/************************************************************************** * * XVID MPEG-4 VIDEO CODEC * - MB prediction header file - * * This program is an implementation of a part of one or more MPEG-4 * Video tools as specified in ISO/IEC 14496-2 standard. Those intending * to use this software module in hardware or software products are * advised that its use may infringe existing patents or copyrights, and * any such use would be at such party's own risk. The original * developer of this software module and his/her company, and subsequent * editors and their companies, will have no liability for use of this * software or modifications or derivatives thereof. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the xvid_free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the xvid_free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * $Id: mbprediction.h,v 1.21 2003-02-21 14:41:23 syskin Exp $ * *************************************************************************/ /*************************************************************************** * * * Revision history: * * * * 29.06.2002 get_pmvdata() bounding * * * ***************************************************************************/ #ifndef _MBPREDICTION_H_ #define _MBPREDICTION_H_ #include "../portab.h" #include "../decoder.h" #include "../global.h" #define MIN(X, Y) ((X)<(Y)?(X):(Y)) #define MAX(X, Y) ((X)>(Y)?(X):(Y)) /* very large value */ #define MV_MAX_ERROR (4096 * 256) #define MVequal(A,B) ( ((A).x)==((B).x) && ((A).y)==((B).y) ) void MBPrediction(FRAMEINFO * frame, /* <-- The parameter for ACDC and MV prediction */ uint32_t x_pos, /* <-- The x position of the MB to be searched */ uint32_t y_pos, /* <-- The y position of the MB to be searched */ uint32_t x_dim, /* <-- Number of macroblocks in a row */ int16_t * qcoeff); /* <-> The quantized DCT coefficients */ void add_acdc(MACROBLOCK * pMB, uint32_t block, int16_t dct_codes[64], uint32_t iDcScaler, int16_t predictors[8]); void predict_acdc(MACROBLOCK * pMBs, uint32_t x, uint32_t y, uint32_t mb_width, uint32_t block, int16_t qcoeff[64], uint32_t current_quant, int32_t iDcScaler, int16_t predictors[8], const int bound); static const VECTOR zeroMV = { 0, 0 }; /* * MODE_INTER, vm18 page 48 * MODE_INTER4V vm18 page 51 * * (x,y-1) (x+1,y-1) * [ | ] [ | ] * [ 2 | 3 ] [ 2 | ] * * (x-1,y) (x,y) (x+1,y) * [ | 1 ] [ 0 | 1 ] [ 0 | ] * [ | 3 ] [ 2 | 3 ] [ | ] */ static __inline VECTOR get_pmv2(const MACROBLOCK * const mbs, const int mb_width, const int bound, const int x, const int y, const int block) { int lx, ly, lz; /* left */ int tx, ty, tz; /* top */ int rx, ry, rz; /* top-right */ int lpos, tpos, rpos; int num_cand = 0, last_cand = 1; VECTOR pmv[4]; /* left neighbour, top neighbour, top-right neighbour */ switch (block) { case 0: lx = x - 1; ly = y; lz = 1; tx = x; ty = y - 1; tz = 2; rx = x + 1; ry = y - 1; rz = 2; break; case 1: lx = x; ly = y; lz = 0; tx = x; ty = y - 1; tz = 3; rx = x + 1; ry = y - 1; rz = 2; break; case 2: lx = x - 1; ly = y; lz = 3; tx = x; ty = y; tz = 0; rx = x; ry = y; rz = 1; break; default: lx = x; ly = y; lz = 2; tx = x; ty = y; tz = 0; rx = x; ry = y; rz = 1; } lpos = lx + ly * mb_width; rpos = rx + ry * mb_width; tpos = tx + ty * mb_width; if (lpos >= bound && lx >= 0) { num_cand++; pmv[1] = mbs[lpos].mvs[lz]; } else pmv[1] = zeroMV; if (tpos >= bound) { num_cand++; last_cand = 2; pmv[2] = mbs[tpos].mvs[tz]; } else pmv[2] = zeroMV; if (rpos >= bound && rx < mb_width) { num_cand++; last_cand = 3; pmv[3] = mbs[rpos].mvs[rz]; } else pmv[3] = zeroMV; /* If there're more than one candidate, we return the median vector */ if (num_cand > 1) { /* set median */ pmv[0].x = MIN(MAX(pmv[1].x, pmv[2].x), MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); pmv[0].y = MIN(MAX(pmv[1].y, pmv[2].y), MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); return pmv[0]; } return pmv[last_cand]; /* no point calculating median mv */ } static __inline VECTOR get_qpmv2(const MACROBLOCK * const mbs, const int mb_width, const int bound, const int x, const int y, const int block) { int lx, ly, lz; /* left */ int tx, ty, tz; /* top */ int rx, ry, rz; /* top-right */ int lpos, tpos, rpos; int num_cand = 0, last_cand = 1; VECTOR pmv[4]; /* left neighbour, top neighbour, top-right neighbour */ switch (block) { case 0: lx = x - 1; ly = y; lz = 1; tx = x; ty = y - 1; tz = 2; rx = x + 1; ry = y - 1; rz = 2; break; case 1: lx = x; ly = y; lz = 0; tx = x; ty = y - 1; tz = 3; rx = x + 1; ry = y - 1; rz = 2; break; case 2: lx = x - 1; ly = y; lz = 3; tx = x; ty = y; tz = 0; rx = x; ry = y; rz = 1; break; default: lx = x; ly = y; lz = 2; tx = x; ty = y; tz = 0; rx = x; ry = y; rz = 1; } lpos = lx + ly * mb_width; rpos = rx + ry * mb_width; tpos = tx + ty * mb_width; if (lpos >= bound && lx >= 0) { num_cand++; pmv[1] = mbs[lpos].qmvs[lz]; } else pmv[1] = zeroMV; if (tpos >= bound) { num_cand++; last_cand = 2; pmv[2] = mbs[tpos].qmvs[tz]; } else pmv[2] = zeroMV; if (rpos >= bound && rx < mb_width) { num_cand++; last_cand = 3; pmv[3] = mbs[rpos].qmvs[rz]; } else pmv[3] = zeroMV; /* If there're more than one candidate, we return the median vector */ if (num_cand > 1) { /* set median */ pmv[0].x = MIN(MAX(pmv[1].x, pmv[2].x), MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); pmv[0].y = MIN(MAX(pmv[1].y, pmv[2].y), MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); return pmv[0]; } return pmv[last_cand]; /* no point calculating median mv */ } /* * pmv are filled with: * [0]: Median (or whatever is correct in a special case) * [1]: left neighbour * [2]: top neighbour * [3]: topright neighbour * psad are filled with: * [0]: minimum of [1] to [3] * [1]: left neighbour's SAD (NB:[1] to [3] are actually not needed) * [2]: top neighbour's SAD * [3]: topright neighbour's SAD */ static __inline int get_pmvdata2(const MACROBLOCK * const mbs, const int mb_width, const int bound, const int x, const int y, const int block, VECTOR * const pmv, int32_t * const psad) { int lx, ly, lz; /* left */ int tx, ty, tz; /* top */ int rx, ry, rz; /* top-right */ int lpos, tpos, rpos; int num_cand = 0, last_cand = 1; switch (block) { case 0: lx = x - 1; ly = y; lz = 1; tx = x; ty = y - 1; tz = 2; rx = x + 1; ry = y - 1; rz = 2; break; case 1: lx = x; ly = y; lz = 0; tx = x; ty = y - 1; tz = 3; rx = x + 1; ry = y - 1; rz = 2; break; case 2: lx = x - 1; ly = y; lz = 3; tx = x; ty = y; tz = 0; rx = x; ry = y; rz = 1; break; default: lx = x; ly = y; lz = 2; tx = x; ty = y; tz = 0; rx = x; ry = y; rz = 1; } lpos = lx + ly * mb_width; rpos = rx + ry * mb_width; tpos = tx + ty * mb_width; if (lpos >= bound && lx >= 0) { num_cand++; last_cand = 1; pmv[1] = mbs[lpos].mvs[lz]; psad[1] = mbs[lpos].sad8[lz]; } else { pmv[1] = zeroMV; psad[1] = MV_MAX_ERROR; } if (tpos >= bound) { num_cand++; last_cand = 2; pmv[2]= mbs[tpos].mvs[tz]; psad[2] = mbs[tpos].sad8[tz]; } else { pmv[2] = zeroMV; psad[2] = MV_MAX_ERROR; } if (rpos >= bound && rx < mb_width) { num_cand++; last_cand = 3; pmv[3] = mbs[rpos].mvs[rz]; psad[3] = mbs[rpos].sad8[rz]; } else { pmv[3] = zeroMV; psad[3] = MV_MAX_ERROR; } /* original pmvdata() compatibility hack */ if (x == 0 && y == 0 && block == 0) { pmv[0] = pmv[1] = pmv[2] = pmv[3] = zeroMV; psad[0] = 0; psad[1] = psad[2] = psad[3] = MV_MAX_ERROR; return 0; } /* if only one valid candidate preictor, the invalid candiates are set to the canidate */ if (num_cand == 1) { pmv[0] = pmv[last_cand]; psad[0] = psad[last_cand]; // return MVequal(pmv[0], zeroMV); /* no point calculating median mv and minimum sad */ /* original pmvdata() compatibility hack */ return y==0 && block <= 1 ? 0 : MVequal(pmv[0], zeroMV); } if ((MVequal(pmv[1], pmv[2])) && (MVequal(pmv[1], pmv[3]))) { pmv[0] = pmv[1]; psad[0] = MIN(MIN(psad[1], psad[2]), psad[3]); return 1; } /* set median, minimum */ pmv[0].x = MIN(MAX(pmv[1].x, pmv[2].x), MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); pmv[0].y = MIN(MAX(pmv[1].y, pmv[2].y), MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); psad[0] = MIN(MIN(psad[1], psad[2]), psad[3]); return 0; } #endif /* _MBPREDICTION_H_ */