +#include "../global.h" #include "../encoder.h" #include "mbprediction.h" #include "../utils/mbfunctions.h" #include "../bitstream/cbp.h" +#include "../bitstream/mbcoding.h" +#include "../bitstream/zigzag.h" -#define ABS(X) (((X)>0)?(X):-(X)) -#define DIV_DIV(A,B) ( (A) > 0 ? ((A)+((B)>>1))/(B) : ((A)-((B)>>1))/(B) ) - - -/***************************************************************************** - * Local inlined function - ****************************************************************************/ - static int __inline rescale(int predict_quant, int current_quant, @@ -57,10 +45,6 @@ } -/***************************************************************************** - * Local data - ****************************************************************************/ - static const int16_t default_acdc_values[15] = { 1024, 0, 0, 0, 0, 0, 0, 0, @@ -68,11 +52,6 @@ }; -/***************************************************************************** - * Functions - ****************************************************************************/ - - /* get dc/ac prediction direction for a single block and place predictor values into MB->pred_values[j][..] */ @@ -88,7 +67,8 @@ uint32_t current_quant, int32_t iDcScaler, int16_t predictors[8], - const int bound) + const int bound, + const int bsversion) { const int mbpos = (y * mb_width) + x; @@ -101,15 +81,15 @@ const int16_t *pTop = default_acdc_values; const int16_t *pDiag = default_acdc_values; - uint32_t index = x + y * mb_width; // current macroblock + uint32_t index = x + y * mb_width; /* current macroblock */ int *acpred_direction = &pMBs[index].acpred_directions[block]; uint32_t i; left = top = diag = current = 0; - // grab left,top and diag macroblocks + /* grab left,top and diag macroblocks */ - // left macroblock + /* left macroblock */ if (x && mbpos >= bound + 1 && (pMBs[index - 1].mode == MODE_INTRA || @@ -117,9 +97,8 @@ left = pMBs[index - 1].pred_values[0]; left_quant = pMBs[index - 1].quant; - //DEBUGI("LEFT", *(left+MBPRED_SIZE)); } - // top macroblock + /* top macroblock */ if (mbpos >= bound + (int)mb_width && (pMBs[index - mb_width].mode == MODE_INTRA || @@ -128,7 +107,7 @@ top = pMBs[index - mb_width].pred_values[0]; top_quant = pMBs[index - mb_width].quant; } - // diag macroblock + /* diag macroblock */ if (x && mbpos >= bound + (int)mb_width + 1 && (pMBs[index - 1 - mb_width].mode == MODE_INTRA || @@ -139,7 +118,7 @@ current = pMBs[index].pred_values[0]; - // now grab pLeft, pTop, pDiag _blocks_ + /* now grab pLeft, pTop, pDiag _blocks_ */ switch (block) { @@ -206,18 +185,26 @@ break; } - // determine ac prediction direction & ac/dc predictor - // place rescaled ac/dc predictions into predictors[] for later use - - if (ABS(pLeft[0] - pDiag[0]) < ABS(pDiag[0] - pTop[0])) { - *acpred_direction = 1; // vertical + /* determine ac prediction direction & ac/dc predictor place rescaled ac/dc + * predictions into predictors[] for later use */ + + /* Workaround: Bitstream versions <= 32 used to have a wrong predictor + * stored as it wasn't clipped to the [-2048, 2047] range. We only + * use the right predictors for bs versions > 32 */ +#define BUGGY_CLIPPING_BS_VERSION 32 + if (abs(pLeft[0] - pDiag[0]) < abs(pDiag[0] - pTop[0])) { + *acpred_direction = 1; /* vertical */ predictors[0] = DIV_DIV(pTop[0], iDcScaler); + if (bsversion == 0 || bsversion > BUGGY_CLIPPING_BS_VERSION) + predictors[0] = CLIP(predictors[0], -2048, 2047); for (i = 1; i < 8; i++) { predictors[i] = rescale(top_quant, current_quant, pTop[i]); } } else { - *acpred_direction = 2; // horizontal + *acpred_direction = 2; /* horizontal */ predictors[0] = DIV_DIV(pLeft[0], iDcScaler); + if (bsversion == 0 || bsversion > BUGGY_CLIPPING_BS_VERSION) + predictors[0] = CLIP(predictors[0], -2048, 2047); for (i = 1; i < 8; i++) { predictors[i] = rescale(left_quant, current_quant, pLeft[i + 7]); } @@ -226,7 +213,7 @@ /* decoder: add predictors to dct_codes[] and - store current coeffs to pred_values[] for future prediction + store current coeffs to pred_values[] for future prediction */ @@ -241,16 +228,16 @@ int16_t *pCurrent = pMB->pred_values[block]; uint32_t i; - DPRINTF(DPRINTF_COEFF,"predictor[0] %i", predictors[0]); + DPRINTF(XVID_DEBUG_COEFF,"predictor[0] %i\n", predictors[0]); - dct_codes[0] += predictors[0]; // dc prediction + dct_codes[0] += predictors[0]; /* dc prediction */ pCurrent[0] = dct_codes[0] * iDcScaler; if (acpred_direction == 1) { for (i = 1; i < 8; i++) { int level = dct_codes[i] + predictors[i]; - DPRINTF(DPRINTF_COEFF,"predictor[%i] %i",i, predictors[i]); + DPRINTF(XVID_DEBUG_COEFF,"predictor[%i] %i\n",i, predictors[i]); dct_codes[i] = level; pCurrent[i] = level; @@ -259,7 +246,7 @@ } else if (acpred_direction == 2) { for (i = 1; i < 8; i++) { int level = dct_codes[i * 8] + predictors[i]; - DPRINTF(DPRINTF_COEFF,"predictor[%i] %i",i*8, predictors[i]); + DPRINTF(XVID_DEBUG_COEFF,"predictor[%i] %i\n",i*8, predictors[i]); dct_codes[i * 8] = level; pCurrent[i + 7] = level; @@ -275,21 +262,19 @@ -// ****************************************************************** -// ****************************************************************** +/***************************************************************************** + ****************************************************************************/ /* encoder: subtract predictors from qcoeff[] and calculate S1/S2 -todo: perform [-127,127] clamping after prediction -clamping must adjust the coeffs, so dequant is done correctly - -S1/S2 are used to determine if its worth predicting for AC +returns sum of coeefficients *saved* if prediction is enabled + S1 = sum of all (qcoeff - prediction) S2 = sum of all qcoeff */ -uint32_t -calc_acdc(MACROBLOCK * pMB, +int +calc_acdc_coeff(MACROBLOCK * pMB, uint32_t block, int16_t qcoeff[64], uint32_t iDcScaler, @@ -297,7 +282,7 @@ { int16_t *pCurrent = pMB->pred_values[block]; uint32_t i; - uint32_t S1 = 0, S2 = 0; + int S1 = 0, S2 = 0; /* store current coeffs to pred_values[] for future prediction */ @@ -317,20 +302,20 @@ int16_t level; level = qcoeff[i]; - S2 += ABS(level); + S2 += abs(level); level -= predictors[i]; - S1 += ABS(level); + S1 += abs(level); predictors[i] = level; } - } else // acpred_direction == 2 + } else /* acpred_direction == 2 */ { for (i = 1; i < 8; i++) { int16_t level; level = qcoeff[i * 8]; - S2 += ABS(level); + S2 += abs(level); level -= predictors[i]; - S1 += ABS(level); + S1 += abs(level); predictors[i] = level; } @@ -341,6 +326,65 @@ } + +/* returns the bits *saved* if prediction is enabled */ + +int +calc_acdc_bits(MACROBLOCK * pMB, + uint32_t block, + int16_t qcoeff[64], + uint32_t iDcScaler, + int16_t predictors[8]) +{ + const int direction = pMB->acpred_directions[block]; + int16_t *pCurrent = pMB->pred_values[block]; + int16_t tmp[8]; + unsigned int i; + int Z1, Z2; + + /* store current coeffs to pred_values[] for future prediction */ + pCurrent[0] = qcoeff[0] * iDcScaler; + for (i = 1; i < 8; i++) { + pCurrent[i] = qcoeff[i]; + pCurrent[i + 7] = qcoeff[i * 8]; + } + + + /* dc prediction */ + qcoeff[0] = qcoeff[0] - predictors[0]; + + /* calc cost before ac prediction */ + Z2 = CodeCoeffIntra_CalcBits(qcoeff, scan_tables[0]); + + /* apply ac prediction & calc cost*/ + if (direction == 1) { + for (i = 1; i < 8; i++) { + tmp[i] = qcoeff[i]; + qcoeff[i] -= predictors[i]; + predictors[i] = qcoeff[i]; + } + }else{ /* acpred_direction == 2 */ + for (i = 1; i < 8; i++) { + tmp[i] = qcoeff[i*8]; + qcoeff[i*8] -= predictors[i]; + predictors[i] = qcoeff[i*8]; + } + } + + Z1 = CodeCoeffIntra_CalcBits(qcoeff, scan_tables[direction]); + + /* undo prediction */ + if (direction == 1) { + for (i = 1; i < 8; i++) + qcoeff[i] = tmp[i]; + }else{ /* acpred_direction == 2 */ + for (i = 1; i < 8; i++) + qcoeff[i*8] = tmp[i]; + } + + return Z2-Z1; +} + /* apply predictors[] to qcoeff */ void @@ -349,16 +393,14 @@ int16_t qcoeff[64], int16_t predictors[8]) { - uint32_t i; + unsigned int i; if (pMB->acpred_directions[block] == 1) { - for (i = 1; i < 8; i++) { + for (i = 1; i < 8; i++) qcoeff[i] = predictors[i]; - } } else { - for (i = 1; i < 8; i++) { + for (i = 1; i < 8; i++) qcoeff[i * 8] = predictors[i]; - } } } @@ -372,35 +414,188 @@ { int32_t j; - int32_t iDcScaler, iQuant = frame->quant; - int32_t S = 0; + int32_t iDcScaler, iQuant; + int S = 0; int16_t predictors[6][8]; MACROBLOCK *pMB = &frame->mbs[x + y * mb_width]; + iQuant = pMB->quant; if ((pMB->mode == MODE_INTRA) || (pMB->mode == MODE_INTRA_Q)) { for (j = 0; j < 6; j++) { - iDcScaler = get_dc_scaler(iQuant, (j < 4) ? 1 : 0); + iDcScaler = get_dc_scaler(iQuant, j<4); predict_acdc(frame->mbs, x, y, mb_width, j, &qcoeff[j * 64], - iQuant, iDcScaler, predictors[j], 0); + iQuant, iDcScaler, predictors[j], 0, 0); - S += calc_acdc(pMB, j, &qcoeff[j * 64], iDcScaler, predictors[j]); + if ((frame->vop_flags & XVID_VOP_HQACPRED)) + S += calc_acdc_bits(pMB, j, &qcoeff[j * 64], iDcScaler, predictors[j]); + else + S += calc_acdc_coeff(pMB, j, &qcoeff[j * 64], iDcScaler, predictors[j]); } - if (S < 0) // dont predict - { - for (j = 0; j < 6; j++) { + if (S<=0) { /* dont predict */ + for (j = 0; j < 6; j++) pMB->acpred_directions[j] = 0; - } - } else { - for (j = 0; j < 6; j++) { + }else{ + for (j = 0; j < 6; j++) apply_acdc(pMB, j, &qcoeff[j * 64], predictors[j]); - } } + pMB->cbp = calc_cbp(qcoeff); } +} + +static const VECTOR zeroMV = { 0, 0 }; + +VECTOR +get_pmv2(const MACROBLOCK * const mbs, + const int mb_width, + const int bound, + const int x, + const int y, + const int block) +{ + int lx, ly, lz; /* left */ + int tx, ty, tz; /* top */ + int rx, ry, rz; /* top-right */ + int lpos, tpos, rpos; + int num_cand = 0, last_cand = 1; + + VECTOR pmv[4]; /* left neighbour, top neighbour, top-right neighbour */ + + switch (block) { + case 0: + lx = x - 1; ly = y; lz = 1; + tx = x; ty = y - 1; tz = 2; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 1: + lx = x; ly = y; lz = 0; + tx = x; ty = y - 1; tz = 3; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 2: + lx = x - 1; ly = y; lz = 3; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + break; + default: + lx = x; ly = y; lz = 2; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + } + + lpos = lx + ly * mb_width; + rpos = rx + ry * mb_width; + tpos = tx + ty * mb_width; + + if (lpos >= bound && lx >= 0) { + num_cand++; + pmv[1] = mbs[lpos].mvs[lz]; + } else pmv[1] = zeroMV; + + if (tpos >= bound) { + num_cand++; + last_cand = 2; + pmv[2] = mbs[tpos].mvs[tz]; + } else pmv[2] = zeroMV; + + if (rpos >= bound && rx < mb_width) { + num_cand++; + last_cand = 3; + pmv[3] = mbs[rpos].mvs[rz]; + } else pmv[3] = zeroMV; + + /* If there're more than one candidate, we return the median vector */ + + if (num_cand > 1) { + /* set median */ + pmv[0].x = + MIN(MAX(pmv[1].x, pmv[2].x), + MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); + pmv[0].y = + MIN(MAX(pmv[1].y, pmv[2].y), + MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); + return pmv[0]; + } + + return pmv[last_cand]; /* no point calculating median mv */ +} + +VECTOR +get_qpmv2(const MACROBLOCK * const mbs, + const int mb_width, + const int bound, + const int x, + const int y, + const int block) +{ + int lx, ly, lz; /* left */ + int tx, ty, tz; /* top */ + int rx, ry, rz; /* top-right */ + int lpos, tpos, rpos; + int num_cand = 0, last_cand = 1; + + VECTOR pmv[4]; /* left neighbour, top neighbour, top-right neighbour */ + + switch (block) { + case 0: + lx = x - 1; ly = y; lz = 1; + tx = x; ty = y - 1; tz = 2; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 1: + lx = x; ly = y; lz = 0; + tx = x; ty = y - 1; tz = 3; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 2: + lx = x - 1; ly = y; lz = 3; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + break; + default: + lx = x; ly = y; lz = 2; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + } + + lpos = lx + ly * mb_width; + rpos = rx + ry * mb_width; + tpos = tx + ty * mb_width; + + if (lpos >= bound && lx >= 0) { + num_cand++; + pmv[1] = mbs[lpos].qmvs[lz]; + } else pmv[1] = zeroMV; + + if (tpos >= bound) { + num_cand++; + last_cand = 2; + pmv[2] = mbs[tpos].qmvs[tz]; + } else pmv[2] = zeroMV; + + if (rpos >= bound && rx < mb_width) { + num_cand++; + last_cand = 3; + pmv[3] = mbs[rpos].qmvs[rz]; + } else pmv[3] = zeroMV; + + /* If there're more than one candidate, we return the median vector */ + + if (num_cand > 1) { + /* set median */ + pmv[0].x = + MIN(MAX(pmv[1].x, pmv[2].x), + MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); + pmv[0].y = + MIN(MAX(pmv[1].y, pmv[2].y), + MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); + return pmv[0]; + } + return pmv[last_cand]; /* no point calculating median mv */ }