#ifndef _MBPREDICTION_H_ #define _MBPREDICTION_H_ #include "../portab.h" #include "../decoder.h" #include "../global.h" #define MIN(X, Y) ((X)<(Y)?(X):(Y)) #define MAX(X, Y) ((X)>(Y)?(X):(Y)) // very large value #define MV_MAX_ERROR (4096 * 256) #define MVequal(A,B) ( ((A).x)==((B).x) && ((A).y)==((B).y) ) void MBPrediction(FRAMEINFO *frame, /* <-- the parameter for ACDC and MV prediction */ uint32_t x_pos, /* <-- The x position of the MB to be searched */ uint32_t y_pos, /* <-- The y position of the MB to be searched */ uint32_t x_dim, /* <-- Number of macroblocks in a row */ int16_t *qcoeff /* <-> The quantized DCT coefficients */ ); void add_acdc(MACROBLOCK *pMB, uint32_t block, int16_t dct_codes[64], uint32_t iDcScaler, int16_t predictors[8]); void predict_acdc(MACROBLOCK *pMBs, uint32_t x, uint32_t y, uint32_t mb_width, uint32_t block, int16_t qcoeff[64], uint32_t current_quant, int32_t iDcScaler, int16_t predictors[8]); /* This is somehow a copy of get_pmv, but returning all MVs and Minimum SAD instead of only Median MV */ static __inline int get_pmvdata(const MACROBLOCK * const pMBs, const uint32_t x, const uint32_t y, const uint32_t x_dim, const uint32_t block, VECTOR * const pmv, int32_t * const psad) { /* pmv are filled with: [0]: Median (or whatever is correct in a special case) [1]: left neighbour [2]: top neighbour, [3]: topright neighbour, psad are filled with: [0]: minimum of [1] to [3] [1]: left neighbour's SAD // [1] to [3] are actually not needed [2]: top neighbour's SAD, [3]: topright neighbour's SAD, */ int xin1, xin2, xin3; int yin1, yin2, yin3; int vec1, vec2, vec3; static VECTOR zeroMV; uint32_t index = x + y * x_dim; zeroMV.x = zeroMV.y = 0; // first row (special case) if (y == 0 && (block == 0 || block == 1)) { if ((x == 0) && (block == 0)) // first column, first block { pmv[0] = pmv[1] = pmv[2] = pmv[3] = zeroMV; psad[0] = psad[1] = psad[2] = psad[3] = MV_MAX_ERROR; return 0; } if (block == 1) // second block; has only a left neighbour { pmv[0] = pmv[1] = pMBs[index].mvs[0]; pmv[2] = pmv[3] = zeroMV; psad[0] = psad[1] = pMBs[index].sad8[0]; psad[2] = psad[3] = MV_MAX_ERROR; return 0; } else /* block==0, but x!=0, so again, there is a left neighbour*/ { pmv[0] = pmv[1] = pMBs[index-1].mvs[1]; pmv[2] = pmv[3] = zeroMV; psad[0] = psad[1] = pMBs[index-1].sad8[1]; psad[2] = psad[3] = MV_MAX_ERROR; return 0; } } /* MODE_INTER, vm18 page 48 MODE_INTER4V vm18 page 51 (x,y-1) (x+1,y-1) [ | ] [ | ] [ 2 | 3 ] [ 2 | ] (x-1,y) (x,y) (x+1,y) [ | 1 ] [ 0 | 1 ] [ 0 | ] [ | 3 ] [ 2 | 3 ] [ | ] */ switch (block) { case 0: xin1 = x - 1; yin1 = y; vec1 = 1; /* left */ xin2 = x; yin2 = y - 1; vec2 = 2; /* top */ xin3 = x + 1; yin3 = y - 1; vec3 = 2; /* top right */ break; case 1: xin1 = x; yin1 = y; vec1 = 0; xin2 = x; yin2 = y - 1; vec2 = 3; xin3 = x + 1; yin3 = y - 1; vec3 = 2; break; case 2: xin1 = x - 1; yin1 = y; vec1 = 3; xin2 = x; yin2 = y; vec2 = 0; xin3 = x; yin3 = y; vec3 = 1; break; default: xin1 = x; yin1 = y; vec1 = 2; xin2 = x; yin2 = y; vec2 = 0; xin3 = x; yin3 = y; vec3 = 1; } if (xin1 < 0 || /* yin1 < 0 || */ xin1 >= (int32_t)x_dim) { pmv[1] = zeroMV; psad[1] = MV_MAX_ERROR; } else { pmv[1] = pMBs[xin1 + yin1 * x_dim].mvs[vec1]; psad[1] = pMBs[xin1 + yin1 * x_dim].sad8[vec1]; } if (xin2 < 0 || /* yin2 < 0 || */ xin2 >= (int32_t)x_dim) { pmv[2] = zeroMV; psad[2] = MV_MAX_ERROR; } else { pmv[2] = pMBs[xin2 + yin2 * x_dim].mvs[vec2]; psad[2] = pMBs[xin2 + yin2 * x_dim].sad8[vec2]; } if (xin3 < 0 || /* yin3 < 0 || */ xin3 >= (int32_t)x_dim) { pmv[3] = zeroMV; psad[3] = MV_MAX_ERROR; } else { pmv[3] = pMBs[xin3 + yin3 * x_dim].mvs[vec3]; psad[3] = pMBs[xin2 + yin2 * x_dim].sad8[vec3]; } if ( (MVequal(pmv[1],pmv[2])) && (MVequal(pmv[1],pmv[3])) ) { pmv[0]=pmv[1]; psad[0]=psad[1]; return 1; } // median,minimum pmv[0].x = MIN(MAX(pmv[1].x, pmv[2].x), MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); pmv[0].y = MIN(MAX(pmv[1].y, pmv[2].y), MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); psad[0]=MIN(MIN(psad[1],psad[2]),psad[3]); return 0; } #endif /* _MBPREDICTION_H_ */