/****************************************************************************** * * XviD Bit Rate Controller Library * - VBR 2 pass bitrate controller implementation - * * Copyright (C) 2002 Foxer * 2002 Dirk Knop * 2002-2003 Edouard Gomez * 2003 Pete Ross * * This curve treatment algorithm is the one originally implemented by Foxer * and tuned by Dirk Knop for the XviD vfw frontend. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: plugin_2pass2.c,v 1.1.2.13 2003-05-29 10:19:35 edgomez Exp $ * *****************************************************************************/ #include #include #include #include "../xvid.h" #include "../image/image.h" /***************************************************************************** * Some constants ****************************************************************************/ #define DEFAULT_KEYFRAME_BOOST 0 #define DEFAULT_PAYBACK_METHOD XVID_PAYBACK_PROP #define DEFAULT_BITRATE_PAYBACK_DELAY 250 #define DEFAULT_CURVE_COMPRESSION_HIGH 0 #define DEFAULT_CURVE_COMPRESSION_LOW 0 #define DEFAULT_MAX_OVERFLOW_IMPROVEMENT 60 #define DEFAULT_MAX_OVERFLOW_DEGRADATION 60 /* Alt curve settings */ #define DEFAULT_USE_ALT_CURVE 0 #define DEFAULT_ALT_CURVE_HIGH_DIST 500 #define DEFAULT_ALT_CURVE_LOW_DIST 90 #define DEFAULT_ALT_CURVE_USE_AUTO 1 #define DEFAULT_ALT_CURVE_AUTO_STR 30 #define DEFAULT_ALT_CURVE_TYPE XVID_CURVE_LINEAR #define DEFAULT_ALT_CURVE_MIN_REL_QUAL 50 #define DEFAULT_ALT_CURVE_USE_AUTO_BONUS_BIAS 1 #define DEFAULT_ALT_CURVE_BONUS_BIAS 50 /* Keyframe settings */ #define DEFAULT_KFTRESHOLD 10 #define DEFAULT_KFREDUCTION 20 #define DEFAULT_MIN_KEY_INTERVAL 1 /***************************************************************************** * Structures ****************************************************************************/ /* Statistics */ typedef struct { int type; /* first pass type */ int quant; /* first pass quant */ int blks[3]; /* k,m,y blks */ int length; /* first pass length */ int scaled_length; /* scaled length */ int desired_length; /* desired length; calcuated during encoding */ int zone_mode; /* XVID_ZONE_xxx */ double weight; } stat_t; /* Context struct */ typedef struct { xvid_plugin_2pass2_t param; /* constant statistical data */ int num_frames; int num_keyframes; uint64_t target; /* target filesize */ int count[3]; /* count of each frame types */ uint64_t tot_length[3]; /* total length of each frame types */ double avg_length[3]; /* avg */ int min_length[3]; /* min frame length of each frame types */ uint64_t tot_scaled_length[3]; /* total scaled length of each frame type */ int max_length; /* max frame size */ /* zone statistical data */ double avg_weight; /* average weight */ int64_t tot_quant; /* total length used by XVID_ZONE_QUANT zones */ double curve_comp_scale; double movie_curve; /* dynamic */ int * keyframe_locations; stat_t * stats; double pquant_error[32]; double bquant_error[32]; int quant_count[32]; int last_quant[3]; double curve_comp_error; int overflow; int KFoverflow; int KFoverflow_partial; int KF_idx; double fq_error; } rc_2pass2_t; /***************************************************************************** * Sub plugin functions prototypes ****************************************************************************/ static int rc_2pass2_create(xvid_plg_create_t * create, rc_2pass2_t ** handle); static int rc_2pass2_before(rc_2pass2_t * rc, xvid_plg_data_t * data); static int rc_2pass2_after(rc_2pass2_t * rc, xvid_plg_data_t * data); static int rc_2pass2_destroy(rc_2pass2_t * rc, xvid_plg_destroy_t * destroy); /***************************************************************************** * Plugin definition ****************************************************************************/ int xvid_plugin_2pass2(void * handle, int opt, void * param1, void * param2) { switch(opt) { case XVID_PLG_INFO : return 0; case XVID_PLG_CREATE : return rc_2pass2_create((xvid_plg_create_t*)param1, param2); case XVID_PLG_DESTROY : return rc_2pass2_destroy((rc_2pass2_t*)handle, (xvid_plg_destroy_t*)param1); case XVID_PLG_BEFORE : return rc_2pass2_before((rc_2pass2_t*)handle, (xvid_plg_data_t*)param1); case XVID_PLG_AFTER : return rc_2pass2_after((rc_2pass2_t*)handle, (xvid_plg_data_t*)param1); } return XVID_ERR_FAIL; } /***************************************************************************** * Sub plugin functions definitions ****************************************************************************/ /* First a few local helping function prototypes */ static int det_stats_length(rc_2pass2_t * rc, char * filename); static int load_stats(rc_2pass2_t *rc, char * filename); static void zone_process(rc_2pass2_t *rc, const xvid_plg_create_t * create); static void internal_scale(rc_2pass2_t *rc); static void pre_process0(rc_2pass2_t * rc); static void pre_process1(rc_2pass2_t * rc); /*---------------------------------------------------------------------------- *--------------------------------------------------------------------------*/ static int rc_2pass2_create(xvid_plg_create_t * create, rc_2pass2_t **handle) { xvid_plugin_2pass2_t * param = (xvid_plugin_2pass2_t *)create->param; rc_2pass2_t * rc; int i; rc = malloc(sizeof(rc_2pass2_t)); if (rc == NULL) return XVID_ERR_MEMORY; rc->param = *param; #define _INIT(a, b) if((a) <= 0) (a) = (b) /* Let's set our defaults if needed */ _INIT(rc->param.keyframe_boost, DEFAULT_KEYFRAME_BOOST); _INIT(rc->param.payback_method, DEFAULT_PAYBACK_METHOD); _INIT(rc->param.bitrate_payback_delay, DEFAULT_BITRATE_PAYBACK_DELAY); _INIT(rc->param.curve_compression_high, DEFAULT_CURVE_COMPRESSION_HIGH); _INIT(rc->param.curve_compression_low, DEFAULT_CURVE_COMPRESSION_LOW); _INIT(rc->param.max_overflow_improvement, DEFAULT_MAX_OVERFLOW_IMPROVEMENT); _INIT(rc->param.max_overflow_degradation, DEFAULT_MAX_OVERFLOW_DEGRADATION); /* Keyframe settings */ _INIT(rc->param.kftreshold, DEFAULT_KFTRESHOLD); _INIT(rc->param.kfreduction, DEFAULT_KFREDUCTION); _INIT(rc->param.min_key_interval, DEFAULT_MIN_KEY_INTERVAL); #undef _INIT /* Count frames in the stats file */ if (!det_stats_length(rc, param->filename)) { DPRINTF(XVID_DEBUG_RC,"fopen %s failed\n", param->filename); free(rc); return XVID_ERR_FAIL; } /* Allocate the stats' memory */ if ((rc->stats = malloc(rc->num_frames * sizeof(stat_t))) == NULL) { free(rc); return XVID_ERR_MEMORY; } /* * Allocate keyframes location's memory * PS: see comment in pre_process0 for the +1 location requirement */ if ((rc->keyframe_locations = malloc((rc->num_keyframes + 1) * sizeof(int))) == NULL) { free(rc->stats); free(rc); return XVID_ERR_MEMORY; } if (!load_stats(rc, param->filename)) { DPRINTF(XVID_DEBUG_RC,"fopen %s failed\n", param->filename); free(rc->keyframe_locations); free(rc->stats); free(rc); return XVID_ERR_FAIL; } /* pre-process our stats */ if (rc->num_frames < create->fbase/create->fincr) { rc->target = rc->param.bitrate / 8; /* one second */ } else { rc->target = ((uint64_t)rc->param.bitrate * (uint64_t)rc->num_frames * (uint64_t)create->fincr) / \ ((uint64_t)create->fbase * 8); } DPRINTF(XVID_DEBUG_RC, "Number of frames: %d\n", rc->num_frames); DPRINTF(XVID_DEBUG_RC, "Frame rate: %d/%d\n", create->fbase, create->fincr); DPRINTF(XVID_DEBUG_RC, "Target bitrate: %ld\n", rc->param.bitrate); DPRINTF(XVID_DEBUG_RC, "Target filesize: %lld\n", rc->target); /* Compensate the mean frame overhead caused by the container */ rc->target -= rc->num_frames*rc->param.container_frame_overhead; DPRINTF(XVID_DEBUG_RC, "Container Frame overhead: %d\n", rc->param.container_frame_overhead); DPRINTF(XVID_DEBUG_RC, "Target filesize (after container compensation): %lld\n", rc->target); pre_process0(rc); if (rc->param.bitrate) { zone_process(rc, create); internal_scale(rc); }else{ /* external scaler: ignore zone */ for (i=0;inum_frames;i++) { rc->stats[i].zone_mode = XVID_ZONE_WEIGHT; rc->stats[i].weight = 1.0; } rc->avg_weight = 1.0; rc->tot_quant = 0; } pre_process1(rc); for (i=0; i<32;i++) { rc->pquant_error[i] = 0; rc->bquant_error[i] = 0; rc->quant_count[i] = 0; } rc->fq_error = 0; *handle = rc; return(0); } /*---------------------------------------------------------------------------- *--------------------------------------------------------------------------*/ static int rc_2pass2_destroy(rc_2pass2_t * rc, xvid_plg_destroy_t * destroy) { free(rc->keyframe_locations); free(rc->stats); free(rc); return(0); } /*---------------------------------------------------------------------------- *--------------------------------------------------------------------------*/ static int rc_2pass2_before(rc_2pass2_t * rc, xvid_plg_data_t * data) { stat_t * s = &rc->stats[data->frame_num]; int overflow; int desired; double dbytes; double curve_temp; int capped_to_max_framesize = 0; /* * This function is quite long but easy to understand. In order to simplify * the code path (a bit), we treat 3 cases that can return immediatly. */ /* First case: Another plugin has already set a quantizer */ if (data->quant > 0) return(0); /* Second case: We are in a Quant zone */ if (s->zone_mode == XVID_ZONE_QUANT) { rc->fq_error += s->weight; data->quant = (int)rc->fq_error; rc->fq_error -= data->quant; s->desired_length = s->length; return(0); } /* Third case: insufficent stats data */ if (data->frame_num >= rc->num_frames) return 0; /* * The last case is the one every normal minded developer should fear to * maintain in a project :-) */ /* XXX: why by 8 */ overflow = rc->overflow / 8; /* * The rc->overflow field represents the overflow in current scene (between two * IFrames) so we must not forget to reset it if we are entering a new scene */ if (s->type == XVID_TYPE_IVOP) overflow = 0; desired = s->scaled_length; dbytes = desired; if (s->type == XVID_TYPE_IVOP) dbytes += desired * rc->param.keyframe_boost / 100; dbytes /= rc->movie_curve; /* * We are now entering in the hard part of the algo, it was first designed * to work with i/pframes only streams, so the way it computes things is * adapted to pframes only. However we can use it if we just take care to * scale the bframes sizes to pframes sizes using the ratio avg_p/avg_p and * then before really using values depending on frame sizes, scaling the * value again with the inverse ratio */ if (s->type == XVID_TYPE_BVOP) dbytes *= rc->avg_length[XVID_TYPE_PVOP-1] / rc->avg_length[XVID_TYPE_BVOP-1]; /* * Apply user's choosen Payback method. Payback helps bitrate to follow the * scaled curve "paying back" past errors in curve previsions. */ if (rc->param.payback_method == XVID_PAYBACK_BIAS) { desired =(int)(rc->curve_comp_error / rc->param.bitrate_payback_delay); } else { desired = (int)(rc->curve_comp_error * dbytes / rc->avg_length[XVID_TYPE_PVOP-1] / rc->param.bitrate_payback_delay); if (labs(desired) > fabs(rc->curve_comp_error)) { desired = (int)rc->curve_comp_error; } } rc->curve_comp_error -= desired; /* * Alt curve treatment is not that hard to understand though the formulas * seem to be huge. Alt treatment is basically a way to soft/harden the * curve flux applying sine/linear/cosine ratios */ /* XXX: warning */ curve_temp = 0; if ((rc->param.curve_compression_high + rc->param.curve_compression_low) && s->type != XVID_TYPE_IVOP) { curve_temp = rc->curve_comp_scale; if (dbytes > rc->avg_length[XVID_TYPE_PVOP-1]) { curve_temp *= ((double)dbytes + (rc->avg_length[XVID_TYPE_PVOP-1] - dbytes) * rc->param.curve_compression_high / 100.0); } else { curve_temp *= ((double)dbytes + (rc->avg_length[XVID_TYPE_PVOP-1] - dbytes) * rc->param.curve_compression_low / 100.0); } /* * End of code path for curve_temp, as told earlier, we are now * obliged to scale the value to a bframe one using the inverse * ratio applied earlier */ if (s->type == XVID_TYPE_BVOP) curve_temp *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1]; desired += (int)curve_temp; rc->curve_comp_error += curve_temp - (int)curve_temp; } else { /* * End of code path for dbytes, as told earlier, we are now * obliged to scale the value to a bframe one using the inverse * ratio applied earlier */ if (s->type == XVID_TYPE_BVOP) dbytes *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1]; desired += (int)dbytes; rc->curve_comp_error += dbytes - (int)dbytes; } /* * We can't do bigger frames than first pass, this would be stupid as first * pass is quant=2 and that reaching quant=1 is not worth it. We would lose * many bytes and we would not not gain much quality. */ if (desired > s->length) { rc->curve_comp_error += desired - s->length; desired = s->length; } else { if (desired < rc->min_length[s->type-1]) { if (s->type == XVID_TYPE_IVOP){ rc->curve_comp_error -= rc->min_length[XVID_TYPE_IVOP-1] - desired; } desired = rc->min_length[s->type-1]; } } s->desired_length = desired; /* if this keyframe is too close to the next, reduce it's byte allotment XXX: why do we do this after setting the desired length */ if (s->type == XVID_TYPE_IVOP) { int KFdistance = rc->keyframe_locations[rc->KF_idx] - rc->keyframe_locations[rc->KF_idx - 1]; if (KFdistance < rc->param.kftreshold) { KFdistance -= rc->param.min_key_interval; if (KFdistance >= 0) { int KF_min_size; KF_min_size = desired * (100 - rc->param.kfreduction) / 100; if (KF_min_size < 1) KF_min_size = 1; desired = KF_min_size + (desired - KF_min_size) * KFdistance / (rc->param.kftreshold - rc->param.min_key_interval); if (desired < 1) desired = 1; } } } overflow = (int)((double)overflow * desired / rc->avg_length[XVID_TYPE_PVOP-1]); /* Reign in overflow with huge frames */ if (labs(overflow) > labs(rc->overflow)) overflow = rc->overflow; /* Make sure overflow doesn't run away */ if (overflow > desired * rc->param.max_overflow_improvement / 100) { desired += (overflow <= desired) ? desired * rc->param.max_overflow_improvement / 100 : overflow * rc->param.max_overflow_improvement / 100; } else if (overflow < desired * rc->param.max_overflow_degradation / -100){ desired += desired * rc->param.max_overflow_degradation / -100; } else { desired += overflow; } /* Make sure we are not higher than desired frame size */ if (desired > rc->max_length) { capped_to_max_framesize = 1; desired = rc->max_length; DPRINTF(XVID_DEBUG_RC,"[%i] Capped to maximum frame size\n", data->frame_num); } /* Make sure to not scale below the minimum framesize */ if (desired < rc->min_length[s->type-1]) { desired = rc->min_length[s->type-1]; DPRINTF(XVID_DEBUG_RC,"[%i] Capped to minimum frame size\n", data->frame_num); } /* * Don't laugh at this very 'simple' quant<->filesize relationship, it * proves to be acurate enough for our algorithm */ data->quant = s->quant*s->length/desired; /* Let's clip the computed quantizer, if needed */ if (data->quant < 1) { data->quant = 1; } else if (data->quant > 31) { data->quant = 31; } else if (s->type != XVID_TYPE_IVOP) { /* * The frame quantizer has not been clipped, this appear to be a good * computed quantizer, however past frames give us some info about how * this quantizer performs against the algo prevision. Let's use this * prevision to increase the quantizer when we observe a too big * accumulated error */ if (s->type == XVID_TYPE_BVOP) { rc->bquant_error[data->quant] += ((double)(s->quant * s->length) / desired) - data->quant; if (rc->bquant_error[data->quant] >= 1.0) { rc->bquant_error[data->quant] -= 1.0; data->quant++; } } else { rc->pquant_error[data->quant] += ((double)(s->quant * s->length) / desired) - data->quant; if (rc->pquant_error[data->quant] >= 1.0) { rc->pquant_error[data->quant] -= 1.0; data->quant++; } } } /* * Now we have a computed quant that is in the right quante range, with a * possible +1 correction due to cumulated error. We can now safely clip * the quantizer again with user's quant ranges. "Safely" means the Rate * Control could learn more about this quantizer, this knowledge is useful * for future frames even if it this quantizer won't be really used atm, * that's why we don't perform this clipping earlier. */ if (data->quant < data->min_quant[s->type-1]) { data->quant = data->min_quant[s->type-1]; } else if (data->quant > data->max_quant[s->type-1]) { data->quant = data->max_quant[s->type-1]; } /* * To avoid big quality jumps from frame to frame, we apply a "security" * rule that makes |last_quant - new_quant| <= 2. This rule only applies * to predicted frames (P and B) */ if (s->type != XVID_TYPE_IVOP && rc->last_quant[s->type-1] && capped_to_max_framesize == 0) { if (data->quant > rc->last_quant[s->type-1] + 2) { data->quant = rc->last_quant[s->type-1] + 2; DPRINTF(XVID_DEBUG_RC, "[%i] p/b-frame quantizer prevented from rising too steeply\n", data->frame_num); } if (data->quant < rc->last_quant[s->type-1] - 2) { data->quant = rc->last_quant[s->type-1] - 2; DPRINTF(XVID_DEBUG_RC, "[%i] p/b-frame quantizer prevented from falling too steeply\n", data->frame_num); } } /* * We don't want to pollute the RC history results when our computed quant * has been computed from a capped frame size */ if (capped_to_max_framesize == 0) rc->last_quant[s->type-1] = data->quant; return 0; } /*---------------------------------------------------------------------------- *--------------------------------------------------------------------------*/ static int rc_2pass2_after(rc_2pass2_t * rc, xvid_plg_data_t * data) { const char frame_type[4] = { 'i', 'p', 'b', 's'}; stat_t * s = &rc->stats[data->frame_num]; /* Insufficent stats data */ if (data->frame_num >= rc->num_frames) return 0; rc->quant_count[data->quant]++; if (data->type == XVID_TYPE_IVOP) { int kfdiff = (rc->keyframe_locations[rc->KF_idx] - rc->keyframe_locations[rc->KF_idx - 1]); rc->overflow += rc->KFoverflow; rc->KFoverflow = s->desired_length - data->length; if (kfdiff > 1) { // non-consecutive keyframes rc->KFoverflow_partial = rc->KFoverflow / (kfdiff - 1); }else{ // consecutive keyframes rc->overflow += rc->KFoverflow; rc->KFoverflow = 0; rc->KFoverflow_partial = 0; } rc->KF_idx++; } else { // distribute part of the keyframe overflow rc->overflow += s->desired_length - data->length + rc->KFoverflow_partial; rc->KFoverflow -= rc->KFoverflow_partial; } DPRINTF(XVID_DEBUG_RC, "[%i] type:%c quant:%i stats1:%i scaled:%i actual:%i overflow:%i\n", data->frame_num, frame_type[data->type-1], data->quant, s->length, s->scaled_length, data->length, rc->overflow); return(0); } /***************************************************************************** * Helper functions definition ****************************************************************************/ #define BUF_SZ 1024 #define MAX_COLS 5 /* open stats file, and count num frames */ static int det_stats_length(rc_2pass2_t * rc, char * filename) { FILE * f; int n, ignore; char type; rc->num_frames = 0; rc->num_keyframes = 0; if ((f = fopen(filename, "rt")) == NULL) return 0; while((n = fscanf(f, "%c %d %d %d %d %d %d\n", &type, &ignore, &ignore, &ignore, &ignore, &ignore, &ignore)) != EOF) { if (type == 'i') { rc->num_frames++; rc->num_keyframes++; }else if (type == 'p' || type == 'b' || type == 's') { rc->num_frames++; } } fclose(f); return 1; } /* open stats file(s) and read into rc->stats array */ static int load_stats(rc_2pass2_t *rc, char * filename) { FILE * f; int i, not_scaled; if ((f = fopen(filename, "rt"))==NULL) return 0; i = 0; not_scaled = 0; while(i < rc->num_frames) { stat_t * s = &rc->stats[i]; int n; char type; s->scaled_length = 0; n = fscanf(f, "%c %d %d %d %d %d %d\n", &type, &s->quant, &s->blks[0], &s->blks[1], &s->blks[2], &s->length, &s->scaled_length); if (n == EOF) break; if (n < 7) { not_scaled = 1; } if (type == 'i') { s->type = XVID_TYPE_IVOP; }else if (type == 'p' || type == 's') { s->type = XVID_TYPE_PVOP; }else if (type == 'b') { s->type = XVID_TYPE_BVOP; }else{ /* unknown type */ DPRINTF(XVID_DEBUG_RC, "unknown stats frame type; assuming pvop\n"); s->type = XVID_TYPE_PVOP; } i++; } rc->num_frames = i; fclose(f); return 1; } #if 0 static void print_stats(rc_2pass2_t * rc) { int i; DPRINTF(XVID_DEBUG_RC, "type quant length scaled_length\n"); for (i = 0; i < rc->num_frames; i++) { stat_t * s = &rc->stats[i]; DPRINTF(XVID_DEBUG_RC, "%d %d %d %d\n", s->type, s->quant, s->length, s->scaled_length); } } #endif /* pre-process the statistics data - for each type, count, tot_length, min_length, max_length - set keyframes_locations */ static void pre_process0(rc_2pass2_t * rc) { int i,j; for (i=0; i<3; i++) { rc->count[i]=0; rc->tot_length[i] = 0; rc->last_quant[i] = 0; rc->min_length[i] = INT_MAX; } rc->max_length = INT_MIN; for (i=j=0; inum_frames; i++) { stat_t * s = &rc->stats[i]; rc->count[s->type-1]++; rc->tot_length[s->type-1] += s->length; if (s->length < rc->min_length[s->type-1]) { rc->min_length[s->type-1] = s->length; } if (s->length > rc->max_length) { rc->max_length = s->length; } if (s->type == XVID_TYPE_IVOP) { rc->keyframe_locations[j] = i; j++; } } /* * Nota Bene: * The "per sequence" overflow system considers a natural sequence to be * formed by all frames between two iframes, so if we want to make sure * the system does not go nuts during last sequence, we force the last * frame to appear in the keyframe locations array. */ rc->keyframe_locations[j] = i; DPRINTF(XVID_DEBUG_RC, "Min 1st pass IFrame length: %d\n", rc->min_length[0]); DPRINTF(XVID_DEBUG_RC, "Min 1st pass PFrame length: %d\n", rc->min_length[1]); DPRINTF(XVID_DEBUG_RC, "Min 1st pass BFrame length: %d\n", rc->min_length[2]); } /* calculate zone weight "center" */ static void zone_process(rc_2pass2_t *rc, const xvid_plg_create_t * create) { int i,j; int n = 0; rc->avg_weight = 0.0; rc->tot_quant = 0; if (create->num_zones == 0) { for (j = 0; j < rc->num_frames; j++) { rc->stats[j].zone_mode = XVID_ZONE_WEIGHT; rc->stats[j].weight = 1.0; } rc->avg_weight += rc->num_frames * 1.0; n += rc->num_frames; } for(i=0; i < create->num_zones; i++) { int next = (i+1num_zones) ? create->zones[i+1].frame : rc->num_frames; if (i==0 && create->zones[i].frame > 0) { for (j = 0; j < create->zones[i].frame && j < rc->num_frames; j++) { rc->stats[j].zone_mode = XVID_ZONE_WEIGHT; rc->stats[j].weight = 1.0; } rc->avg_weight += create->zones[i].frame * 1.0; n += create->zones[i].frame; } if (create->zones[i].mode == XVID_ZONE_WEIGHT) { for (j = create->zones[i].frame; j < next && j < rc->num_frames; j++ ) { rc->stats[j].zone_mode = XVID_ZONE_WEIGHT; rc->stats[j].weight = (double)create->zones[i].increment / (double)create->zones[i].base; } next -= create->zones[i].frame; rc->avg_weight += (double)(next * create->zones[i].increment) / (double)create->zones[i].base; n += next; }else{ // XVID_ZONE_QUANT for (j = create->zones[i].frame; j < next && j < rc->num_frames; j++ ) { rc->stats[j].zone_mode = XVID_ZONE_QUANT; rc->stats[j].weight = (double)create->zones[i].increment / (double)create->zones[i].base; rc->tot_quant += rc->stats[j].length; } } } rc->avg_weight = n>0 ? rc->avg_weight/n : 1.0; DPRINTF(XVID_DEBUG_RC, "center_weight: %f (for %i frames); fixed_bytes: %i\n", rc->avg_weight, n, rc->tot_quant); } /* scale the curve */ static void internal_scale(rc_2pass2_t *rc) { int64_t target = rc->target - rc->tot_quant; int64_t pass1_length = rc->tot_length[0] + rc->tot_length[1] + rc->tot_length[2] - rc->tot_quant; double scaler; int i; /* Let's compute a linear scaler in order to perform curve scaling */ scaler = (double)target / (double)pass1_length; if (target <= 0 || pass1_length <= 0 || target >= pass1_length) { DPRINTF(XVID_DEBUG_RC, "WARNING: Undersize detected\n"); scaler = 1.0; } DPRINTF(XVID_DEBUG_RC, "Before correction: target=%i, tot_length=%i, scaler=%f\n", (int)target, (int)pass1_length, scaler); /* * Perform an initial scale pass. * If a frame size is scaled underneath our hardcoded minimums, then we * force the frame size to the minimum, and deduct the original & scaled * frame length from the original and target total lengths */ for (i=0; inum_frames; i++) { stat_t * s = &rc->stats[i]; int min_size[3]; int len; /* Compute min frame lengths (oe for each frame type) */ min_size[0] = ((s->blks[0]*22) + 240) / 8; min_size[1] = (s->blks[0] + 88) / 8; min_size[2] = 8; if (s->zone_mode == XVID_ZONE_QUANT) { s->scaled_length = s->length; continue; } /* Compute teh scaled length */ len = (int)((double)s->length * scaler * s->weight / rc->avg_weight); /* Compare with the computed minimum */ if (len < min_size[s->type-1]) { /* force frame size to our computed minimum */ s->scaled_length = min_size[s->type-1]; target -= s->scaled_length; pass1_length -= s->length; } else { /* Do nothing for now, we'll scale this later */ s->scaled_length = 0; } } /* Correct the scaler for all non forced frames */ scaler = (double)target / (double)pass1_length; /* Detect undersizing */ if (target <= 0 || pass1_length <= 0 || target >= pass1_length) { DPRINTF(XVID_DEBUG_RC, "WARNING: Undersize detected\n"); scaler = 1.0; } DPRINTF(XVID_DEBUG_RC, "After correction: target=%i, tot_length=%i, scaler=%f\n", (int)target, (int)pass1_length, scaler); /* Do another pass with the new scaler */ for (i=0; inum_frames; i++) { stat_t * s = &rc->stats[i]; /* Ignore frame with forced frame sizes */ if (s->scaled_length == 0) s->scaled_length = (int)((double)s->length * scaler * s->weight / rc->avg_weight); } } static void pre_process1(rc_2pass2_t * rc) { int i; double total1, total2; uint64_t ivop_boost_total; ivop_boost_total = 0; rc->curve_comp_error = 0; for (i=0; i<3; i++) { rc->tot_scaled_length[i] = 0; } for (i=0; inum_frames; i++) { stat_t * s = &rc->stats[i]; rc->tot_scaled_length[s->type-1] += s->scaled_length; if (s->type == XVID_TYPE_IVOP) { ivop_boost_total += s->scaled_length * rc->param.keyframe_boost / 100; } } rc->movie_curve = ((double)(rc->tot_scaled_length[XVID_TYPE_PVOP-1] + rc->tot_scaled_length[XVID_TYPE_BVOP-1] + ivop_boost_total) / (rc->tot_scaled_length[XVID_TYPE_PVOP-1] + rc->tot_scaled_length[XVID_TYPE_BVOP-1])); for(i=0; i<3; i++) { if (rc->count[i] == 0 || rc->movie_curve == 0) { rc->avg_length[i] = 1; }else{ rc->avg_length[i] = rc->tot_scaled_length[i] / rc->count[i] / rc->movie_curve; } } /* --- */ total1=total2=0; for (i=0; inum_frames; i++) { stat_t * s = &rc->stats[i]; if (s->type != XVID_TYPE_IVOP) { double dbytes,dbytes2; dbytes = s->scaled_length / rc->movie_curve; dbytes2 = 0; /* XXX: warning */ total1 += dbytes; if (s->type == XVID_TYPE_BVOP) dbytes *= rc->avg_length[XVID_TYPE_PVOP-1] / rc->avg_length[XVID_TYPE_BVOP-1]; if (dbytes > rc->avg_length[XVID_TYPE_PVOP-1]) { dbytes2=((double)dbytes + (rc->avg_length[XVID_TYPE_PVOP-1] - dbytes) * rc->param.curve_compression_high / 100.0); } else { dbytes2 = ((double)dbytes + (rc->avg_length[XVID_TYPE_PVOP-1] - dbytes) * rc->param.curve_compression_low / 100.0); } if (s->type == XVID_TYPE_BVOP) { dbytes2 *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1]; if (dbytes2 < rc->min_length[XVID_TYPE_BVOP-1]) dbytes2 = rc->min_length[XVID_TYPE_BVOP-1]; }else{ if (dbytes2 < rc->min_length[XVID_TYPE_PVOP-1]) dbytes2 = rc->min_length[XVID_TYPE_PVOP-1]; } total2 += dbytes2; } } rc->curve_comp_scale = total1 / total2; DPRINTF(XVID_DEBUG_RC, "middle frame size for asymmetric curve compression: %i\n", (int)(rc->avg_length[XVID_TYPE_PVOP-1] * rc->curve_comp_scale)); rc->overflow = 0; rc->KFoverflow = 0; rc->KFoverflow_partial = 0; rc->KF_idx = 1; }