[svn] / branches / dev-api-4 / xvidcore / src / plugins / plugin_2pass2.c Repository:
ViewVC logotype

Diff of /branches/dev-api-4/xvidcore/src/plugins/plugin_2pass2.c

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1014, Mon May 12 12:33:16 2003 UTC revision 1040, Thu May 22 22:17:44 2003 UTC
# Line 3  Line 3 
3   * XviD Bit Rate Controller Library   * XviD Bit Rate Controller Library
4   * - VBR 2 pass bitrate controler implementation -   * - VBR 2 pass bitrate controler implementation -
5   *   *
6   * Copyright (C) 2002 Edouard Gomez <ed.gomez@wanadoo.fr>   * Copyright (C)      2002 Foxer <email?>
7     *                    2002 Dirk Knop <dknop@gwdg.de>
8     *               2002-2003 Edouard Gomez <ed.gomez@free.fr>
9     *                    2003 Pete Ross <pross@xvid.org>
10   *   *
11   * The curve treatment algorithm is the one implemented by Foxer <email?> and   * This curve treatment algorithm is the one originally implemented by Foxer
12   * Dirk Knop <dknop@gwdg.de> for the XviD vfw dynamic library.   * and tuned by Dirk Knop for the XviD vfw frontend.
13   *   *
14   * This program is free software; you can redistribute it and/or modify   * This program is free software; you can redistribute it and/or modify
15   * it under the terms of the GNU General Public License as published by   * it under the terms of the GNU General Public License as published by
# Line 22  Line 25 
25   * along with this program; if not, write to the Free Software   * along with this program; if not, write to the Free Software
26   * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA   * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
27   *   *
28   * $Id: plugin_2pass2.c,v 1.1.2.3 2003-05-12 12:33:16 suxen_drol Exp $   * $Id: plugin_2pass2.c,v 1.1.2.9 2003-05-22 22:17:44 edgomez Exp $
29   *   *
30   *****************************************************************************/   *****************************************************************************/
31    
32  #include <stdio.h>  #include <stdio.h>
33  #include <math.h>  #include <math.h>
34    #include <limits.h>
35    
36  #define RAD2DEG 57.295779513082320876798154814105  #define RAD2DEG 57.295779513082320876798154814105
37  #define DEG2RAD 0.017453292519943295769236907684886  #define DEG2RAD 0.017453292519943295769236907684886
# Line 41  Line 45 
45          int blks[3];                    /* k,m,y blks */          int blks[3];                    /* k,m,y blks */
46      int length;             /* first pass length */      int length;             /* first pass length */
47      int scaled_length;     /* scaled length */      int scaled_length;     /* scaled length */
48      int desired_length;      int desired_length;     /* desired length; calcuated during encoding */
49    
50        int zone_mode;   /* XVID_ZONE_xxx */
51        double weight;
52  } stat_t;  } stat_t;
53    
54    
# Line 55  Line 62 
62      /* constant statistical data */      /* constant statistical data */
63          int num_frames;          int num_frames;
64      int num_keyframes;      int num_keyframes;
65      uint64_t target;    /* target bitrate */      uint64_t target;    /* target filesize */
66    
67      int count[3];   /* count of each frame types */      int count[3];   /* count of each frame types */
68      uint64_t tot_length[3];  /* total length of each frame types */      uint64_t tot_length[3];  /* total length of each frame types */
# Line 64  Line 71 
71      uint64_t tot_scaled_length[3];  /* total scaled length of each frame type */      uint64_t tot_scaled_length[3];  /* total scaled length of each frame type */
72      int max_length;     /* max frame size */      int max_length;     /* max frame size */
73    
74        /* zone statistical data */
75        double avg_weight;  /* average weight */
76        int64_t tot_quant;   /* total length used by XVID_ZONE_QUANT zones */
77    
78    
79      double curve_comp_scale;      double curve_comp_scale;
80      double movie_curve;      double movie_curve;
81    
# Line 90  Line 102 
102      int KFoverflow;      int KFoverflow;
103      int KFoverflow_partial;      int KFoverflow_partial;
104      int KF_idx;      int KF_idx;
105    
106        double fq_error;
107  } rc_2pass2_t;  } rc_2pass2_t;
108    
109    
# Line 128  Line 142 
142  }  }
143    
144    
 /* scale the curve */  
   
 static void internal_scale(rc_2pass2_t *rc)  
 {  
         int64_t target  = rc->target;  
         int64_t tot_length = rc->tot_length[0] + rc->tot_length[1] + rc->tot_length[2];  
         int min_size[3];  
         double scaler;  
         int i;  
   
         if (target <= 0 || target >= tot_length) {  
                 printf("undersize warning\n");  
         }  
   
         /* perform an initial scale pass.  
            if a frame size is scaled underneath our hardcoded minimums, then we force the  
            frame size to the minimum, and deduct the original & scaled frmae length from the  
            original and target total lengths */  
   
         min_size[0] = ((rc->stats[0].blks[0]*22) + 240) / 8;  
         min_size[1] = (rc->stats[0].blks[0] + 88) / 8;  
         min_size[2] = 8;  
   
   
         scaler = (double)target / (double)tot_length;  
         //printf("target=%i, tot_length=%i, scaler=%f\n", (int)target, (int)tot_length, scaler);  
   
         for (i=0; i<rc->num_frames; i++) {  
                 stat_t * s = &rc->stats[i];  
                 int len;  
   
                 len = (int)((double)s->length * scaler);  
                 if (len < min_size[s->type]) {          /* force frame size */  
                         s->scaled_length = min_size[s->type];  
                         target -= s->scaled_length;  
                         tot_length -= s->length;  
                 }else{  
                         s->scaled_length = 0;  
                 }  
         }  
   
         if (target <= 0 || target >= tot_length) {  
                 printf("undersize warning\n");  
                 return;  
         }  
   
         scaler = (double)target / (double)tot_length;  
         //printf("target=%i, tot_length=%i, scaler=%f\n", (int)target, (int)tot_length, scaler);  
   
         for (i=0; i<rc->num_frames; i++) {  
                 stat_t * s = &rc->stats[i];  
   
                 if (s->scaled_length==0) {      /* ignore frame with forced frame sizes */  
                         s->scaled_length = (int)((double)s->length * scaler);  
                 }  
         }  
   
 }  
   
   
   
   
   
 /* static void internal_scale(rc_2pass2_t *rc)  
 {  
     const double avg_pvop = rc->avg_length[XVID_TYPE_PVOP-1];  
     const double avg_bvop = rc->avg_length[XVID_TYPE_BVOP-1];  
     const uint64_t tot_pvop = rc->tot_length[XVID_TYPE_PVOP-1];  
     const uint64_t tot_bvop = rc->tot_length[XVID_TYPE_BVOP-1];  
     uint64_t i_total = 0;  
         double total1,total2;  
     int i;  
   
     for (i=0; i<rc->num_frames; i++) {  
         stat_t * s = &rc->stats[i];  
   
                 if (s->type == XVID_TYPE_IVOP) {  
                         i_total += s->length + s->length * rc->param.keyframe_boost / 100;  
         }  
         }  
   
         // compensate for avi frame overhead  
         rc->target_size -= rc->num_frames * 24;  
   
         // perform prepass to compensate for over/undersizing  
   
         if (rc->param.use_alt_curve) {  
   
         rc->alt_curve_low = avg_pvop - avg_pvop * (double)rc->param.alt_curve_low_dist / 100.0;  
                 rc->alt_curve_low_diff = avg_pvop - rc->alt_curve_low;  
                 rc->alt_curve_high = avg_pvop + avg_pvop * (double)rc->param.alt_curve_high_dist / 100.0;  
                 rc->alt_curve_high_diff = rc->alt_curve_high - avg_pvop;  
                 if (rc->alt_curve_use_auto) {  
                         if (rc->movie_curve > 1.0) {  
                                 rc->param.alt_curve_min_rel_qual = (int)(100.0 - (100.0 - 100.0 / rc->movie_curve) * (double)rc->param.alt_curve_auto_str / 100.0);  
                                 if (rc->param.alt_curve_min_rel_qual < 20)  
                                         rc->param.alt_curve_min_rel_qual = 20;  
             }else{  
                                 rc->param.alt_curve_min_rel_qual = 100;  
             }  
                 }  
                 rc->alt_curve_mid_qual = (1.0 + (double)rc->param.alt_curve_min_rel_qual / 100.0) / 2.0;  
                 rc->alt_curve_qual_dev = 1.0 - rc->alt_curve_mid_qual;  
   
                 if (rc->param.alt_curve_low_dist > 100) {  
                         switch(rc->param.alt_curve_type) {  
                         case XVID_CURVE_SINE : // Sine Curve (high aggressiveness)  
                                 rc->alt_curve_qual_dev *= 2.0 / (1.0 + sin(DEG2RAD * (avg_pvop * 90.0 / rc->alt_curve_low_diff)));  
                                 rc->alt_curve_mid_qual = 1.0 - rc->alt_curve_qual_dev * sin(DEG2RAD * (avg_pvop * 90.0 / rc->alt_curve_low_diff));  
                                 break;  
                         case XVID_CURVE_LINEAR : // Linear (medium aggressiveness)  
                                 rc->alt_curve_qual_dev *= 2.0 / (1.0 + avg_pvop / rc->alt_curve_low_diff);  
                                 rc->alt_curve_mid_qual = 1.0 - rc->alt_curve_qual_dev * avg_pvop / rc->alt_curve_low_diff;  
                                 break;  
                         case XVID_CURVE_COSINE : // Cosine Curve (low aggressiveness)  
                                 rc->alt_curve_qual_dev *= 2.0 / (1.0 +  (1.0 - cos(DEG2RAD * (avg_pvop * 90.0 / rc->alt_curve_low_diff))));  
                                 rc->alt_curve_mid_qual = 1.0 - rc->alt_curve_qual_dev * (1.0 - cos(DEG2RAD * (avg_pvop * 90.0 / rc->alt_curve_low_diff)));  
                         }  
                 }  
         }  
   
         total1 = 0;  
         total2 = 0;  
   
     for (i=0; i<rc->num_frames; i++) {  
         stat_t * s = &rc->stats[i];  
   
                 if (s->type != XVID_TYPE_IVOP) {  
   
             double dbytes = s->length / rc->movie_curve;  
             double dbytes2;  
                         total1 += dbytes;  
   
                         if (s->type == XVID_TYPE_BVOP)  
                                 dbytes *= avg_pvop / avg_bvop;  
   
                         if (rc->param.use_alt_curve) {  
                                 if (dbytes > avg_pvop) {  
                     if (dbytes >= rc->alt_curve_high) {  
                                                 dbytes2 = dbytes * (rc->alt_curve_mid_qual - rc->alt_curve_qual_dev);  
                     }else{  
                                                 switch(rc->param.alt_curve_type){  
                                                 case XVID_CURVE_SINE :  
                                                     dbytes2 = dbytes * (rc->alt_curve_mid_qual - rc->alt_curve_qual_dev * sin(DEG2RAD * ((dbytes - avg_pvop) * 90.0 / rc->alt_curve_high_diff)));  
                                                         break;  
                                                 case XVID_CURVE_LINEAR :  
                                                     dbytes2 = dbytes * (rc->alt_curve_mid_qual - rc->alt_curve_qual_dev * (dbytes - avg_pvop) / rc->alt_curve_high_diff);  
                                                         break;  
                                                 case XVID_CURVE_COSINE :  
                                                     dbytes2 = dbytes * (rc->alt_curve_mid_qual - rc->alt_curve_qual_dev * (1.0 - cos(DEG2RAD * ((dbytes - avg_pvop) * 90.0 / rc->alt_curve_high_diff))));  
                                                 }  
                                         }  
                                 }else{  
                     if (dbytes <= rc->alt_curve_low){  
                                                 dbytes2 = dbytes;  
                     }else{  
                                                 switch(rc->param.alt_curve_type){  
                                                 case XVID_CURVE_SINE :  
                                                     dbytes2 = dbytes * (rc->alt_curve_mid_qual - rc->alt_curve_qual_dev * sin(DEG2RAD * ((dbytes - avg_pvop) * 90.0 / rc->alt_curve_low_diff)));  
                                                         break;  
                                                 case XVID_CURVE_LINEAR :  
                                                     dbytes2 = dbytes * (rc->alt_curve_mid_qual - rc->alt_curve_qual_dev * (dbytes - avg_pvop) / rc->alt_curve_low_diff);  
                                                         break;  
                                                 case XVID_CURVE_COSINE :  
                                                     dbytes2 = dbytes * (rc->alt_curve_mid_qual + rc->alt_curve_qual_dev * (1.0 - cos(DEG2RAD * ((dbytes - avg_pvop) * 90.0 / rc->alt_curve_low_diff))));  
                                                 }  
                                         }  
                                 }  
                         }else{  
                 if (dbytes > avg_pvop) {  
                                         dbytes2 = ((double)dbytes + (avg_pvop - dbytes) *  
                                                 rc->param.curve_compression_high / 100.0);  
                                 }else{  
                                         dbytes2 = ((double)dbytes + (avg_pvop - dbytes) *  
                                                 rc->param.curve_compression_low / 100.0);  
                                 }  
                         }  
   
                         if (s->type == XVID_TYPE_BVOP) {  
                                 dbytes2 *= avg_bvop / avg_pvop;  
             }  
   
             if (dbytes2 < rc->min_length[s->type-1]) {  
                 dbytes = rc->min_length[s->type-1];  
             }  
   
             total2 += dbytes2;  
                 }  
         }  
   
         rc->curve_comp_scale = total1 / total2;  
   
         if (!rc->param.use_alt_curve) {  
                 printf("middle frame size for asymmetric curve compression: %i",  
             (int)(avg_pvop * rc->curve_comp_scale));  
         }  
 }*/  
   
   
145    
146  /* open stats file(s) and read into rc->stats array */  /* open stats file(s) and read into rc->stats array */
147    
# Line 360  Line 175 
175          }else if (type == 'b') {          }else if (type == 'b') {
176              s->type = XVID_TYPE_BVOP;              s->type = XVID_TYPE_BVOP;
177          }else{  /* unknown type */          }else{  /* unknown type */
178              printf("unk\n");              DPRINTF(XVID_DEBUG_RC, "unknown stats frame type; assuming pvop\n");
179              continue;              s->type = XVID_TYPE_PVOP;
180          }          }
181    
182          i++;          i++;
183      }      }
184    
185      rc->num_frames = i;      rc->num_frames = i;
186    
187      fclose(f);      fclose(f);
# Line 375  Line 191 
191    
192    
193    
194    #if 0
   
195  static void print_stats(rc_2pass2_t * rc)  static void print_stats(rc_2pass2_t * rc)
196  {  {
197      int i;      int i;
198        DPRINTF(XVID_DEBUG_RC, "type quant length scaled_length\n");
199      for (i = 0; i < rc->num_frames; i++) {      for (i = 0; i < rc->num_frames; i++) {
200          stat_t * s = &rc->stats[i];          stat_t * s = &rc->stats[i];
201          printf("%i %i %i %i\n", s->type, s->quant, s->length, s->scaled_length);          DPRINTF(XVID_DEBUG_RC, "%d %d %d %d\n", s->type, s->quant, s->length, s->scaled_length);
   
202      }      }
203  }  }
204    #endif
205    
206  /* pre-process the statistics data  /* pre-process the statistics data
207      this is a clone of vfw/src/2pass.c:codec_2pass_init minus file reading, alt_curve, internal scale      - for each type, count, tot_length, min_length, max_length
208        - set keyframes_locations
209  */  */
210    
211  void pre_process0(rc_2pass2_t * rc)  static void
212    pre_process0(rc_2pass2_t * rc)
213  {  {
214      int i,j;      int i,j;
215    
# Line 400  Line 217 
217          rc->count[i]=0;          rc->count[i]=0;
218          rc->tot_length[i] = 0;          rc->tot_length[i] = 0;
219          rc->last_quant[i] = 0;          rc->last_quant[i] = 0;
220                    rc->min_length[i] = INT_MAX;
221      }      }
222    
223      for (i=0; i<32;i++) {          rc->max_length = INT_MIN;
         rc->pquant_error[i] = 0;  
         rc->bquant_error[i] = 0;  
         rc->quant_count[i] = 0;  
     }  
224    
225      for (i=j=0; i<rc->num_frames; i++) {      for (i=j=0; i<rc->num_frames; i++) {
226          stat_t * s = &rc->stats[i];          stat_t * s = &rc->stats[i];
# Line 414  Line 228 
228          rc->count[s->type-1]++;          rc->count[s->type-1]++;
229          rc->tot_length[s->type-1] += s->length;          rc->tot_length[s->type-1] += s->length;
230    
231          if (i == 0 || s->length < rc->min_length[s->type-1]) {          if (s->length < rc->min_length[s->type-1]) {
232              rc->min_length[s->type-1] = s->length;              rc->min_length[s->type-1] = s->length;
233          }          }
234    
235          if (i == 0 || s->length > rc->max_length) {          if (s->length > rc->max_length) {
236              rc->max_length = s->length;              rc->max_length = s->length;
237          }          }
238    
# Line 427  Line 241 
241              j++;              j++;
242          }          }
243      }      }
244    
245            /*
246             * The "per sequence" overflow system considers a natural sequence to be
247             * formed by all frames between two iframes, so if we want to make sure
248             * the system does not go nuts during last sequence, we force the last
249             * frame to appear in the keyframe locations array.
250             */
251      rc->keyframe_locations[j] = i;      rc->keyframe_locations[j] = i;
252    
253            DPRINTF(XVID_DEBUG_RC, "Min 1st pass IFrame length: %d\n", rc->min_length[0]);
254            DPRINTF(XVID_DEBUG_RC, "Min 1st pass PFrame length: %d\n", rc->min_length[1]);
255            DPRINTF(XVID_DEBUG_RC, "Min 1st pass BFrame length: %d\n", rc->min_length[2]);
256    }
257    
258    
259    /* calculate zone weight "center" */
260    
261    static void
262    zone_process(rc_2pass2_t *rc, const xvid_plg_create_t * create)
263    {
264        int i,j;
265        int n = 0;
266    
267        rc->avg_weight = 0.0;
268        rc->tot_quant = 0;
269    
270    
271        if (create->num_zones == 0) {
272            for (j = 0; j < rc->num_frames; j++) {
273                rc->stats[j].zone_mode = XVID_ZONE_WEIGHT;
274                rc->stats[j].weight = 1.0;
275            }
276            rc->avg_weight += rc->num_frames * 1.0;
277            n += rc->num_frames;
278        }
279    
280    
281        for(i=0; i < create->num_zones; i++) {
282    
283            int next = (i+1<create->num_zones) ? create->zones[i+1].frame : rc->num_frames;
284    
285            if (i==0 && create->zones[i].frame > 0) {
286                for (j = 0; j < create->zones[i].frame && j < rc->num_frames; j++) {
287                    rc->stats[j].zone_mode = XVID_ZONE_WEIGHT;
288                    rc->stats[j].weight = 1.0;
289                }
290                rc->avg_weight += create->zones[i].frame * 1.0;
291                n += create->zones[i].frame;
292  }  }
293    
294            if (create->zones[i].mode == XVID_ZONE_WEIGHT) {
295                for (j = create->zones[i].frame; j < next && j < rc->num_frames; j++ ) {
296                    rc->stats[j].zone_mode = XVID_ZONE_WEIGHT;
297                    rc->stats[j].weight = (double)create->zones[i].increment / (double)create->zones[i].base;
298                }
299                next -= create->zones[i].frame;
300                rc->avg_weight += (double)(next * create->zones[i].increment) / (double)create->zones[i].base;
301                n += next;
302            }else{  // XVID_ZONE_QUANT
303                for (j = create->zones[i].frame; j < next && j < rc->num_frames; j++ ) {
304                    rc->stats[j].zone_mode = XVID_ZONE_QUANT;
305                    rc->stats[j].weight = (double)create->zones[i].increment / (double)create->zones[i].base;
306                    rc->tot_quant += rc->stats[j].length;
307                }
308            }
309        }
310        rc->avg_weight = n>0 ? rc->avg_weight/n : 1.0;
311    
312        DPRINTF(XVID_DEBUG_RC, "center_weight: %f (for %i frames);   fixed_bytes: %i\n", rc->avg_weight, n, rc->tot_quant);
313    }
314    
315  void pre_process1(rc_2pass2_t * rc)  
316    /* scale the curve */
317    
318    static void
319    internal_scale(rc_2pass2_t *rc)
320    {
321            int64_t target  = rc->target - rc->tot_quant;
322            int64_t pass1_length = rc->tot_length[0] + rc->tot_length[1] + rc->tot_length[2] - rc->tot_quant;
323            int min_size[3];
324            double scaler;
325            int i;
326    
327    
328            /*
329             * Perform an initial scale pass.
330             * if a frame size is scaled underneath our hardcoded minimums, then we
331             * force the frame size to the minimum, and deduct the original & scaled
332             * frame length from the original and target total lengths
333             */
334    
335            min_size[0] = ((rc->stats[0].blks[0]*22) + 240) / 8;
336            min_size[1] = (rc->stats[0].blks[0] + 88) / 8;
337            min_size[2] = 8;
338    
339            scaler = (double)target / (double)pass1_length;
340    
341            if (target <= 0 || pass1_length <= 0 || target >= pass1_length) {
342                    DPRINTF(XVID_DEBUG_RC, "undersize warning\n");
343            scaler = 1.0;
344            }
345    
346        DPRINTF(XVID_DEBUG_RC,
347                            "Before any correction: target=%i, tot_length=%i, scaler=%f\n",
348                            (int)target, (int)pass1_length, scaler);
349    
350            for (i=0; i<rc->num_frames; i++) {
351                    stat_t * s = &rc->stats[i];
352                    int len;
353    
354            if (s->zone_mode == XVID_ZONE_QUANT) {
355                s->scaled_length = s->length;
356            }else {
357                        len = (int)((double)s->length * scaler * s->weight / rc->avg_weight);
358                        if (len < min_size[s->type-1]) {            /* force frame size */
359                                s->scaled_length = min_size[s->type-1];
360                                target -= s->scaled_length;
361                                pass1_length -= s->length;
362                        }else{
363                                s->scaled_length = 0;
364                        }
365            }
366            }
367    
368        scaler = (double)target / (double)pass1_length;
369        if (target <= 0 || pass1_length <= 0 || target >= pass1_length) {
370                    DPRINTF(XVID_DEBUG_RC,"undersize warning\n");
371                    scaler = 1.0;
372            }
373    
374            DPRINTF(XVID_DEBUG_RC,
375                            "After correction: target=%i, tot_length=%i, scaler=%f\n",
376                            (int)target, (int)pass1_length, scaler);
377    
378            for (i=0; i<rc->num_frames; i++) {
379                    stat_t * s = &rc->stats[i];
380    
381                    if (s->scaled_length==0) {      /* ignore frame with forced frame sizes */
382                            s->scaled_length = (int)((double)s->length * scaler * s->weight / rc->avg_weight);
383                    }
384            }
385    }
386    
387    
388    
389    
390    static void
391    pre_process1(rc_2pass2_t * rc)
392  {  {
393      int i;      int i;
394      double total1, total2;      double total1, total2;
# Line 585  Line 541 
541      rc->curve_comp_scale = total1 / total2;      rc->curve_comp_scale = total1 / total2;
542    
543      if (!rc->param.use_alt_curve) {      if (!rc->param.use_alt_curve) {
544          printf("middle frame size for asymmetric curve compression: %i\n",          DPRINTF(XVID_DEBUG_RC, "middle frame size for asymmetric curve compression: %i\n",
545              (int)(rc->avg_length[XVID_TYPE_PVOP-1] * rc->curve_comp_scale));              (int)(rc->avg_length[XVID_TYPE_PVOP-1] * rc->curve_comp_scale));
546      }      }
547    
# Line 602  Line 558 
558    
559          /* special info for alt curve:  bias bonus and quantizer thresholds */          /* special info for alt curve:  bias bonus and quantizer thresholds */
560    
561                  printf("avg scaled framesize:%i", (int)rc->avg_length[XVID_TYPE_PVOP-1]);                  DPRINTF(XVID_DEBUG_RC, "avg scaled framesize:%i\n", (int)rc->avg_length[XVID_TYPE_PVOP-1]);
562                  printf("bias bonus:%i bytes", (int)rc->alt_curve_curve_bias_bonus);                  DPRINTF(XVID_DEBUG_RC, "bias bonus:%i bytes\n", (int)rc->alt_curve_curve_bias_bonus);
563    
564                  for (i=1; i <= (int)(rc->alt_curve_high*2)+1; i++) {                  for (i=1; i <= (int)(rc->alt_curve_high*2)+1; i++) {
565              double curve_temp, dbytes;              double curve_temp, dbytes;
# Line 652  Line 608 
608                                  if (newquant != oldquant) {                                  if (newquant != oldquant) {
609                      int percent = (int)((i - rc->avg_length[XVID_TYPE_PVOP-1]) * 100.0 / rc->avg_length[XVID_TYPE_PVOP-1]);                      int percent = (int)((i - rc->avg_length[XVID_TYPE_PVOP-1]) * 100.0 / rc->avg_length[XVID_TYPE_PVOP-1]);
610                                          oldquant = newquant;                                          oldquant = newquant;
611                                          printf("quant:%i threshold at %i : %i percent", newquant, i, percent);                                          DPRINTF(XVID_DEBUG_RC, "quant:%i threshold at %i : %i percent\n", newquant, i, percent);
612                                  }                                  }
613                          }                          }
614                  }                  }
# Line 672  Line 628 
628  {  {
629      xvid_plugin_2pass2_t * param = (xvid_plugin_2pass2_t *)create->param;      xvid_plugin_2pass2_t * param = (xvid_plugin_2pass2_t *)create->param;
630      rc_2pass2_t * rc;      rc_2pass2_t * rc;
631        int i;
632    
633      rc = malloc(sizeof(rc_2pass2_t));      rc = malloc(sizeof(rc_2pass2_t));
634      if (rc == NULL)      if (rc == NULL)
# Line 702  Line 659 
659      if (rc->param.min_key_interval <= 0) rc->param.min_key_interval = 300;      if (rc->param.min_key_interval <= 0) rc->param.min_key_interval = 300;
660    
661      if (!det_stats_length(rc, param->filename)){      if (!det_stats_length(rc, param->filename)){
662          DPRINTF(DPRINTF_RC,"fopen %s failed\n", param->filename);          DPRINTF(XVID_DEBUG_RC,"fopen %s failed\n", param->filename);
663          free(rc);          free(rc);
664          return XVID_ERR_FAIL;          return XVID_ERR_FAIL;
665      }      }
# Line 712  Line 669 
669          return XVID_ERR_MEMORY;          return XVID_ERR_MEMORY;
670      }      }
671    
672      /* XXX: do we need an addition location */      /*
673             * We need an extra location because we do as if the last frame were an
674             * IFrame. This is needed because our code consider that frames between
675             * 2 IFrames form a natural sequence. So we store last frame as a
676             * keyframe location.
677             */
678      if ((rc->keyframe_locations = malloc((rc->num_keyframes + 1) * sizeof(int))) == NULL) {      if ((rc->keyframe_locations = malloc((rc->num_keyframes + 1) * sizeof(int))) == NULL) {
679          free(rc->stats);          free(rc->stats);
680          free(rc);          free(rc);
# Line 720  Line 682 
682      }      }
683    
684      if (!load_stats(rc, param->filename)) {      if (!load_stats(rc, param->filename)) {
685          DPRINTF(DPRINTF_RC,"fopen %s failed\n", param->filename);          DPRINTF(XVID_DEBUG_RC,"fopen %s failed\n", param->filename);
686          free(rc->keyframe_locations);          free(rc->keyframe_locations);
687          free(rc->stats);          free(rc->stats);
688          free(rc);          free(rc);
# Line 729  Line 691 
691    
692      /* pre-process our stats */      /* pre-process our stats */
693    
         {  
694                  if (rc->num_frames  < create->fbase/create->fincr) {                  if (rc->num_frames  < create->fbase/create->fincr) {
695                          rc->target = rc->param.bitrate / 8;     /* one second */                          rc->target = rc->param.bitrate / 8;     /* one second */
696                  }else{                  }else{
697                          rc->target = (rc->param.bitrate * rc->num_frames * create->fincr) / (create->fbase * 8);                  rc->target =
698                            ((uint64_t)rc->param.bitrate * (uint64_t)rc->num_frames * (uint64_t)create->fincr) / \
699                            ((uint64_t)create->fbase * 8);
700                  }                  }
701    
702        DPRINTF(XVID_DEBUG_RC, "Number of frames: %d\n", rc->num_frames);
703            DPRINTF(XVID_DEBUG_RC, "Frame rate: %d/%d\n", create->fbase, create->fincr);
704            DPRINTF(XVID_DEBUG_RC, "Target bitrate: %ld\n", rc->param.bitrate);
705            DPRINTF(XVID_DEBUG_RC, "Target filesize: %lld\n", rc->target);
706    
707    #if 0
708                  rc->target -= rc->num_frames*24;        /* avi file header */                  rc->target -= rc->num_frames*24;        /* avi file header */
709    #endif
         }  
710    
711    
712          pre_process0(rc);          pre_process0(rc);
713    
714          if (rc->param.bitrate) {          if (rc->param.bitrate) {
715            zone_process(rc, create);
716                  internal_scale(rc);                  internal_scale(rc);
717        }else{
718            /* external scaler: ignore zone */
719            for (i=0;i<rc->num_frames;i++) {
720                rc->stats[i].zone_mode = XVID_ZONE_WEIGHT;
721                rc->stats[i].weight = 1.0;
722            }
723            rc->avg_weight = 1.0;
724            rc->tot_quant = 0;
725        }
726            pre_process1(rc);
727    
728        for (i=0; i<32;i++) {
729            rc->pquant_error[i] = 0;
730            rc->bquant_error[i] = 0;
731            rc->quant_count[i] = 0;
732          }          }
733          pre_process1(rc);pre_process1(rc);pre_process1(rc);  
734        rc->fq_error = 0;
735    
736      *handle = rc;      *handle = rc;
737          return(0);          return(0);
# Line 772  Line 757 
757      double curve_temp;      double curve_temp;
758      int capped_to_max_framesize = 0;      int capped_to_max_framesize = 0;
759    
760      if (data->frame_num >= rc->num_frames) {          /*
761          /* insufficent stats data */           * This function is quite long but easy to understand. In order to simplify
762          return 0;           * the code path (a bit), we treat 3 cases that can return immediatly.
763             */
764    
765            /* First case: Another plugin has already set a quantizer */
766        if (data->quant > 0)
767                    return(0);
768    
769            /* Second case: We are in a Quant zone */
770            if (s->zone_mode == XVID_ZONE_QUANT) {
771    
772                    rc->fq_error += s->weight;
773                    data->quant = (int)rc->fq_error;
774                    rc->fq_error -= data->quant;
775    
776                    s->desired_length = s->length;
777    
778                    return(0);
779    
780      }      }
781    
782      overflow = rc->overflow / 8;        /* XXX: why by 8 */          /* Third case: insufficent stats data */
783            if (data->frame_num >= rc->num_frames)
784                    return 0;
785    
786      if (s->type == XVID_TYPE_IVOP) {        /* XXX: why */          /*
787             * The last case is the one every normal minded developer should fear to
788             * maintain in a project :-)
789             */
790    
791            /* XXX: why by 8 */
792            overflow = rc->overflow / 8;
793    
794            /*
795             * The rc->overflow field represents the overflow in current scene (between two
796             * IFrames) so we must not forget to reset it if we are enetring a new scene
797             */
798            if (s->type == XVID_TYPE_IVOP) {
799          overflow = 0;          overflow = 0;
800      }      }
801    
# Line 791  Line 807 
807      }      }
808      dbytes /= rc->movie_curve;      dbytes /= rc->movie_curve;
809    
810            /*
811             * We are now entering in the hard part of the algo, it was first designed
812             * to work with i/pframes only streams, so the way it computes things is
813             * adapted to pframes only. However we can use it if we just take care to
814             * scale the bframes sizes to pframes sizes using the ratio avg_p/avg_p and
815             * then before really using values depending on frame sizes, scaling the
816             * value again with the inverse ratio
817             */
818      if (s->type == XVID_TYPE_BVOP) {      if (s->type == XVID_TYPE_BVOP) {
819          dbytes *= rc->avg_length[XVID_TYPE_PVOP-1] / rc->avg_length[XVID_TYPE_BVOP-1];          dbytes *= rc->avg_length[XVID_TYPE_PVOP-1] / rc->avg_length[XVID_TYPE_BVOP-1];
820      }      }
821    
822            /*
823             * Apply user's choosen Payback method. Payback helps bitrate to follow the
824             * scaled curve "paying back" past errors in curve previsions.
825             */
826      if (rc->param.payback_method == XVID_PAYBACK_BIAS) {      if (rc->param.payback_method == XVID_PAYBACK_BIAS) {
827          desired =(int)(rc->curve_comp_error / rc->param.bitrate_payback_delay);          desired =(int)(rc->curve_comp_error / rc->param.bitrate_payback_delay);
828      }else{      }else{
                 //printf("desired=%i, dbytes=%i\n", desired,dbytes);  
829                  desired = (int)(rc->curve_comp_error * dbytes /                  desired = (int)(rc->curve_comp_error * dbytes /
830                          rc->avg_length[XVID_TYPE_PVOP-1] / rc->param.bitrate_payback_delay);                          rc->avg_length[XVID_TYPE_PVOP-1] / rc->param.bitrate_payback_delay);
                 //printf("desired=%i\n", desired);  
831    
832                  if (labs(desired) > fabs(rc->curve_comp_error)) {                  if (labs(desired) > fabs(rc->curve_comp_error)) {
833                          desired = (int)rc->curve_comp_error;                          desired = (int)rc->curve_comp_error;
# Line 810  Line 836 
836    
837      rc->curve_comp_error -= desired;      rc->curve_comp_error -= desired;
838    
839      /* alt curve */          /*
840             * Alt curve treatment is not that hard to understand though the formulas
841             * seem to be huge. Alt treatment is basically a way to soft/harden the
842             * curve flux applying sine/linear/cosine ratios
843             */
844    
845      curve_temp = 0; /* XXX: warning */          /* XXX: warning */
846            curve_temp = 0;
847    
848      if (rc->param.use_alt_curve) {      if (rc->param.use_alt_curve) {
849          if (s->type != XVID_TYPE_IVOP)  {          if (s->type != XVID_TYPE_IVOP)  {
# Line 847  Line 878 
878                      }                      }
879                                  }                                  }
880                          }                          }
881    
882                            /*
883                             * End of code path for curve_temp, as told earlier, we are now
884                             * obliged to scale the value to a bframe one using the inverse
885                             * ratio applied earlier
886                             */
887                          if (s->type == XVID_TYPE_BVOP)                          if (s->type == XVID_TYPE_BVOP)
888                                  curve_temp *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1];                                  curve_temp *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1];
889    
# Line 855  Line 892 
892                          desired += ((int)curve_temp);                          desired += ((int)curve_temp);
893                          rc->curve_comp_error += curve_temp - (int)curve_temp;                          rc->curve_comp_error += curve_temp - (int)curve_temp;
894                  }else{                  }else{
895                            /*
896                             * End of code path for dbytes, as told earlier, we are now
897                             * obliged to scale the value to a bframe one using the inverse
898                             * ratio applied earlier
899                             */
900                          if (s->type == XVID_TYPE_BVOP)                          if (s->type == XVID_TYPE_BVOP)
901                                  dbytes *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1];                                  dbytes *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1];
902    
# Line 871  Line 913 
913              curve_temp *= ((double)dbytes + (rc->avg_length[XVID_TYPE_PVOP-1] - dbytes) * rc->param.curve_compression_low / 100.0);              curve_temp *= ((double)dbytes + (rc->avg_length[XVID_TYPE_PVOP-1] - dbytes) * rc->param.curve_compression_low / 100.0);
914          }          }
915    
916          if (s->type == XVID_TYPE_BVOP){                  /*
917                     * End of code path for curve_temp, as told earlier, we are now
918                     * obliged to scale the value to a bframe one using the inverse
919                     * ratio applied earlier
920                     */
921                    if (s->type == XVID_TYPE_BVOP)
922              curve_temp *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1];              curve_temp *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1];
         }  
923    
924          desired += (int)curve_temp;          desired += (int)curve_temp;
925          rc->curve_comp_error += curve_temp - (int)curve_temp;          rc->curve_comp_error += curve_temp - (int)curve_temp;
926      }else{      }else{
927                    /*
928                     * End of code path for dbytes, as told earlier, we are now
929                     * obliged to scale the value to a bframe one using the inverse
930                     * ratio applied earlier
931                     */
932          if (s->type == XVID_TYPE_BVOP){          if (s->type == XVID_TYPE_BVOP){
933                          dbytes *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1];                          dbytes *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1];
934          }          }
# Line 886  Line 937 
937                  rc->curve_comp_error += dbytes - (int)dbytes;                  rc->curve_comp_error += dbytes - (int)dbytes;
938      }      }
939    
940    
941            /*
942             * We can't do bigger frames than first pass, this would be stupid as first
943             * pass is quant=2 and that reaching quant=1 is not worth it. We would lose
944             * many bytes and we would not not gain much quality.
945             */
946          if (desired > s->length){          if (desired > s->length){
947                  rc->curve_comp_error += desired - s->length;                  rc->curve_comp_error += desired - s->length;
948                  desired = s->length;                  desired = s->length;
# Line 929  Line 986 
986    
987      overflow = (int)((double)overflow * desired / rc->avg_length[XVID_TYPE_PVOP-1]);      overflow = (int)((double)overflow * desired / rc->avg_length[XVID_TYPE_PVOP-1]);
988    
989          // Foxer: reign in overflow with huge frames          /* Reign in overflow with huge frames */
990          if (labs(overflow) > labs(rc->overflow)) {          if (labs(overflow) > labs(rc->overflow)) {
991                  overflow = rc->overflow;                  overflow = rc->overflow;
992          }          }
993    
994      // Foxer: make sure overflow doesn't run away          /* Make sure overflow doesn't run away */
   
995          if (overflow > desired * rc->param.max_overflow_improvement / 100) {          if (overflow > desired * rc->param.max_overflow_improvement / 100) {
996                  desired += (overflow <= desired) ? desired * rc->param.max_overflow_improvement / 100 :                  desired += (overflow <= desired) ? desired * rc->param.max_overflow_improvement / 100 :
997                          overflow * rc->param.max_overflow_improvement / 100;                          overflow * rc->param.max_overflow_improvement / 100;
# Line 945  Line 1001 
1001                  desired += overflow;                  desired += overflow;
1002          }          }
1003    
1004            /* Make sure we are not higher than desired frame size */
1005      if (desired > rc->max_length) {      if (desired > rc->max_length) {
1006                  capped_to_max_framesize = 1;                  capped_to_max_framesize = 1;
1007                  desired = rc->max_length;                  desired = rc->max_length;
1008                    DPRINTF(XVID_DEBUG_RC,"[%i] Capped to maximum frame size\n",
1009                                    data->frame_num);
1010          }          }
1011    
1012      // make sure to not scale below the minimum framesize          /* Make sure to not scale below the minimum framesize */
1013      if (desired < rc->min_length[s->type-1]) {      if (desired < rc->min_length[s->type-1]) {
1014          desired = rc->min_length[s->type-1];          desired = rc->min_length[s->type-1];
1015                    DPRINTF(XVID_DEBUG_RC,"[%i] Capped to minimum frame size\n",
1016                                    data->frame_num);
1017      }      }
1018    
1019            /*
1020      // very 'simple' quant<->filesize relationship           * Don't laugh at this very 'simple' quant<->filesize relationship, it
1021             * proves to be acurate enough for our algorithm
1022             */
1023      data->quant= (s->quant * s->length) / desired;      data->quant= (s->quant * s->length) / desired;
1024    
1025            /* Let's clip the computed quantizer, if needed */
1026          if (data->quant < 1) {          if (data->quant < 1) {
1027                  data->quant = 1;                  data->quant = 1;
1028      } else if (data->quant > 31) {      } else if (data->quant > 31) {
1029                  data->quant = 31;                  data->quant = 31;
1030          }          } else if (s->type != XVID_TYPE_IVOP) {
1031          else if (s->type != XVID_TYPE_IVOP)  
1032          {                  /*
1033                  // Foxer: aid desired quantizer precision by accumulating decision error                   * The frame quantizer has not been clipped, this appear to be a good
1034                     * computed quantizer, however past frames give us some info about how
1035                     * this quantizer performs against the algo prevision. Let's use this
1036                     * prevision to increase the quantizer when we observe a too big
1037                     * accumulated error
1038                     */
1039                  if (s->type== XVID_TYPE_BVOP) {                  if (s->type== XVID_TYPE_BVOP) {
1040                          rc->bquant_error[data->quant] += ((double)(s->quant * s->length) / desired) - data->quant;                          rc->bquant_error[data->quant] += ((double)(s->quant * s->length) / desired) - data->quant;
1041    
# Line 984  Line 1053 
1053                  }                  }
1054          }          }
1055    
1056      /* cap to min/max quant */          /*
1057             * Now we have a computed quant that is in the right quante range, with a
1058             * possible +1 correction due to cumulated error. We can now safely clip
1059             * the quantizer again with user's quant ranges. "Safely" means the Rate
1060             * Control could learn more about this quantizer, this knowledge is useful
1061             * for future frames even if it this quantizer won't be really used atm,
1062             * that's why we don't perform this clipping earlier.
1063             */
1064      if (data->quant < data->min_quant[s->type-1]) {      if (data->quant < data->min_quant[s->type-1]) {
1065          data->quant = data->min_quant[s->type-1];          data->quant = data->min_quant[s->type-1];
1066      }else if (data->quant > data->max_quant[s->type-1]) {      }else if (data->quant > data->max_quant[s->type-1]) {
1067          data->quant = data->max_quant[s->type-1];          data->quant = data->max_quant[s->type-1];
1068      }      }
1069    
1070      /* subsequent p/b frame quants can only be +- 2 */          /*
1071             * To avoid big quality jumps from frame to frame, we apply a "security"
1072             * rule that makes |last_quant - new_quant| <= 2. This rule only applies
1073             * to predicted frames (P and B)
1074             */
1075          if (s->type != XVID_TYPE_IVOP && rc->last_quant[s->type-1] && capped_to_max_framesize == 0) {          if (s->type != XVID_TYPE_IVOP && rc->last_quant[s->type-1] && capped_to_max_framesize == 0) {
1076    
1077                  if (data->quant > rc->last_quant[s->type-1] + 2) {                  if (data->quant > rc->last_quant[s->type-1] + 2) {
1078                          data->quant = rc->last_quant[s->type-1] + 2;                          data->quant = rc->last_quant[s->type-1] + 2;
1079                          DPRINTF(DPRINTF_RC, "p/b-frame quantizer prevented from rising too steeply");                          DPRINTF(XVID_DEBUG_RC,
1080                                            "[%i] p/b-frame quantizer prevented from rising too steeply\n",
1081                                            data->frame_num);
1082                  }                  }
1083                  if (data->quant < rc->last_quant[s->type-1] - 2) {                  if (data->quant < rc->last_quant[s->type-1] - 2) {
1084                          data->quant = rc->last_quant[s->type-1] - 2;                          data->quant = rc->last_quant[s->type-1] - 2;
1085                          DPRINTF(DPRINTF_RC, "p/b-frame quantizer prevented from falling too steeply");                          DPRINTF(XVID_DEBUG_RC,
1086                                            "[%i] p/b-frame quantizer prevented from falling too steeply\n",
1087                                            data->frame_num);
1088                  }                  }
1089          }          }
1090    
1091            /*
1092             * We don't want to pollute the RC history results when our computed quant
1093             * has been computed from a capped frame size
1094             */
1095          if (capped_to_max_framesize == 0) {          if (capped_to_max_framesize == 0) {
1096          rc->last_quant[s->type-1] = data->quant;          rc->last_quant[s->type-1] = data->quant;
1097          }          }
# Line 1018  Line 1105 
1105  {  {
1106      stat_t * s = &rc->stats[data->frame_num];      stat_t * s = &rc->stats[data->frame_num];
1107    
1108      if (data->frame_num >= rc->num_frames) {          /* Insufficent stats data */
1109          /* insufficent stats data */      if (data->frame_num >= rc->num_frames)
1110          return 0;          return 0;
     }  
1111    
1112      rc->quant_count[data->quant]++;      rc->quant_count[data->quant]++;
1113    
# Line 1045  Line 1131 
1131          rc->KFoverflow -= rc->KFoverflow_partial;          rc->KFoverflow -= rc->KFoverflow_partial;
1132      }      }
1133    
1134      printf("[%i] quant:%i stats1:%i scaled:%i actual:%i overflow:%i\n",      DPRINTF(XVID_DEBUG_RC, "[%i] quant:%i stats1:%i scaled:%i actual:%i overflow:%i\n",
1135          data->frame_num,          data->frame_num,
1136          data->quant,          data->quant,
1137          s->length,          s->length,

Legend:
Removed from v.1014  
changed lines
  Added in v.1040

No admin address has been configured
ViewVC Help
Powered by ViewVC 1.0.4