[svn] / branches / dev-api-4 / xvidcore / src / utils / mbtransquant.c Repository:
ViewVC logotype

Diff of /branches/dev-api-4/xvidcore/src/utils/mbtransquant.c

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1014, Mon May 12 12:33:16 2003 UTC revision 1139, Wed Sep 10 00:54:27 2003 UTC
# Line 21  Line 21 
21   *  along with this program ; if not, write to the Free Software   *  along with this program ; if not, write to the Free Software
22   *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA   *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
23   *   *
24   * $Id: mbtransquant.c,v 1.21.2.12 2003-05-12 12:33:16 suxen_drol Exp $   * $Id: mbtransquant.c,v 1.21.2.16 2003-09-10 00:54:27 edgomez Exp $
25   *   *
26   ****************************************************************************/   ****************************************************************************/
27    
# Line 123  Line 123 
123                           int16_t qcoeff[6 * 64],                           int16_t qcoeff[6 * 64],
124                           int16_t data[6*64])                           int16_t data[6*64])
125  {  {
126          int i;          int mpeg;
127            int scaler_lum, scaler_chr;
128    
129          for (i = 0; i < 6; i++) {          quanth263_intraFuncPtr const quant[2] =
130                  uint32_t iDcScaler = get_dc_scaler(pMB->quant, i < 4);                  {
131                            (quanth263_intraFuncPtr)quant_intra,
132                            (quanth263_intraFuncPtr)quant4_intra
133                    };
134    
135            mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT);
136            scaler_lum = get_dc_scaler(pMB->quant, 1);
137            scaler_chr = get_dc_scaler(pMB->quant, 0);
138    
139                  /* Quantize the block */                  /* Quantize the block */
140                  start_timer();                  start_timer();
141                  if (!(pParam->vol_flags & XVID_VOL_MPEGQUANT)) {          quant[mpeg](&data[0 * 64], &qcoeff[0 * 64], pMB->quant, scaler_lum);
142                          quant_intra(&data[i * 64], &qcoeff[i * 64], pMB->quant, iDcScaler);          quant[mpeg](&data[1 * 64], &qcoeff[1 * 64], pMB->quant, scaler_lum);
143                  } else {          quant[mpeg](&data[2 * 64], &qcoeff[2 * 64], pMB->quant, scaler_lum);
144                          quant4_intra(&data[i * 64], &qcoeff[i * 64], pMB->quant, iDcScaler);          quant[mpeg](&data[3 * 64], &qcoeff[3 * 64], pMB->quant, scaler_lum);
145                  }          quant[mpeg](&data[4 * 64], &qcoeff[4 * 64], pMB->quant, scaler_chr);
146            quant[mpeg](&data[5 * 64], &qcoeff[5 * 64], pMB->quant, scaler_chr);
147                  stop_quant_timer();                  stop_quant_timer();
148          }          }
 }  
149    
150  /* DeQuantize all blocks -- Intra mode */  /* DeQuantize all blocks -- Intra mode */
151  static __inline void  static __inline void
# Line 146  Line 154 
154                             int16_t qcoeff[6 * 64],                             int16_t qcoeff[6 * 64],
155                             int16_t data[6*64])                             int16_t data[6*64])
156  {  {
157          int i;          int mpeg;
158            int scaler_lum, scaler_chr;
159    
160          for (i = 0; i < 6; i++) {          quanth263_intraFuncPtr const dequant[2] =
161                  uint32_t iDcScaler = get_dc_scaler(iQuant, i < 4);                  {
162                            (quanth263_intraFuncPtr)dequant_intra,
163                            (quanth263_intraFuncPtr)dequant4_intra
164                    };
165    
166            mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT);
167            scaler_lum = get_dc_scaler(iQuant, 1);
168            scaler_chr = get_dc_scaler(iQuant, 0);
169    
170                  start_timer();                  start_timer();
171                  if (!(pParam->vol_flags & XVID_VOL_MPEGQUANT))          dequant[mpeg](&qcoeff[0 * 64], &data[0 * 64], iQuant, scaler_lum);
172                          dequant_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler);          dequant[mpeg](&qcoeff[1 * 64], &data[1 * 64], iQuant, scaler_lum);
173                  else          dequant[mpeg](&qcoeff[2 * 64], &data[2 * 64], iQuant, scaler_lum);
174                          dequant4_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler);          dequant[mpeg](&qcoeff[3 * 64], &data[3 * 64], iQuant, scaler_lum);
175            dequant[mpeg](&qcoeff[4 * 64], &data[4 * 64], iQuant, scaler_chr);
176            dequant[mpeg](&qcoeff[5 * 64], &data[5 * 64], iQuant, scaler_chr);
177                  stop_iquant_timer();                  stop_iquant_timer();
178          }          }
 }  
179    
180    
181  static int  typedef int (*trellis_func_ptr_t)(int16_t *const Out,
182  dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero);                                                                    const int16_t *const In,
183                                                                      int Q,
184                                                                      const uint16_t * const Zigzag,
185                                                                      int Non_Zero);
186    
187  static int  static int
188  dct_quantize_trellis_mpeg_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero);  dct_quantize_trellis_h263_c(int16_t *const Out,
189                                                            const int16_t *const In,
190                                                            int Q,
191                                                            const uint16_t * const Zigzag,
192                                                            int Non_Zero);
193    
194    static int
195    dct_quantize_trellis_mpeg_c(int16_t *const Out,
196                                                            const int16_t *const In,
197                                                            int Q,
198                                                            const uint16_t * const Zigzag,
199                                                            int Non_Zero);
200    
201  /* Quantize all blocks -- Inter mode */  /* Quantize all blocks -- Inter mode */
202  static __inline uint8_t  static __inline uint8_t
# Line 182  Line 212 
212          int i;          int i;
213          uint8_t cbp = 0;          uint8_t cbp = 0;
214          int sum;          int sum;
215          int code_block;          int code_block, mpeg;
216    
217            quanth263_interFuncPtr const quant[2] =
218                    {
219                            (quanth263_interFuncPtr)quant_inter,
220                            (quanth263_interFuncPtr)quant4_inter
221                    };
222    
223            trellis_func_ptr_t const trellis[2] =
224                    {
225                            (trellis_func_ptr_t)dct_quantize_trellis_h263_c,
226                            (trellis_func_ptr_t)dct_quantize_trellis_mpeg_c
227                    };
228    
229            mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT);
230    
231          for (i = 0; i < 6; i++) {          for (i = 0; i < 6; i++) {
232    
233                  /* Quantize the block */                  /* Quantize the block */
234                  start_timer();                  start_timer();
235                  if (!(pParam->vol_flags & XVID_VOL_MPEGQUANT)) {  
236                          sum = quant_inter(&qcoeff[i*64], &data[i*64], pMB->quant);                  sum = quant[mpeg](&qcoeff[i*64], &data[i*64], pMB->quant);
237                          if ( (sum) && (frame->vop_flags & XVID_VOP_TRELLISQUANT) ) {  
238                                  sum = dct_quantize_trellis_h263_c(&qcoeff[i*64], &data[i*64], pMB->quant, &scan_tables[0][0], 63)+1;                  if(sum && (frame->vop_flags & XVID_VOP_TRELLISQUANT)) {
239                                  limit = 1;                          sum = trellis[mpeg](&qcoeff[i*64], &data[i*64], pMB->quant, &scan_tables[0][0], 63);
                         }  
                 } else {  
                         sum = quant4_inter(&qcoeff[i * 64], &data[i * 64], pMB->quant);  
 //                      if ( (sum) && (frame->vop_flags & XVID_VOP_TRELLISQUANT) )  
 //                              sum = dct_quantize_trellis_mpeg_c (&qcoeff[i*64], &data[i*64], pMB->quant)+1;  
240                  }                  }
241                  stop_quant_timer();                  stop_quant_timer();
242    
# Line 236  Line 275 
275                             int16_t qcoeff[6 * 64],                             int16_t qcoeff[6 * 64],
276                             const uint8_t cbp)                             const uint8_t cbp)
277  {  {
278          int i;          int mpeg;
279    
280            quanth263_interFuncPtr const dequant[2] =
281                    {
282                            (quanth263_interFuncPtr)dequant_inter,
283                            (quanth263_interFuncPtr)dequant4_inter
284                    };
285    
286            mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT);
287    
         for (i = 0; i < 6; i++) {  
                 if (cbp & (1 << (5 - i))) {  
288                          start_timer();                          start_timer();
289                          if (!(pParam->vol_flags & XVID_VOL_MPEGQUANT))          if(cbp & (1 << (5 - 0))) dequant[mpeg](&data[0 * 64], &qcoeff[0 * 64], iQuant);
290                                  dequant_inter(&data[i * 64], &qcoeff[i * 64], iQuant);          if(cbp & (1 << (5 - 1))) dequant[mpeg](&data[1 * 64], &qcoeff[1 * 64], iQuant);
291                          else          if(cbp & (1 << (5 - 2))) dequant[mpeg](&data[2 * 64], &qcoeff[2 * 64], iQuant);
292                                  dequant4_inter(&data[i * 64], &qcoeff[i * 64], iQuant);          if(cbp & (1 << (5 - 3))) dequant[mpeg](&data[3 * 64], &qcoeff[3 * 64], iQuant);
293            if(cbp & (1 << (5 - 4))) dequant[mpeg](&data[4 * 64], &qcoeff[4 * 64], iQuant);
294            if(cbp & (1 << (5 - 5))) dequant[mpeg](&data[5 * 64], &qcoeff[5 * 64], iQuant);
295                          stop_iquant_timer();                          stop_iquant_timer();
296                  }                  }
         }  
 }  
297    
298  typedef void (transfer_operation_8to16_t) (int16_t *Dst, const uint8_t *Src, int BpS);  typedef void (transfer_operation_8to16_t) (int16_t *Dst, const uint8_t *Src, int BpS);
299  typedef void (transfer_operation_16to8_t) (uint8_t *Dst, const int16_t *Src, int BpS);  typedef void (transfer_operation_16to8_t) (uint8_t *Dst, const int16_t *Src, int BpS);
# Line 266  Line 311 
311          uint32_t stride2 = stride / 2;          uint32_t stride2 = stride / 2;
312          uint32_t next_block = stride * 8;          uint32_t next_block = stride * 8;
313          int32_t cst;          int32_t cst;
314            int vop_reduced;
315          uint8_t *pY_Cur, *pU_Cur, *pV_Cur;          uint8_t *pY_Cur, *pU_Cur, *pV_Cur;
316          const IMAGE * const pCurrent = &frame->image;          const IMAGE * const pCurrent = &frame->image;
317            transfer_operation_8to16_t * const functions[2] =
318                    {
319                            (transfer_operation_8to16_t *)transfer_8to16copy,
320                            (transfer_operation_8to16_t *)filter_18x18_to_8x8
321                    };
322          transfer_operation_8to16_t *transfer_op = NULL;          transfer_operation_8to16_t *transfer_op = NULL;
323    
324          if ((frame->vop_flags & XVID_VOP_REDUCED)) {          vop_reduced = !!(frame->vop_flags & XVID_VOP_REDUCED);
325    
326                  /* Image pointers */                  /* Image pointers */
327                  pY_Cur = pCurrent->y + (y_pos << 5) * stride  + (x_pos << 5);          pY_Cur = pCurrent->y + (y_pos << (4+vop_reduced)) * stride  + (x_pos << (4+vop_reduced));
328                  pU_Cur = pCurrent->u + (y_pos << 4) * stride2 + (x_pos << 4);          pU_Cur = pCurrent->u + (y_pos << (3+vop_reduced)) * stride2 + (x_pos << (3+vop_reduced));
329                  pV_Cur = pCurrent->v + (y_pos << 4) * stride2 + (x_pos << 4);          pV_Cur = pCurrent->v + (y_pos << (3+vop_reduced)) * stride2 + (x_pos << (3+vop_reduced));
330    
331                  /* Block size */                  /* Block size */
332                  cst = 16;          cst = 8<<vop_reduced;
333    
334                  /* Operation function */                  /* Operation function */
335                  transfer_op = (transfer_operation_8to16_t*)filter_18x18_to_8x8;          transfer_op = functions[vop_reduced];
         } else {  
   
                 /* Image pointers */  
                 pY_Cur = pCurrent->y + (y_pos << 4) * stride  + (x_pos << 4);  
                 pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3);  
                 pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3);  
   
                 /* Block size */  
                 cst = 8;  
   
                 /* Operation function */  
                 transfer_op = (transfer_operation_8to16_t*)transfer_8to16copy;  
         }  
336    
337          /* Do the transfer */          /* Do the transfer */
338          start_timer();          start_timer();
# Line 314  Line 352 
352                           const uint32_t x_pos,                           const uint32_t x_pos,
353                           const uint32_t y_pos,                           const uint32_t y_pos,
354                           int16_t data[6 * 64],                           int16_t data[6 * 64],
355                           const uint32_t add,                           const uint32_t add, /* Must be 1 or 0 */
356                           const uint8_t cbp)                           const uint8_t cbp)
357  {  {
358          uint8_t *pY_Cur, *pU_Cur, *pV_Cur;          uint8_t *pY_Cur, *pU_Cur, *pV_Cur;
# Line 322  Line 360 
360          uint32_t stride2 = stride / 2;          uint32_t stride2 = stride / 2;
361          uint32_t next_block = stride * 8;          uint32_t next_block = stride * 8;
362          uint32_t cst;          uint32_t cst;
363            int vop_reduced;
364          const IMAGE * const pCurrent = &frame->image;          const IMAGE * const pCurrent = &frame->image;
365            /* Array of function pointers, indexed by [vop_reduced<<1+add] */
366            transfer_operation_16to8_t  * const functions[4] =
367                    {
368                            (transfer_operation_16to8_t*)transfer_16to8copy,
369                            (transfer_operation_16to8_t*)transfer_16to8add,
370                            (transfer_operation_16to8_t*)copy_upsampled_8x8_16to8,
371                            (transfer_operation_16to8_t*)add_upsampled_8x8_16to8
372                    };
373    
374          transfer_operation_16to8_t *transfer_op = NULL;          transfer_operation_16to8_t *transfer_op = NULL;
375    
376          if (pMB->field_dct) {          if (pMB->field_dct) {
# Line 330  Line 378 
378                  stride *= 2;                  stride *= 2;
379          }          }
380    
381          if ((frame->vop_flags & XVID_VOP_REDUCED)) {          /* Makes this vars booleans */
382            vop_reduced = !!(frame->vop_flags & XVID_VOP_REDUCED);
383    
384                  /* Image pointers */                  /* Image pointers */
385                  pY_Cur = pCurrent->y + (y_pos << 5) * stride  + (x_pos << 5);          pY_Cur = pCurrent->y + (y_pos << (4+vop_reduced)) * stride  + (x_pos << (4+vop_reduced));
386                  pU_Cur = pCurrent->u + (y_pos << 4) * stride2 + (x_pos << 4);          pU_Cur = pCurrent->u + (y_pos << (3+vop_reduced)) * stride2 + (x_pos << (3+vop_reduced));
387                  pV_Cur = pCurrent->v + (y_pos << 4) * stride2 + (x_pos << 4);          pV_Cur = pCurrent->v + (y_pos << (3+vop_reduced)) * stride2 + (x_pos << (3+vop_reduced));
388    
389                  /* Block size */                  /* Block size */
390                  cst = 16;          cst = 8<<vop_reduced;
391    
392                  /* Operation function */                  /* Operation function */
393                  if(add)          transfer_op = functions[(vop_reduced<<1) + add];
                         transfer_op = (transfer_operation_16to8_t*)add_upsampled_8x8_16to8;  
                 else  
                         transfer_op = (transfer_operation_16to8_t*)copy_upsampled_8x8_16to8;  
         } else {  
   
                 /* Image pointers */  
                 pY_Cur = pCurrent->y + (y_pos << 4) * stride  + (x_pos << 4);  
                 pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3);  
                 pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3);  
   
                 /* Block size */  
                 cst = 8;  
   
                 /* Operation function */  
                 if(add)  
                         transfer_op = (transfer_operation_16to8_t*)transfer_16to8add;  
                 else  
                         transfer_op = (transfer_operation_16to8_t*)transfer_16to8copy;  
         }  
394    
395          /* Do the operation */          /* Do the operation */
396          start_timer();          start_timer();
# Line 430  Line 460 
460          /* Set the limit threshold */          /* Set the limit threshold */
461          limit = PVOP_TOOSMALL_LIMIT + ((pMB->quant == 1)? 1 : 0);          limit = PVOP_TOOSMALL_LIMIT + ((pMB->quant == 1)? 1 : 0);
462    
463            if (frame->vop_flags & XVID_VOP_CARTOON)
464                    limit *= 3;
465    
466          /* Quantize the block */          /* Quantize the block */
467          cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 0, limit);          cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 0, limit);
468    
# Line 468  Line 501 
501          /* Set the limit threshold */          /* Set the limit threshold */
502          limit = BVOP_TOOSMALL_LIMIT;          limit = BVOP_TOOSMALL_LIMIT;
503    
504            if (frame->vop_flags & XVID_VOP_CARTOON)
505                    limit *= 2;
506    
507          /* Quantize the block */          /* Quantize the block */
508          cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 1, limit);          cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 1, limit);
509    
# Line 546  Line 582 
582    
583          /* left blocks */          /* left blocks */
584    
585          // 1=2, 2=4, 4=8, 8=1          /* 1=2, 2=4, 4=8, 8=1 */
586          MOVLINE(tmp, LINE(0, 1));          MOVLINE(tmp, LINE(0, 1));
587          MOVLINE(LINE(0, 1), LINE(0, 2));          MOVLINE(LINE(0, 1), LINE(0, 2));
588          MOVLINE(LINE(0, 2), LINE(0, 4));          MOVLINE(LINE(0, 2), LINE(0, 4));
589          MOVLINE(LINE(0, 4), LINE(2, 0));          MOVLINE(LINE(0, 4), LINE(2, 0));
590          MOVLINE(LINE(2, 0), tmp);          MOVLINE(LINE(2, 0), tmp);
591    
592          // 3=6, 6=12, 12=9, 9=3          /* 3=6, 6=12, 12=9, 9=3 */
593          MOVLINE(tmp, LINE(0, 3));          MOVLINE(tmp, LINE(0, 3));
594          MOVLINE(LINE(0, 3), LINE(0, 6));          MOVLINE(LINE(0, 3), LINE(0, 6));
595          MOVLINE(LINE(0, 6), LINE(2, 4));          MOVLINE(LINE(0, 6), LINE(2, 4));
596          MOVLINE(LINE(2, 4), LINE(2, 1));          MOVLINE(LINE(2, 4), LINE(2, 1));
597          MOVLINE(LINE(2, 1), tmp);          MOVLINE(LINE(2, 1), tmp);
598    
599          // 5=10, 10=5          /* 5=10, 10=5 */
600          MOVLINE(tmp, LINE(0, 5));          MOVLINE(tmp, LINE(0, 5));
601          MOVLINE(LINE(0, 5), LINE(2, 2));          MOVLINE(LINE(0, 5), LINE(2, 2));
602          MOVLINE(LINE(2, 2), tmp);          MOVLINE(LINE(2, 2), tmp);
603    
604          // 7=14, 14=13, 13=11, 11=7          /* 7=14, 14=13, 13=11, 11=7 */
605          MOVLINE(tmp, LINE(0, 7));          MOVLINE(tmp, LINE(0, 7));
606          MOVLINE(LINE(0, 7), LINE(2, 6));          MOVLINE(LINE(0, 7), LINE(2, 6));
607          MOVLINE(LINE(2, 6), LINE(2, 5));          MOVLINE(LINE(2, 6), LINE(2, 5));
# Line 574  Line 610 
610    
611          /* right blocks */          /* right blocks */
612    
613          // 1=2, 2=4, 4=8, 8=1          /* 1=2, 2=4, 4=8, 8=1 */
614          MOVLINE(tmp, LINE(1, 1));          MOVLINE(tmp, LINE(1, 1));
615          MOVLINE(LINE(1, 1), LINE(1, 2));          MOVLINE(LINE(1, 1), LINE(1, 2));
616          MOVLINE(LINE(1, 2), LINE(1, 4));          MOVLINE(LINE(1, 2), LINE(1, 4));
617          MOVLINE(LINE(1, 4), LINE(3, 0));          MOVLINE(LINE(1, 4), LINE(3, 0));
618          MOVLINE(LINE(3, 0), tmp);          MOVLINE(LINE(3, 0), tmp);
619    
620          // 3=6, 6=12, 12=9, 9=3          /* 3=6, 6=12, 12=9, 9=3 */
621          MOVLINE(tmp, LINE(1, 3));          MOVLINE(tmp, LINE(1, 3));
622          MOVLINE(LINE(1, 3), LINE(1, 6));          MOVLINE(LINE(1, 3), LINE(1, 6));
623          MOVLINE(LINE(1, 6), LINE(3, 4));          MOVLINE(LINE(1, 6), LINE(3, 4));
624          MOVLINE(LINE(3, 4), LINE(3, 1));          MOVLINE(LINE(3, 4), LINE(3, 1));
625          MOVLINE(LINE(3, 1), tmp);          MOVLINE(LINE(3, 1), tmp);
626    
627          // 5=10, 10=5          /* 5=10, 10=5 */
628          MOVLINE(tmp, LINE(1, 5));          MOVLINE(tmp, LINE(1, 5));
629          MOVLINE(LINE(1, 5), LINE(3, 2));          MOVLINE(LINE(1, 5), LINE(3, 2));
630          MOVLINE(LINE(3, 2), tmp);          MOVLINE(LINE(3, 2), tmp);
631    
632          // 7=14, 14=13, 13=11, 11=7          /* 7=14, 14=13, 13=11, 11=7 */
633          MOVLINE(tmp, LINE(1, 7));          MOVLINE(tmp, LINE(1, 7));
634          MOVLINE(LINE(1, 7), LINE(3, 6));          MOVLINE(LINE(1, 7), LINE(3, 6));
635          MOVLINE(LINE(3, 6), LINE(3, 5));          MOVLINE(LINE(3, 6), LINE(3, 5));
# Line 605  Line 641 
641    
642    
643    
644  /************************************************************************  /*****************************************************************************
645   *               Trellis based R-D optimal quantization                 *   *               Trellis based R-D optimal quantization
646   *                                                                      *   *
647   *   Trellis Quant code (C) 2003 Pascal Massimino skal(at)planet-d.net  *   *   Trellis Quant code (C) 2003 Pascal Massimino skal(at)planet-d.net
648   *                                                                      *   *
649   ************************************************************************/   ****************************************************************************/
650    
651    
652    #if 0
653  static int  static int
654  dct_quantize_trellis_mpeg_c(int16_t *const Out, const int16_t *const In, int Q,  dct_quantize_trellis_mpeg_c(int16_t *const Out,
655                  const uint16_t * const Zigzag, int Non_Zero)                                                          const int16_t *const In,
656  { return 63; }                                                          int Q,
657                                                            const uint16_t * const Zigzag,
658                                                            int Non_Zero)
659  //////////////////////////////////////////////////////////  {
660  //          return 63;
661  //        Trellis-Based quantization  }
662  //  #endif
663  // So far I understand this paper:  
664  //  /*----------------------------------------------------------------------------
665  //  "Trellis-Based R-D Optimal Quantization in H.263+"   *
666  //    J.Wen, M.Luttrell, J.Villasenor   *        Trellis-Based quantization
667  //    IEEE Transactions on Image Processing, Vol.9, No.8, Aug. 2000.   *
668  //   * So far I understand this paper:
669  // we are at stake with a simplified Bellmand-Ford / Dijkstra Single   *
670  // Source Shorted Path algo. But due to the underlying graph structure   *  "Trellis-Based R-D Optimal Quantization in H.263+"
671  // ("Trellis"), it can be turned into a dynamic programming algo,   *    J.Wen, M.Luttrell, J.Villasenor
672  // partially saving the explicit graph's nodes representation. And   *    IEEE Transactions on Image Processing, Vol.9, No.8, Aug. 2000.
673  // without using a heap, since the open frontier of the DAG is always   *
674  // known, and of fixed sized.   * we are at stake with a simplified Bellmand-Ford / Dijkstra Single
675  //   * Source Shorted Path algo. But due to the underlying graph structure
676  //////////////////////////////////////////////////////////   * ("Trellis"), it can be turned into a dynamic programming algo,
677     * partially saving the explicit graph's nodes representation. And
678     * without using a heap, since the open frontier of the DAG is always
679     * known, and of fixed sized.
680     *--------------------------------------------------------------------------*/
681    
682    
 //////////////////////////////////////////////////////////  
 // Codes lengths for relevant levels.  
683    
684    // let's factorize:  /* Codes lengths for relevant levels. */
685    
686    /* let's factorize: */
687  static const uint8_t Code_Len0[64] = {  static const uint8_t Code_Len0[64] = {
688    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,
689    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 };    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 };
# Line 707  Line 748 
748     3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9,10,10,10,10,10,10,10,10,12,12,13,13,12,13,14,15,15,     3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9,10,10,10,10,10,10,10,10,12,12,13,13,12,13,14,15,15,
749    15,16,16,16,16,17,17,17,18,18,19,19,19,19,19,19,19,19,21,21,22,22,30,30,30,30,30,30,30,30,30,30 };    15,16,16,16,16,17,17,17,18,18,19,19,19,19,19,19,19,19,21,21,22,22,30,30,30,30,30,30,30,30,30,30 };
750    
751    // a few more table for LAST table:  /* a few more table for LAST table: */
752  static const uint8_t Code_Len21[64] = {  static const uint8_t Code_Len21[64] = {
753    13,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,    13,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,
754    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30};    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30};
# Line 722  Line 763 
763    12,13,13,13,13,13,13,13,13,14,16,16,16,16,17,17,17,17,18,18,18,18,18,18,18,18,19,19,19,19,19,19};    12,13,13,13,13,13,13,13,13,14,16,16,16,16,17,17,17,17,18,18,18,18,18,18,18,18,19,19,19,19,19,19};
764    
765    
766  static const uint8_t * const B16_17_Code_Len[24] = { // levels [1..24]  static const uint8_t * const B16_17_Code_Len[24] = { /* levels [1..24] */
767    Code_Len20,Code_Len19,Code_Len18,Code_Len17,    Code_Len20,Code_Len19,Code_Len18,Code_Len17,
768    Code_Len16,Code_Len15,Code_Len14,Code_Len13,    Code_Len16,Code_Len15,Code_Len14,Code_Len13,
769    Code_Len12,Code_Len11,Code_Len10,Code_Len9,    Code_Len12,Code_Len11,Code_Len10,Code_Len9,
# Line 731  Line 772 
772    Code_Len2, Code_Len1, Code_Len1, Code_Len1,    Code_Len2, Code_Len1, Code_Len1, Code_Len1,
773  };  };
774    
775  static const uint8_t * const B16_17_Code_Len_Last[6] = { // levels [1..6]  static const uint8_t * const B16_17_Code_Len_Last[6] = { /* levels [1..6] */
776    Code_Len24,Code_Len23,Code_Len22,Code_Len21, Code_Len3, Code_Len1,    Code_Len24,Code_Len23,Code_Len22,Code_Len21, Code_Len3, Code_Len1,
777  };  };
778    
# Line 745  Line 786 
786  };  };
787  #undef TL  #undef TL
788    
789  static __inline int Find_Last(const int16_t *C, const uint16_t *Zigzag, int i)  static int __inline
790    Find_Last(const int16_t *C, const uint16_t *Zigzag, int i)
791  {  {
792    while(i>=0)    while(i>=0)
793      if (C[Zigzag[i]])      if (C[Zigzag[i]])
# Line 754  Line 796 
796    return -1;    return -1;
797  }  }
798    
799  //////////////////////////////////////////////////////////  static int __inline
800  // this routine has been strippen of all debug code  Compute_Sum(const int16_t *C, int last)
801  //////////////////////////////////////////////////////////  {
802            int sum = 0;
803    
804            while(last--)
805                    sum += abs(C[last]);
806    
807            return(sum);
808    }
809    /* this routine has been strippen of all debug code */
810    
811  static int  static int
812  dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero)  dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero)
813  {  {
814    
815      // Note: We should search last non-zero coeffs on *real* DCT input coeffs (In[]),      /*
816      // not quantized one (Out[]). However, it only improves the result *very*           * Note: We should search last non-zero coeffs on *real* DCT input coeffs (In[]),
817      // slightly (~0.01dB), whereas speed drops to crawling level :)           * not quantized one (Out[]). However, it only improves the result *very*
818      // Well, actually, taking 1 more coeff past Non_Zero into account sometimes helps,           * slightly (~0.01dB), whereas speed drops to crawling level :)
819             * Well, actually, taking 1 more coeff past Non_Zero into account sometimes helps.
820             */
821    typedef struct { int16_t Run, Level; } NODE;    typedef struct { int16_t Run, Level; } NODE;
822    
823    NODE Nodes[65], Last;    NODE Nodes[65], Last;
# Line 775  Line 826 
826    const int Mult = 2*Q;    const int Mult = 2*Q;
827    const int Bias = (Q-1) | 1;    const int Bias = (Q-1) | 1;
828    const int Lev0 = Mult + Bias;    const int Lev0 = Mult + Bias;
829    const int Lambda = Trellis_Lambda_Tabs[Q-1];    // it's 1/lambda, actually          const int Lambda = Trellis_Lambda_Tabs[Q-1];    /* it's 1/lambda, actually */
830    
831    int Run_Start = -1;    int Run_Start = -1;
832    uint32_t Min_Cost = 2<<16;    uint32_t Min_Cost = 2<<16;
# Line 783  Line 834 
834    int Last_Node = -1;    int Last_Node = -1;
835    uint32_t Last_Cost = 0;    uint32_t Last_Cost = 0;
836    
837    int i, j;          int i, j, sum;
838    Run_Costs[-1] = 2<<16;                          // source (w/ CBP penalty)          Run_Costs[-1] = 2<<16;                          /* source (w/ CBP penalty) */
839    
840    Non_Zero = Find_Last(Out, Zigzag, Non_Zero);    Non_Zero = Find_Last(Out, Zigzag, Non_Zero);
841    if (Non_Zero<0)    if (Non_Zero<0)
842        return -1;                  return 0; /* Sum is zero if there are only zero coeffs */
843    
844    for(i=0; i<=Non_Zero; i++)          for(i=0; i<=Non_Zero; i++) {
   {  
845      const int AC = In[Zigzag[i]];      const int AC = In[Zigzag[i]];
846      const int Level1 = Out[Zigzag[i]];      const int Level1 = Out[Zigzag[i]];
847      const int Dist0 = Lambda* AC*AC;      const int Dist0 = Lambda* AC*AC;
848      uint32_t Best_Cost = 0xf0000000;      uint32_t Best_Cost = 0xf0000000;
849      Last_Cost += Dist0;      Last_Cost += Dist0;
850    
851      if ((uint32_t)(Level1+1)<3)                 // very specialized loop for -1,0,+1                  /* very specialized loop for -1,0,+1 */
852      {                  if ((uint32_t)(Level1+1)<3) {
853          int dQ;          int dQ;
854                  int Run;                  int Run;
855        uint32_t Cost0;        uint32_t Cost0;
# Line 815  Line 865 
865    
866        Nodes[i].Run = 1;        Nodes[i].Run = 1;
867        Best_Cost = (Code_Len20[0]<<16) + Run_Costs[i-1]+Cost0;        Best_Cost = (Code_Len20[0]<<16) + Run_Costs[i-1]+Cost0;
868        for(Run=i-Run_Start; Run>0; --Run)                          for(Run=i-Run_Start; Run>0; --Run) {
       {  
869          const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run];          const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run];
870          const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<<16);          const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<<16);
871          const uint32_t lCost = Cost_Base + (Code_Len24[Run-1]<<16);          const uint32_t lCost = Cost_Base + (Code_Len24[Run-1]<<16);
872    
873            // TODO: what about tie-breaks? Should we favor short runs or                                  /*
874            // long runs? Although the error is the same, it would not be                                   * TODO: what about tie-breaks? Should we favor short runs or
875            // spread the same way along high and low frequencies...                                   * long runs? Although the error is the same, it would not be
876                                     * spread the same way along high and low frequencies...
877                                     */
878    
879                          // (I'd say: favour short runs => hifreq errors (HVS) -- gruel )                                  /* (I'd say: favour short runs => hifreq errors (HVS) -- gruel ) */
880    
881          if (Cost<Best_Cost) {          if (Cost<Best_Cost) {
882            Best_Cost    = Cost;            Best_Cost    = Cost;
# Line 840  Line 891 
891        }        }
892        if (Last_Node==i)        if (Last_Node==i)
893                          Last.Level = Nodes[i].Level;                          Last.Level = Nodes[i].Level;
894      }                  } else { /* "big" levels */
     else                      // "big" levels  
     {  
895        const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last;        const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last;
896        int Level2;        int Level2;
897        int dQ1, dQ2;        int dQ1, dQ2;
# Line 858  Line 907 
907          Tbl_L2      = (Level2<=24) ? B16_17_Code_Len[Level2-1]     : Code_Len0;          Tbl_L2      = (Level2<=24) ? B16_17_Code_Len[Level2-1]     : Code_Len0;
908          Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0;          Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0;
909          Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0;          Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0;
910        } else { // Level1<-1                          } else { /* Level1<-1 */
911          dQ1 = Level1*Mult-AC - Bias;          dQ1 = Level1*Mult-AC - Bias;
912          dQ2 = dQ1 + Mult;          dQ2 = dQ1 + Mult;
913          Level2 = Level1 + 1;          Level2 = Level1 + 1;
# Line 867  Line 916 
916          Tbl_L1_Last = (Level1>=- 6) ? B16_17_Code_Len_Last[Level1^-1] : Code_Len0;          Tbl_L1_Last = (Level1>=- 6) ? B16_17_Code_Len_Last[Level1^-1] : Code_Len0;
917          Tbl_L2_Last = (Level2>=- 6) ? B16_17_Code_Len_Last[Level2^-1] : Code_Len0;          Tbl_L2_Last = (Level2>=- 6) ? B16_17_Code_Len_Last[Level2^-1] : Code_Len0;
918        }        }
919    
920        Dist1 = Lambda*dQ1*dQ1;        Dist1 = Lambda*dQ1*dQ1;
921        Dist2 = Lambda*dQ2*dQ2;        Dist2 = Lambda*dQ2*dQ2;
922        dDist21 = Dist2-Dist1;        dDist21 = Dist2-Dist1;
# Line 877  Line 927 
927          uint32_t Cost1, Cost2;          uint32_t Cost1, Cost2;
928          int bLevel;          int bLevel;
929    
930  // for sub-optimal (but slightly worth it, speed-wise) search, uncomment the following:                                  /*
931  //        if (Cost_Base>=Best_Cost) continue;                                   * for sub-optimal (but slightly worth it, speed-wise) search, uncomment the following:
932  // (? doesn't seem to have any effect -- gruel )                                   *      if (Cost_Base>=Best_Cost) continue;
933                                     * (? doesn't seem to have any effect -- gruel )
934                                     */
935    
936          Cost1 = Cost_Base + (Tbl_L1[Run-1]<<16);          Cost1 = Cost_Base + (Tbl_L1[Run-1]<<16);
937          Cost2 = Cost_Base + (Tbl_L2[Run-1]<<16) + dDist21;          Cost2 = Cost_Base + (Tbl_L2[Run-1]<<16) + dDist21;
# Line 887  Line 939 
939          if (Cost2<Cost1) {          if (Cost2<Cost1) {
940                           Cost1 = Cost2;                           Cost1 = Cost2;
941                           bLevel = Level2;                           bLevel = Level2;
942                    } else                                  } else {
943                           bLevel = Level1;                           bLevel = Level1;
944                                    }
945    
946          if (Cost1<Best_Cost) {          if (Cost1<Best_Cost) {
947            Best_Cost = Cost1;            Best_Cost = Cost1;
# Line 902  Line 955 
955          if (Cost2<Cost1) {          if (Cost2<Cost1) {
956                           Cost1 = Cost2;                           Cost1 = Cost2;
957                           bLevel = Level2;                           bLevel = Level2;
958                    } else                                  } else {
959                           bLevel = Level1;                           bLevel = Level1;
960                                    }
961    
962          if (Cost1<Last_Cost) {          if (Cost1<Last_Cost) {
963            Last_Cost  = Cost1;            Last_Cost  = Cost1;
# Line 911  Line 965 
965            Last.Level = bLevel;            Last.Level = bLevel;
966            Last_Node  = i;            Last_Node  = i;
967          }          }
968        } //end of "for Run"                          } /* end of "for Run" */
969    
970      }      }
971    
# Line 920  Line 974 
974      if (Best_Cost < Min_Cost + Dist0) {      if (Best_Cost < Min_Cost + Dist0) {
975        Min_Cost = Best_Cost;        Min_Cost = Best_Cost;
976        Run_Start = i;        Run_Start = i;
977      }                  } else {
978      else                          /*
979      {                           * as noticed by Michael Niedermayer (michaelni at gmx.at), there's
980          // as noticed by Michael Niedermayer (michaelni at gmx.at), there's                           * a code shorter by 1 bit for a larger run (!), same level. We give
981          // a code shorter by 1 bit for a larger run (!), same level. We give                           * it a chance by not moving the left barrier too much.
982          // it a chance by not moving the left barrier too much.                           */
983    
984        while( Run_Costs[Run_Start]>Min_Cost+(1<<16) )        while( Run_Costs[Run_Start]>Min_Cost+(1<<16) )
985          Run_Start++;          Run_Start++;
986    
987          // spread on preceding coeffs the cost incurred by skipping this one                          /* spread on preceding coeffs the cost incurred by skipping this one */
988        for(j=Run_Start; j<i; ++j) Run_Costs[j] += Dist0;        for(j=Run_Start; j<i; ++j) Run_Costs[j] += Dist0;
989        Min_Cost += Dist0;        Min_Cost += Dist0;
990      }      }
991    }    }
992    
993            /* It seems trellis doesn't give good results... just compute the Out sum and
994             * quit (even if we did not modify it, upperlayer relies on this data) */
995    if (Last_Node<0)    if (Last_Node<0)
996      return -1;                  return Compute_Sum(Out, Non_Zero);
997    
998         // reconstruct optimal sequence backward with surviving paths          /* reconstruct optimal sequence backward with surviving paths */
999    memset(Out, 0x00, 64*sizeof(*Out));    memset(Out, 0x00, 64*sizeof(*Out));
1000    Out[Zigzag[Last_Node]] = Last.Level;    Out[Zigzag[Last_Node]] = Last.Level;
1001    i = Last_Node - Last.Run;    i = Last_Node - Last.Run;
1002            sum = 0;
1003    while(i>=0) {    while(i>=0) {
1004      Out[Zigzag[i]] = Nodes[i].Level;      Out[Zigzag[i]] = Nodes[i].Level;
1005                    sum += abs(Nodes[i].Level);
1006      i -= Nodes[i].Run;      i -= Nodes[i].Run;
1007    }    }
   return Last_Node;  
 }  
   
   
   
   
   
   
   
   
   
1008    
1009            return sum;
1010    }
1011    
1012  //////////////////////////////////////////////////////////  static int
1013  // original version including heavy debugging info  dct_quantize_trellis_mpeg_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero)
1014  //////////////////////////////////////////////////////////  {
1015            /* ToDo: Ok ok it's just a place holder for Gruel -- damn write this one :-) */
1016            return Compute_Sum(Out, 63);
1017    }
1018    
1019    /* original version including heavy debugging info */
1020    
1021  #ifdef DBGTRELL  #ifdef DBGTRELL
1022    
# Line 987  Line 1040 
1040      int j=0, j0=0;      int j=0, j0=0;
1041      int Run, Level;      int Run, Level;
1042    
1043      Bits = 2;   // CBP                  Bits = 2;   /* CBP */
1044      while(j<Last) {      while(j<Last) {
1045        while(!C[Zigzag[j]])        while(!C[Zigzag[j]])
1046                          j++;                          j++;
# Line 1034  Line 1087 
1087  dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero)  dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero)
1088  {  {
1089    
1090      // Note: We should search last non-zero coeffs on *real* DCT input coeffs (In[]),      /*
1091      // not quantized one (Out[]). However, it only improves the result *very*           * Note: We should search last non-zero coeffs on *real* DCT input coeffs (In[]),
1092      // slightly (~0.01dB), whereas speed drops to crawling level :)           * not quantized one (Out[]). However, it only improves the result *very*
1093      // Well, actually, taking 1 more coeff past Non_Zero into account sometimes helps,           * slightly (~0.01dB), whereas speed drops to crawling level :)
1094             * Well, actually, taking 1 more coeff past Non_Zero into account sometimes helps.
1095             */
1096    typedef struct { int16_t Run, Level; } NODE;    typedef struct { int16_t Run, Level; } NODE;
1097    
1098    NODE Nodes[65], Last;    NODE Nodes[65], Last;
# Line 1047  Line 1101 
1101    const int Mult = 2*Q;    const int Mult = 2*Q;
1102    const int Bias = (Q-1) | 1;    const int Bias = (Q-1) | 1;
1103    const int Lev0 = Mult + Bias;    const int Lev0 = Mult + Bias;
1104    const int Lambda = Trellis_Lambda_Tabs[Q-1];    // it's 1/lambda, actually          const int Lambda = Trellis_Lambda_Tabs[Q-1];    /* it's 1/lambda, actually */
1105    
1106    int Run_Start = -1;    int Run_Start = -1;
1107    Run_Costs[-1] = 2<<16;                          // source (w/ CBP penalty)          Run_Costs[-1] = 2<<16;                          /* source (w/ CBP penalty) */
1108    uint32_t Min_Cost = 2<<16;    uint32_t Min_Cost = 2<<16;
1109    
1110    int Last_Node = -1;    int Last_Node = -1;
# Line 1059  Line 1113 
1113    int i, j;    int i, j;
1114    
1115  #if (DBG>0)  #if (DBG>0)
1116    Last.Level = 0; Last.Run = -1; // just initialize to smthg          Last.Level = 0; Last.Run = -1; /* just initialize to smthg */
1117  #endif  #endif
1118    
1119    Non_Zero = Find_Last(Out, Zigzag, Non_Zero);    Non_Zero = Find_Last(Out, Zigzag, Non_Zero);
# Line 1074  Line 1128 
1128      uint32_t Best_Cost = 0xf0000000;      uint32_t Best_Cost = 0xf0000000;
1129      Last_Cost += Dist0;      Last_Cost += Dist0;
1130    
1131      if ((uint32_t)(Level1+1)<3)                 // very specialized loop for -1,0,+1                  if ((uint32_t)(Level1+1)<3)                 /* very specialized loop for -1,0,+1 */
1132      {      {
1133          int dQ;          int dQ;
1134                  int Run;                  int Run;
# Line 1097  Line 1151 
1151          const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<<16);          const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<<16);
1152          const uint32_t lCost = Cost_Base + (Code_Len24[Run-1]<<16);          const uint32_t lCost = Cost_Base + (Code_Len24[Run-1]<<16);
1153    
1154            // TODO: what about tie-breaks? Should we favor short runs or                                  /*
1155            // long runs? Although the error is the same, it would not be                                   * TODO: what about tie-breaks? Should we favor short runs or
1156            // spread the same way along high and low frequencies...                                   * long runs? Although the error is the same, it would not be
1157                                     * spread the same way along high and low frequencies...
1158                                     */
1159          if (Cost<Best_Cost) {          if (Cost<Best_Cost) {
1160            Best_Cost    = Cost;            Best_Cost    = Cost;
1161            Nodes[i].Run = Run;            Nodes[i].Run = Run;
# Line 1129  Line 1185 
1185          printf( "\n" );          printf( "\n" );
1186        }        }
1187      }      }
1188      else                      // "big" levels                  else                      /* "big" levels */
1189      {      {
1190        const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last;        const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last;
1191        int Level2;        int Level2;
# Line 1146  Line 1202 
1202          Tbl_L2      = (Level2<=24) ? B16_17_Code_Len[Level2-1]     : Code_Len0;          Tbl_L2      = (Level2<=24) ? B16_17_Code_Len[Level2-1]     : Code_Len0;
1203          Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0;          Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0;
1204          Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0;          Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0;
1205        } else { // Level1<-1                          } else { /* Level1<-1 */
1206          dQ1 = Level1*Mult-AC - Bias;          dQ1 = Level1*Mult-AC - Bias;
1207          dQ2 = dQ1 + Mult;          dQ2 = dQ1 + Mult;
1208          Level2 = Level1 + 1;          Level2 = Level1 + 1;
# Line 1165  Line 1221 
1221          uint32_t Cost1, Cost2;          uint32_t Cost1, Cost2;
1222          int bLevel;          int bLevel;
1223    
1224  // for sub-optimal (but slightly worth it, speed-wise) search, uncomment the following:  /*
1225  //        if (Cost_Base>=Best_Cost) continue;   * for sub-optimal (but slightly worth it, speed-wise) search, uncomment the following:
1226     *        if (Cost_Base>=Best_Cost) continue;
1227     */
1228          Cost1 = Cost_Base + (Tbl_L1[Run-1]<<16);          Cost1 = Cost_Base + (Tbl_L1[Run-1]<<16);
1229          Cost2 = Cost_Base + (Tbl_L2[Run-1]<<16) + dDist21;          Cost2 = Cost_Base + (Tbl_L2[Run-1]<<16) + dDist21;
1230    
# Line 1198  Line 1255 
1255            Last.Level = bLevel;            Last.Level = bLevel;
1256            Last_Node  = i;            Last_Node  = i;
1257          }          }
1258        } //end of "for Run"                          } /* end of "for Run" */
1259    
1260        if (DBG==1) {        if (DBG==1) {
1261          Run_Costs[i] = Best_Cost;          Run_Costs[i] = Best_Cost;
# Line 1224  Line 1281 
1281      }      }
1282      else      else
1283      {      {
1284          // as noticed by Michael Niedermayer (michaelni at gmx.at), there's                          /*
1285          // a code shorter by 1 bit for a larger run (!), same level. We give                           * as noticed by Michael Niedermayer (michaelni at gmx.at), there's
1286          // it a chance by not moving the left barrier too much.                           * a code shorter by 1 bit for a larger run (!), same level. We give
1287                             * it a chance by not moving the left barrier too much.
1288                             */
1289    
1290        while( Run_Costs[Run_Start]>Min_Cost+(1<<16) )        while( Run_Costs[Run_Start]>Min_Cost+(1<<16) )
1291          Run_Start++;          Run_Start++;
1292    
1293          // spread on preceding coeffs the cost incurred by skipping this one                          /* spread on preceding coeffs the cost incurred by skipping this one */
1294        for(j=Run_Start; j<i; ++j) Run_Costs[j] += Dist0;        for(j=Run_Start; j<i; ++j) Run_Costs[j] += Dist0;
1295        Min_Cost += Dist0;        Min_Cost += Dist0;
1296      }      }
# Line 1249  Line 1308 
1308    if (Last_Node<0)    if (Last_Node<0)
1309      return -1;      return -1;
1310    
1311         // reconstruct optimal sequence backward with surviving paths          /* reconstruct optimal sequence backward with surviving paths */
1312    memset(Out, 0x00, 64*sizeof(*Out));    memset(Out, 0x00, 64*sizeof(*Out));
1313    Out[Zigzag[Last_Node]] = Last.Level;    Out[Zigzag[Last_Node]] = Last.Level;
1314    i = Last_Node - Last.Run;    i = Last_Node - Last.Run;

Legend:
Removed from v.1014  
changed lines
  Added in v.1139

No admin address has been configured
ViewVC Help
Powered by ViewVC 1.0.4