[svn] / branches / dev-api-4 / xvidcore / src / motion / motion_est.c Repository:
ViewVC logotype

View of /branches/dev-api-4/xvidcore/src/motion/motion_est.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 949 - (download) (annotate)
Wed Mar 26 14:56:49 2003 UTC (16 years, 1 month ago) by edgomez
File size: 93701 byte(s)
Changed flags naming conventions
/**************************************************************************
 *
 *	XVID MPEG-4 VIDEO CODEC
 *	motion estimation
 *
 *	This program is an implementation of a part of one or more MPEG-4
 *	Video tools as specified in ISO/IEC 14496-2 standard.  Those intending
 *	to use this software module in hardware or software products are
 *	advised that its use may infringe existing patents or copyrights, and
 *	any such use would be at such party's own risk.  The original
 *	developer of this software module and his/her company, and subsequent
 *	editors and their companies, will have no liability for use of this
 *	software or modifications or derivatives thereof.
 *
 *	This program is free software; you can redistribute it and/or modify
 *	it under the terms of the GNU General Public License as published by
 *	the Free Software Foundation; either version 2 of the License, or
 *	(at your option) any later version.
 *
 *	This program is distributed in the hope that it will be useful,
 *	but WITHOUT ANY WARRANTY; without even the implied warranty of
 *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *	GNU General Public License for more details.
 *
 *	You should have received a copy of the GNU General Public License
 *	along with this program; if not, write to the Free Software
 *	Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *************************************************************************/

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>	// memcpy
#include <math.h>	// lrint

#include "../encoder.h"
#include "../utils/mbfunctions.h"
#include "../prediction/mbprediction.h"
#include "../global.h"
#include "../utils/timer.h"
#include "../image/interpolate8x8.h"
#include "motion_est.h"
#include "motion.h"
#include "sad.h"
#include "../utils/emms.h"
#include "../dct/fdct.h"

/*****************************************************************************
 * Modified rounding tables -- declared in motion.h
 * Original tables see ISO spec tables 7-6 -> 7-9
 ****************************************************************************/

const uint32_t roundtab[16] =
{0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 };

/* K = 4 */
const uint32_t roundtab_76[16] =
{ 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1 };

/* K = 2 */
const uint32_t roundtab_78[8] =
{ 0, 0, 1, 1, 0, 0, 0, 1  };

/* K = 1 */
const uint32_t roundtab_79[4] =
{ 0, 1, 0, 0 };

#define INITIAL_SKIP_THRESH	(10)
#define FINAL_SKIP_THRESH	(50)
#define MAX_SAD00_FOR_SKIP	(20)
#define MAX_CHROMA_SAD_FOR_SKIP	(22)

#define CHECK_CANDIDATE(X,Y,D) { \
CheckCandidate((X),(Y), (D), &iDirection, data ); }

/*****************************************************************************
 * Code
 ****************************************************************************/

static __inline uint32_t
d_mv_bits(int x, int y, const VECTOR pred, const uint32_t iFcode, const int qpel, const int rrv)
{
	int xb, yb;
	x = qpel ? x<<1 : x;
	y = qpel ? y<<1 : y;
	if (rrv) { x = RRV_MV_SCALEDOWN(x); y = RRV_MV_SCALEDOWN(y); }

	x -= pred.x;
	y -= pred.y;

	if (x) {
		x = ABS(x);
		x += (1 << (iFcode - 1)) - 1;
		x >>= (iFcode - 1);
		if (x > 32) x = 32;
		xb = mvtab[x] + iFcode;
	} else xb = 1;

	if (y) {
		y = ABS(y);
		y += (1 << (iFcode - 1)) - 1;
		y >>= (iFcode - 1);
		if (y > 32) y = 32;
		yb = mvtab[y] + iFcode;
	} else yb = 1;
	return xb + yb;
}

static int32_t ChromaSAD2(int fx, int fy, int bx, int by, const SearchData * const data)
{
	int sad;
	const uint32_t stride = data->iEdgedWidth/2;
	uint8_t * f_refu = data->RefQ,
		* f_refv = data->RefQ + 8,
		* b_refu = data->RefQ + 16,
		* b_refv = data->RefQ + 24;

	switch (((fx & 1) << 1) | (fy & 1))	{
		case 0:
			fx = fx / 2; fy = fy / 2;
			f_refu = (uint8_t*)data->RefCU + fy * stride + fx, stride;
			f_refv = (uint8_t*)data->RefCV + fy * stride + fx, stride;
			break;
		case 1:
			fx = fx / 2; fy = (fy - 1) / 2;
			interpolate8x8_halfpel_v(f_refu, data->RefCU + fy * stride + fx, stride, data->rounding);
			interpolate8x8_halfpel_v(f_refv, data->RefCV + fy * stride + fx, stride, data->rounding);
			break;
		case 2:
			fx = (fx - 1) / 2; fy = fy / 2;
			interpolate8x8_halfpel_h(f_refu, data->RefCU + fy * stride + fx, stride, data->rounding);
			interpolate8x8_halfpel_h(f_refv, data->RefCV + fy * stride + fx, stride, data->rounding);
			break;
		default:
			fx = (fx - 1) / 2; fy = (fy - 1) / 2;
			interpolate8x8_halfpel_hv(f_refu, data->RefCU + fy * stride + fx, stride, data->rounding);
			interpolate8x8_halfpel_hv(f_refv, data->RefCV + fy * stride + fx, stride, data->rounding);
			break;
	}

	switch (((bx & 1) << 1) | (by & 1))	{
		case 0:
			bx = bx / 2; by = by / 2;
			b_refu = (uint8_t*)data->b_RefCU + by * stride + bx, stride;
			b_refv = (uint8_t*)data->b_RefCV + by * stride + bx, stride;
			break;
		case 1:
			bx = bx / 2; by = (by - 1) / 2;
			interpolate8x8_halfpel_v(b_refu, data->b_RefCU + by * stride + bx, stride, data->rounding);
			interpolate8x8_halfpel_v(b_refv, data->b_RefCV + by * stride + bx, stride, data->rounding);
			break;
		case 2:
			bx = (bx - 1) / 2; by = by / 2;
			interpolate8x8_halfpel_h(b_refu, data->b_RefCU + by * stride + bx, stride, data->rounding);
			interpolate8x8_halfpel_h(b_refv, data->b_RefCV + by * stride + bx, stride, data->rounding);
			break;
		default:
			bx = (bx - 1) / 2; by = (by - 1) / 2;
			interpolate8x8_halfpel_hv(b_refu, data->b_RefCU + by * stride + bx, stride, data->rounding);
			interpolate8x8_halfpel_hv(b_refv, data->b_RefCV + by * stride + bx, stride, data->rounding);
			break;
	}

	sad = sad8bi(data->CurU, b_refu, f_refu, stride);
	sad += sad8bi(data->CurV, b_refv, f_refv, stride);

	return sad;
}


static int32_t
ChromaSAD(int dx, int dy, const SearchData * const data)
{
	int sad;
	const uint32_t stride = data->iEdgedWidth/2;

	if (dx == data->temp[5] && dy == data->temp[6]) return data->temp[7]; //it has been checked recently
	data->temp[5] = dx; data->temp[6] = dy; // backup

	switch (((dx & 1) << 1) | (dy & 1))	{
		case 0:
			dx = dx / 2; dy = dy / 2;
			sad = sad8(data->CurU, data->RefCU + dy * stride + dx, stride);
			sad += sad8(data->CurV, data->RefCV + dy * stride + dx, stride);
			break;
		case 1:
			dx = dx / 2; dy = (dy - 1) / 2;
			sad = sad8bi(data->CurU, data->RefCU + dy * stride + dx, data->RefCU + (dy+1) * stride + dx, stride);
			sad += sad8bi(data->CurV, data->RefCV + dy * stride + dx, data->RefCV + (dy+1) * stride + dx, stride);
			break;
		case 2:
			dx = (dx - 1) / 2; dy = dy / 2;
			sad = sad8bi(data->CurU, data->RefCU + dy * stride + dx, data->RefCU + dy * stride + dx+1, stride);
			sad += sad8bi(data->CurV, data->RefCV + dy * stride + dx, data->RefCV + dy * stride + dx+1, stride);
			break;
		default:
			dx = (dx - 1) / 2; dy = (dy - 1) / 2;
			interpolate8x8_halfpel_hv(data->RefQ, data->RefCU + dy * stride + dx, stride, data->rounding);
			sad = sad8(data->CurU, data->RefQ, stride);

			interpolate8x8_halfpel_hv(data->RefQ, data->RefCV + dy * stride + dx, stride, data->rounding);
			sad += sad8(data->CurV, data->RefQ, stride);
			break;
	}
	data->temp[7] = sad; //backup, part 2
	return sad;
}

static __inline const uint8_t *
GetReferenceB(const int x, const int y, const uint32_t dir, const SearchData * const data)
{
//	dir : 0 = forward, 1 = backward
	switch ( (dir << 2) | ((x&1)<<1) | (y&1) ) {
		case 0 : return data->Ref + x/2 + (y/2)*(data->iEdgedWidth);
		case 1 : return data->RefV + x/2 + ((y-1)/2)*(data->iEdgedWidth);
		case 2 : return data->RefH + (x-1)/2 + (y/2)*(data->iEdgedWidth);
		case 3 : return data->RefHV + (x-1)/2 + ((y-1)/2)*(data->iEdgedWidth);
		case 4 : return data->bRef + x/2 + (y/2)*(data->iEdgedWidth);
		case 5 : return data->bRefV + x/2 + ((y-1)/2)*(data->iEdgedWidth);
		case 6 : return data->bRefH + (x-1)/2 + (y/2)*(data->iEdgedWidth);
		default : return data->bRefHV + (x-1)/2 + ((y-1)/2)*(data->iEdgedWidth);
	}
}

// this is a simpler copy of GetReferenceB, but as it's __inline anyway, we can keep the two separate
static __inline const uint8_t *
GetReference(const int x, const int y, const SearchData * const data)
{
	switch ( ((x&1)<<1) | (y&1) ) {
		case 0 : return data->Ref + x/2 + (y/2)*(data->iEdgedWidth);
		case 3 : return data->RefHV + (x-1)/2 + ((y-1)/2)*(data->iEdgedWidth);
		case 1 : return data->RefV + x/2 + ((y-1)/2)*(data->iEdgedWidth);
		default : return data->RefH + (x-1)/2 + (y/2)*(data->iEdgedWidth);	//case 2
	}
}

static uint8_t *
Interpolate8x8qpel(const int x, const int y, const uint32_t block, const uint32_t dir, const SearchData * const data)
{
// create or find a qpel-precision reference picture; return pointer to it
	uint8_t * Reference = data->RefQ + 16*dir;
	const uint32_t iEdgedWidth = data->iEdgedWidth;
	const uint32_t rounding = data->rounding;
	const int halfpel_x = x/2;
	const int halfpel_y = y/2;
	const uint8_t *ref1, *ref2, *ref3, *ref4;

	ref1 = GetReferenceB(halfpel_x, halfpel_y, dir, data);
	ref1 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
	switch( ((x&1)<<1) + (y&1) ) {
	case 0: // pure halfpel position
		return (uint8_t *) ref1;
		break;

	case 1: // x halfpel, y qpel - top or bottom during qpel refinement
		ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data);
		ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
		interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8);
		break;

	case 2: // x qpel, y halfpel - left or right during qpel refinement
		ref2 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data);
		ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
		interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8);
		break;

	default: // x and y in qpel resolution - the "corners" (top left/right and
			 // bottom left/right) during qpel refinement
		ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data);
		ref3 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data);
		ref4 = GetReferenceB(x - halfpel_x, y - halfpel_y, dir, data);
		ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
		ref3 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
		ref4 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
		interpolate8x8_avg4(Reference, ref1, ref2, ref3, ref4, iEdgedWidth, rounding);
		break;
	}
	return Reference;
}

static uint8_t *
Interpolate16x16qpel(const int x, const int y, const uint32_t dir, const SearchData * const data)
{
// create or find a qpel-precision reference picture; return pointer to it
	uint8_t * Reference = data->RefQ + 16*dir;
	const uint32_t iEdgedWidth = data->iEdgedWidth;
	const uint32_t rounding = data->rounding;
	const int halfpel_x = x/2;
	const int halfpel_y = y/2;
	const uint8_t *ref1, *ref2, *ref3, *ref4;

	ref1 = GetReferenceB(halfpel_x, halfpel_y, dir, data);
	switch( ((x&1)<<1) + (y&1) ) {
	case 3: // x and y in qpel resolution - the "corners" (top left/right and
			 // bottom left/right) during qpel refinement
		ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data);
		ref3 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data);
		ref4 = GetReferenceB(x - halfpel_x, y - halfpel_y, dir, data);
		interpolate8x8_avg4(Reference, ref1, ref2, ref3, ref4, iEdgedWidth, rounding);
		interpolate8x8_avg4(Reference+8, ref1+8, ref2+8, ref3+8, ref4+8, iEdgedWidth, rounding);
		interpolate8x8_avg4(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, ref3+8*iEdgedWidth, ref4+8*iEdgedWidth, iEdgedWidth, rounding);
		interpolate8x8_avg4(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, ref3+8*iEdgedWidth+8, ref4+8*iEdgedWidth+8, iEdgedWidth, rounding);
		break;

	case 1: // x halfpel, y qpel - top or bottom during qpel refinement
		ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data);
		interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8);
		interpolate8x8_avg2(Reference+8, ref1+8, ref2+8, iEdgedWidth, rounding, 8);
		interpolate8x8_avg2(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, iEdgedWidth, rounding, 8);
		interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding, 8);
		break;

	case 2: // x qpel, y halfpel - left or right during qpel refinement
		ref2 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data);
		interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8);
		interpolate8x8_avg2(Reference+8, ref1+8, ref2+8, iEdgedWidth, rounding, 8);
		interpolate8x8_avg2(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, iEdgedWidth, rounding, 8);
		interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding, 8);
		break;

	case 0: // pure halfpel position
		return (uint8_t *) ref1;
	}
	return Reference;
}

/* CHECK_CANDIATE FUNCTIONS START */

static void
CheckCandidate16(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
{
	int xc, yc;
	const uint8_t * Reference;
	VECTOR * current;
	int32_t sad; uint32_t t;

	if ( (x > data->max_dx) || (x < data->min_dx)
		|| (y > data->max_dy) || (y < data->min_dy) ) return;

	if (!data->qpel_precision) {
		Reference = GetReference(x, y, data);
		current = data->currentMV;
		xc = x; yc = y;
	} else { // x and y are in 1/4 precision
		Reference = Interpolate16x16qpel(x, y, 0, data);
		xc = x/2; yc = y/2; //for chroma sad
		current = data->currentQMV;
	}

	sad = sad16v(data->Cur, Reference, data->iEdgedWidth, data->temp + 1);
	t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);

	sad += (data->lambda16 * t * sad)>>10;
	data->temp[1] += (data->lambda8 * t * (data->temp[1] + NEIGH_8X8_BIAS))>>10;

	if (data->chroma) sad += ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3],
													(yc >> 1) + roundtab_79[yc & 0x3], data);

	if (sad < data->iMinSAD[0]) {
		data->iMinSAD[0] = sad;
		current[0].x = x; current[0].y = y;
		*dir = Direction;
	}

	if (data->temp[1] < data->iMinSAD[1]) {
		data->iMinSAD[1] = data->temp[1]; current[1].x = x; current[1].y = y; }
	if (data->temp[2] < data->iMinSAD[2]) {
		data->iMinSAD[2] = data->temp[2]; current[2].x = x; current[2].y = y; }
	if (data->temp[3] < data->iMinSAD[3]) {
		data->iMinSAD[3] = data->temp[3]; current[3].x = x; current[3].y = y; }
	if (data->temp[4] < data->iMinSAD[4]) {
		data->iMinSAD[4] = data->temp[4]; current[4].x = x; current[4].y = y; }

}

static void
CheckCandidate8(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
{
	int32_t sad; uint32_t t;
	const uint8_t * Reference;

	if ( (x > data->max_dx) || (x < data->min_dx)
		|| (y > data->max_dy) || (y < data->min_dy) ) return;

	if (!data->qpel_precision) Reference = GetReference(x, y, data);
	else Reference = Interpolate8x8qpel(x, y, 0, 0, data);

	sad = sad8(data->Cur, Reference, data->iEdgedWidth);
	t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);

	sad += (data->lambda8 * t * (sad+NEIGH_8X8_BIAS))>>10;

	if (sad < *(data->iMinSAD)) {
		*(data->iMinSAD) = sad;
		data->currentMV->x = x; data->currentMV->y = y;
		*dir = Direction;
	}
}


static void
CheckCandidate32(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
{
	uint32_t t;
	const uint8_t * Reference;

	if ( (!(x&1) && x !=0) || (!(y&1) && y !=0) || //non-zero integer value
		(x > data->max_dx) || (x < data->min_dx)
		|| (y > data->max_dy) || (y < data->min_dy) ) return;

	Reference = GetReference(x, y, data);
	t = d_mv_bits(x, y, data->predMV, data->iFcode, 0, 1);

	data->temp[0] = sad32v_c(data->Cur, Reference, data->iEdgedWidth, data->temp + 1);

	data->temp[0] += (data->lambda16 * t * data->temp[0]) >> 10;
	data->temp[1] += (data->lambda8 * t * (data->temp[1] + NEIGH_8X8_BIAS))>>10;

	if (data->temp[0] < data->iMinSAD[0]) {
		data->iMinSAD[0] = data->temp[0];
		data->currentMV[0].x = x; data->currentMV[0].y = y;
		*dir = Direction; }

	if (data->temp[1] < data->iMinSAD[1]) {
		data->iMinSAD[1] = data->temp[1]; data->currentMV[1].x = x; data->currentMV[1].y = y; }
	if (data->temp[2] < data->iMinSAD[2]) {
		data->iMinSAD[2] = data->temp[2]; data->currentMV[2].x = x; data->currentMV[2].y = y; }
	if (data->temp[3] < data->iMinSAD[3]) {
		data->iMinSAD[3] = data->temp[3]; data->currentMV[3].x = x; data->currentMV[3].y = y; }
	if (data->temp[4] < data->iMinSAD[4]) {
		data->iMinSAD[4] = data->temp[4]; data->currentMV[4].x = x; data->currentMV[4].y = y; }
}

static void
CheckCandidate16no4v(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
{
	int32_t sad, xc, yc;
	const uint8_t * Reference;
	uint32_t t;
	VECTOR * current;

	if ( (x > data->max_dx) | ( x < data->min_dx)
		| (y > data->max_dy) | (y < data->min_dy) ) return;

	if (data->rrv && (!(x&1) && x !=0) | (!(y&1) && y !=0) ) return; //non-zero even value

	if (data->qpel_precision) { // x and y are in 1/4 precision
		Reference = Interpolate16x16qpel(x, y, 0, data);
		current = data->currentQMV;
		xc = x/2; yc = y/2;
	} else {
		Reference = GetReference(x, y, data);
		current = data->currentMV;
		xc = x; yc = y;
	}
	t = d_mv_bits(x, y, data->predMV, data->iFcode,
					data->qpel^data->qpel_precision, data->rrv);

	sad = sad16(data->Cur, Reference, data->iEdgedWidth, 256*4096);
	sad += (data->lambda16 * t * sad)>>10;

	if (data->chroma) sad += ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3],
										(yc >> 1) + roundtab_79[yc & 0x3], data);

	if (sad < *(data->iMinSAD)) {
		*(data->iMinSAD) = sad;
		current->x = x; current->y = y;
		*dir = Direction;
	}
}

static void
CheckCandidate32I(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
{
// maximum speed - for P/B/I decision
	int32_t sad;

	if ( (x > data->max_dx) || (x < data->min_dx)
		|| (y > data->max_dy) || (y < data->min_dy) ) return;

	sad = sad32v_c(data->Cur, data->Ref + x/2 + (y/2)*(data->iEdgedWidth),
							data->iEdgedWidth, data->temp+1);

	if (sad < *(data->iMinSAD)) {
		*(data->iMinSAD) = sad;
		data->currentMV[0].x = x; data->currentMV[0].y = y;
		*dir = Direction;
	}
	if (data->temp[1] < data->iMinSAD[1]) {
		data->iMinSAD[1] = data->temp[1]; data->currentMV[1].x = x; data->currentMV[1].y = y; }
	if (data->temp[2] < data->iMinSAD[2]) {
		data->iMinSAD[2] = data->temp[2]; data->currentMV[2].x = x; data->currentMV[2].y = y; }
	if (data->temp[3] < data->iMinSAD[3]) {
		data->iMinSAD[3] = data->temp[3]; data->currentMV[3].x = x; data->currentMV[3].y = y; }
	if (data->temp[4] < data->iMinSAD[4]) {
		data->iMinSAD[4] = data->temp[4]; data->currentMV[4].x = x; data->currentMV[4].y = y; }

}

static void
CheckCandidateInt(const int xf, const int yf, const int Direction, int * const dir, const SearchData * const data)
{
	int32_t sad, xb, yb, xcf, ycf, xcb, ycb;
	uint32_t t;
	const uint8_t *ReferenceF, *ReferenceB;
	VECTOR *current;

	if ( (xf > data->max_dx) | (xf < data->min_dx)
		| (yf > data->max_dy) | (yf < data->min_dy) ) return;

	if (!data->qpel_precision) {
		ReferenceF = GetReference(xf, yf, data);
		xb = data->currentMV[1].x; yb = data->currentMV[1].y;
		ReferenceB = GetReferenceB(xb, yb, 1, data);
		current = data->currentMV;
		xcf = xf; ycf = yf;
		xcb = xb; ycb = yb;
	} else {
		ReferenceF = Interpolate16x16qpel(xf, yf, 0, data);
		xb = data->currentQMV[1].x; yb = data->currentQMV[1].y;
		current = data->currentQMV;
		ReferenceB = Interpolate16x16qpel(xb, yb, 1, data);
		xcf = xf/2; ycf = yf/2;
		xcb = xb/2; ycb = yb/2;
	}

	t = d_mv_bits(xf, yf, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0)
		 + d_mv_bits(xb, yb, data->bpredMV, data->iFcode, data->qpel^data->qpel_precision, 0);

	sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth);
	sad += (data->lambda16 * t * sad)>>10;

	if (data->chroma) sad += ChromaSAD2((xcf >> 1) + roundtab_79[xcf & 0x3],
										(ycf >> 1) + roundtab_79[ycf & 0x3],
										(xcb >> 1) + roundtab_79[xcb & 0x3],
										(ycb >> 1) + roundtab_79[ycb & 0x3], data);

	if (sad < *(data->iMinSAD)) {
		*(data->iMinSAD) = sad;
		current->x = xf; current->y = yf;
		*dir = Direction;
	}
}

static void
CheckCandidateDirect(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
{
	int32_t sad = 0, xcf = 0, ycf = 0, xcb = 0, ycb = 0;
	uint32_t k;
	const uint8_t *ReferenceF;
	const uint8_t *ReferenceB;
	VECTOR mvs, b_mvs;

	if (( x > 31) | ( x < -32) | ( y > 31) | (y < -32)) return;

	for (k = 0; k < 4; k++) {
		mvs.x = data->directmvF[k].x + x;
		b_mvs.x = ((x == 0) ?
			data->directmvB[k].x
			: mvs.x - data->referencemv[k].x);

		mvs.y = data->directmvF[k].y + y;
		b_mvs.y = ((y == 0) ?
			data->directmvB[k].y
			: mvs.y - data->referencemv[k].y);

		if ( (mvs.x > data->max_dx) | (mvs.x < data->min_dx)
			| (mvs.y > data->max_dy) | (mvs.y < data->min_dy)
			| (b_mvs.x > data->max_dx) | (b_mvs.x < data->min_dx)
			| (b_mvs.y > data->max_dy) | (b_mvs.y < data->min_dy) ) return;

		if (data->qpel) {
			xcf += mvs.x/2; ycf += mvs.y/2;
			xcb += b_mvs.x/2; ycb += b_mvs.y/2;
		} else {
			xcf += mvs.x; ycf += mvs.y;
			xcb += b_mvs.x; ycb += b_mvs.y;
			mvs.x *= 2; mvs.y *= 2; //we move to qpel precision anyway
			b_mvs.x *= 2; b_mvs.y *= 2;
		}

		ReferenceF = Interpolate8x8qpel(mvs.x, mvs.y, k, 0, data);
		ReferenceB = Interpolate8x8qpel(b_mvs.x, b_mvs.y, k, 1, data);

		sad += sad8bi(data->Cur + 8*(k&1) + 8*(k>>1)*(data->iEdgedWidth),
						ReferenceF, ReferenceB, data->iEdgedWidth);
		if (sad > *(data->iMinSAD)) return;
	}

	sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10;

	if (data->chroma) sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf],
										(ycf >> 3) + roundtab_76[ycf & 0xf],
										(xcb >> 3) + roundtab_76[xcb & 0xf],
										(ycb >> 3) + roundtab_76[ycb & 0xf], data);

	if (sad < *(data->iMinSAD)) {
		*(data->iMinSAD) = sad;
		data->currentMV->x = x; data->currentMV->y = y;
		*dir = Direction;
	}
}

static void
CheckCandidateDirectno4v(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
{
	int32_t sad, xcf, ycf, xcb, ycb;
	const uint8_t *ReferenceF;
	const uint8_t *ReferenceB;
	VECTOR mvs, b_mvs;

	if (( x > 31) | ( x < -32) | ( y > 31) | (y < -32)) return;

	mvs.x = data->directmvF[0].x + x;
	b_mvs.x = ((x == 0) ?
		data->directmvB[0].x
		: mvs.x - data->referencemv[0].x);

	mvs.y = data->directmvF[0].y + y;
	b_mvs.y = ((y == 0) ?
		data->directmvB[0].y
		: mvs.y - data->referencemv[0].y);

	if ( (mvs.x > data->max_dx) | (mvs.x < data->min_dx)
		| (mvs.y > data->max_dy) | (mvs.y < data->min_dy)
		| (b_mvs.x > data->max_dx) | (b_mvs.x < data->min_dx)
		| (b_mvs.y > data->max_dy) | (b_mvs.y < data->min_dy) ) return;

	if (data->qpel) {
		xcf = 4*(mvs.x/2); ycf = 4*(mvs.y/2);
		xcb = 4*(b_mvs.x/2); ycb = 4*(b_mvs.y/2);
		ReferenceF = Interpolate16x16qpel(mvs.x, mvs.y, 0, data);
		ReferenceB = Interpolate16x16qpel(b_mvs.x, b_mvs.y, 1, data);
	} else {
		xcf = 4*mvs.x; ycf = 4*mvs.y;
		xcb = 4*b_mvs.x; ycb = 4*b_mvs.y;
		ReferenceF = GetReference(mvs.x, mvs.y, data);
		ReferenceB = GetReferenceB(b_mvs.x, b_mvs.y, 1, data);
	}

	sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth);
	sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10;

	if (data->chroma) sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf],
										(ycf >> 3) + roundtab_76[ycf & 0xf],
										(xcb >> 3) + roundtab_76[xcb & 0xf],
										(ycb >> 3) + roundtab_76[ycb & 0xf], data);

	if (sad < *(data->iMinSAD)) {
		*(data->iMinSAD) = sad;
		data->currentMV->x = x; data->currentMV->y = y;
		*dir = Direction;
	}
}


static void
CheckCandidateBits16(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
{

	static int16_t in[64], coeff[64];
	int32_t bits = 0, sum;
	VECTOR * current;
	const uint8_t * ptr;
	int i, cbp = 0, t, xc, yc;

	if ( (x > data->max_dx) || (x < data->min_dx)
		|| (y > data->max_dy) || (y < data->min_dy) ) return;

	if (!data->qpel_precision) {
		ptr = GetReference(x, y, data);
		current = data->currentMV;
		xc = x; yc = y;
	} else { // x and y are in 1/4 precision
		ptr = Interpolate16x16qpel(x, y, 0, data);
		current = data->currentQMV;
		xc = x/2; yc = y/2;
	}

	for(i = 0; i < 4; i++) {
		int s = 8*((i&1) + (i>>1)*data->iEdgedWidth);
		transfer_8to16subro(in, data->Cur + s, ptr + s, data->iEdgedWidth);
		fdct(in);
		if (data->lambda8 == 0) sum = quant_inter(coeff, in, data->lambda16);
		else sum = quant4_inter(coeff, in, data->lambda16);
		if (sum > 0) {
			cbp |= 1 << (5 - i);
			bits += data->temp[i] = CodeCoeffInter_CalcBits(coeff, scan_tables[0]);
		} else data->temp[i] = 0;
	}

	bits += t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);

	if (bits < data->iMinSAD[0]) { // there is still a chance, adding chroma
		xc = (xc >> 1) + roundtab_79[xc & 0x3];
		yc = (yc >> 1) + roundtab_79[yc & 0x3];

		//chroma U
		ptr = interpolate8x8_switch2(data->RefQ + 64, data->RefCU, 0, 0, xc, yc,  data->iEdgedWidth/2, data->rounding);
		transfer_8to16subro(in, ptr, data->CurU, data->iEdgedWidth/2);
		fdct(in);
		if (data->lambda8 == 0) sum = quant_inter(coeff, in, data->lambda16);
		else sum = quant4_inter(coeff, in, data->lambda16);
		if (sum > 0) {
			cbp |= 1 << (5 - 4);
			bits += CodeCoeffInter_CalcBits(coeff, scan_tables[0]);
		}

		if (bits < data->iMinSAD[0]) {
			//chroma V
			ptr = interpolate8x8_switch2(data->RefQ + 64, data->RefCV, 0, 0, xc, yc,  data->iEdgedWidth/2, data->rounding);
			transfer_8to16subro(in, ptr, data->CurV, data->iEdgedWidth/2);
			fdct(in);
			if (data->lambda8 == 0) sum = quant_inter(coeff, in, data->lambda16);
			else sum = quant4_inter(coeff, in, data->lambda16);
			if (sum > 0) {
				cbp |= 1 << (5 - 5);
				bits += CodeCoeffInter_CalcBits(coeff, scan_tables[0]);
			}
		}
	}

	bits += cbpy_tab[15-(cbp>>2)].len;
	bits += mcbpc_inter_tab[(MODE_INTER & 7) | ((cbp & 3) << 3)].len;

	if (bits < data->iMinSAD[0]) {
		data->iMinSAD[0] = bits;
		current[0].x = x; current[0].y = y;
		*dir = Direction;
	}

	if (data->temp[0] + t < data->iMinSAD[1]) {
		data->iMinSAD[1] = data->temp[0] + t; current[1].x = x; current[1].y = y; }
	if (data->temp[1] < data->iMinSAD[2]) {
		data->iMinSAD[2] = data->temp[1]; current[2].x = x; current[2].y = y; }
	if (data->temp[2] < data->iMinSAD[3]) {
		data->iMinSAD[3] = data->temp[2]; current[3].x = x; current[3].y = y; }
	if (data->temp[3] < data->iMinSAD[4]) {
		data->iMinSAD[4] = data->temp[3]; current[4].x = x; current[4].y = y; }

}
static void
CheckCandidateBits8(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
{

	static int16_t in[64], coeff[64];
	int32_t sum, bits;
	VECTOR * current;
	const uint8_t * ptr;
	int cbp;

	if ( (x > data->max_dx) || (x < data->min_dx)
		|| (y > data->max_dy) || (y < data->min_dy) ) return;

	if (!data->qpel_precision) {
		ptr = GetReference(x, y, data);
		current = data->currentMV;
	} else { // x and y are in 1/4 precision
		ptr = Interpolate8x8qpel(x, y, 0, 0, data);
		current = data->currentQMV;
	}

	transfer_8to16subro(in, data->Cur, ptr, data->iEdgedWidth);
	fdct(in);
	if (data->lambda8 == 0) sum = quant_inter(coeff, in, data->lambda16);
	else sum = quant4_inter(coeff, in, data->lambda16);
	if (sum > 0) {
		bits = CodeCoeffInter_CalcBits(coeff, scan_tables[0]);
		cbp = 1;
	} else cbp = bits = 0;

	bits += sum = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);

	if (bits < data->iMinSAD[0]) {
		data->temp[0] = cbp;
		data->iMinSAD[0] = bits;
		current[0].x = x; current[0].y = y;
		*dir = Direction;
	}
}

/* CHECK_CANDIATE FUNCTIONS END */

/* MAINSEARCH FUNCTIONS START */

static void
AdvDiamondSearch(int x, int y, const SearchData * const data, int bDirection)
{

/* directions: 1 - left (x-1); 2 - right (x+1), 4 - up (y-1); 8 - down (y+1) */

	int iDirection;

	for(;;) { //forever
		iDirection = 0;
		if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1);
		if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2);
		if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4);
		if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8);

		/* now we're doing diagonal checks near our candidate */

		if (iDirection) {		//if anything found
			bDirection = iDirection;
			iDirection = 0;
			x = data->currentMV->x; y = data->currentMV->y;
			if (bDirection & 3) {	//our candidate is left or right
				CHECK_CANDIDATE(x, y + iDiamondSize, 8);
				CHECK_CANDIDATE(x, y - iDiamondSize, 4);
			} else {			// what remains here is up or down
				CHECK_CANDIDATE(x + iDiamondSize, y, 2);
				CHECK_CANDIDATE(x - iDiamondSize, y, 1);
			}

			if (iDirection) {
				bDirection += iDirection;
				x = data->currentMV->x; y = data->currentMV->y;
			}
		} else {				//about to quit, eh? not so fast....
			switch (bDirection) {
			case 2:
				CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4);
				CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8);
				break;
			case 1:
				CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4);
				CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8);
				break;
			case 2 + 4:
				CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4);
				CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4);
				CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8);
				break;
			case 4:
				CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4);
				CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4);
				break;
			case 8:
				CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8);
				CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8);
				break;
			case 1 + 4:
				CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8);
				CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4);
				CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4);
				break;
			case 2 + 8:
				CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4);
				CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8);
				CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8);
				break;
			case 1 + 8:
				CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4);
				CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8);
				CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8);
				break;
			default:		//1+2+4+8 == we didn't find anything at all
				CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4);
				CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8);
				CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4);
				CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8);
				break;
			}
			if (!iDirection) break;		//ok, the end. really
			bDirection = iDirection;
			x = data->currentMV->x; y = data->currentMV->y;
		}
	}
}

static void
SquareSearch(int x, int y, const SearchData * const data, int bDirection)
{
	int iDirection;

	do {
		iDirection = 0;
		if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1+16+64);
		if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2+32+128);
		if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4+16+32);
		if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8+64+128);
		if (bDirection & 16) CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1+4+16+32+64);
		if (bDirection & 32) CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2+4+16+32+128);
		if (bDirection & 64) CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1+8+16+64+128);
		if (bDirection & 128) CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2+8+32+64+128);

		bDirection = iDirection;
		x = data->currentMV->x; y = data->currentMV->y;
	} while (iDirection);
}

static void
DiamondSearch(int x, int y, const SearchData * const data, int bDirection)
{

/* directions: 1 - left (x-1); 2 - right (x+1), 4 - up (y-1); 8 - down (y+1) */

	int iDirection;

	do {
		iDirection = 0;
		if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1);
		if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2);
		if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4);
		if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8);

		/* now we're doing diagonal checks near our candidate */

		if (iDirection) {		//checking if anything found
			bDirection = iDirection;
			iDirection = 0;
			x = data->currentMV->x; y = data->currentMV->y;
			if (bDirection & 3) {	//our candidate is left or right
				CHECK_CANDIDATE(x, y + iDiamondSize, 8);
				CHECK_CANDIDATE(x, y - iDiamondSize, 4);
			} else {			// what remains here is up or down
				CHECK_CANDIDATE(x + iDiamondSize, y, 2);
				CHECK_CANDIDATE(x - iDiamondSize, y, 1);
			}
			bDirection += iDirection;
			x = data->currentMV->x; y = data->currentMV->y;
		}
	}
	while (iDirection);
}

/* MAINSEARCH FUNCTIONS END */

static void
SubpelRefine(const SearchData * const data)
{
/* Do a half-pel or q-pel refinement */
	const VECTOR centerMV = data->qpel_precision ? *data->currentQMV : *data->currentMV;
	int iDirection; //only needed because macro expects it

	CHECK_CANDIDATE(centerMV.x, centerMV.y - 1, 0);
	CHECK_CANDIDATE(centerMV.x + 1, centerMV.y - 1, 0);
	CHECK_CANDIDATE(centerMV.x + 1, centerMV.y, 0);
	CHECK_CANDIDATE(centerMV.x + 1, centerMV.y + 1, 0);
	CHECK_CANDIDATE(centerMV.x, centerMV.y + 1, 0);
	CHECK_CANDIDATE(centerMV.x - 1, centerMV.y + 1, 0);
	CHECK_CANDIDATE(centerMV.x - 1, centerMV.y, 0);
	CHECK_CANDIDATE(centerMV.x - 1, centerMV.y - 1, 0);
}

static __inline int
SkipDecisionP(const IMAGE * current, const IMAGE * reference,
							const int x, const int y,
							const uint32_t stride, const uint32_t iQuant, int rrv)

{
	if(!rrv) {
		uint32_t sadC = sad8(current->u + x*8 + y*stride*8,
						reference->u + x*8 + y*stride*8, stride);
		if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0;
		sadC += sad8(current->v + (x + y*stride)*8,
						reference->v + (x + y*stride)*8, stride);
		if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0;
		return 1;

	} else {
		uint32_t sadC = sad16(current->u + x*16 + y*stride*16,
						reference->u + x*16 + y*stride*16, stride, 256*4096);
		if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0;
		sadC += sad16(current->v + (x + y*stride)*16,
						reference->v + (x + y*stride)*16, stride, 256*4096);
		if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0;
		return 1;
	}
}

static __inline void
SkipMacroblockP(MACROBLOCK *pMB, const int32_t sad)
{
	pMB->mode = MODE_NOT_CODED;
	pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = zeroMV;
	pMB->qmvs[0] = pMB->qmvs[1] = pMB->qmvs[2] = pMB->qmvs[3] = zeroMV;
	pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = sad;
}

bool
MotionEstimation(MBParam * const pParam,
				 FRAMEINFO * const current,
				 FRAMEINFO * const reference,
				 const IMAGE * const pRefH,
				 const IMAGE * const pRefV,
				 const IMAGE * const pRefHV,
				 const uint32_t iLimit)
{
	MACROBLOCK *const pMBs = current->mbs;
	const IMAGE *const pCurrent = &current->image;
	const IMAGE *const pRef = &reference->image;

	uint32_t mb_width = pParam->mb_width;
	uint32_t mb_height = pParam->mb_height;
	const uint32_t iEdgedWidth = pParam->edged_width;
	const uint32_t MotionFlags = MakeGoodMotionFlags(current->motion_flags, current->vop_flags, current->vol_flags);

	uint32_t x, y;
	uint32_t iIntra = 0;
    int32_t sad00;

	// some pre-initialized thingies for SearchP
	int32_t temp[8];
	VECTOR currentMV[5];
	VECTOR currentQMV[5];
	int32_t iMinSAD[5];
	SearchData Data;
	memset(&Data, 0, sizeof(SearchData));
	Data.iEdgedWidth = iEdgedWidth;
	Data.currentMV = currentMV;
	Data.currentQMV = currentQMV;
	Data.iMinSAD = iMinSAD;
	Data.temp = temp;
	Data.iFcode = current->fcode;
	Data.rounding = pParam->m_rounding_type;
	Data.qpel = current->vol_flags & XVID_VOL_QUARTERPEL;
	Data.chroma = MotionFlags & XVID_ME_CHROMA16;
	Data.rrv = current->vop_flags & XVID_VOP_REDUCED;

	if ((current->vop_flags & XVID_VOP_REDUCED)) {
		mb_width = (pParam->width + 31) / 32;
		mb_height = (pParam->height + 31) / 32;
		Data.qpel = 0;
	}

	Data.RefQ = pRefV->u; // a good place, also used in MC (for similar purpose)
	if (sadInit) (*sadInit) ();

	for (y = 0; y < mb_height; y++)	{
		for (x = 0; x < mb_width; x++)	{
			MACROBLOCK *pMB = &pMBs[x + y * pParam->mb_width];

			if (!Data.rrv) pMB->sad16 =
				sad16v(pCurrent->y + (x + y * iEdgedWidth) * 16,
							pRef->y + (x + y * iEdgedWidth) * 16,
							pParam->edged_width, pMB->sad8 );

			else pMB->sad16 =
				sad32v_c(pCurrent->y + (x + y * iEdgedWidth) * 32,
							pRef->y + (x + y * iEdgedWidth) * 32,
							pParam->edged_width, pMB->sad8 );

			if (Data.chroma) {
				Data.temp[7] = sad8(pCurrent->u + x*8 + y*(iEdgedWidth/2)*8,
									pRef->u + x*8 + y*(iEdgedWidth/2)*8, iEdgedWidth/2)
								+ sad8(pCurrent->v + (x + y*(iEdgedWidth/2))*8,
									pRef->v + (x + y*(iEdgedWidth/2))*8, iEdgedWidth/2);
				pMB->sad16 += Data.temp[7];
			}

			sad00 = pMB->sad16;

//initial skip decision
/* no early skip for GMC (global vector = skip vector is unknown!)  */
			if (!(current->vol_flags & XVID_VOL_GMC))	{ /* no fast SKIP for S(GMC)-VOPs */
				if (pMB->dquant == 0 && sad00 < pMB->quant * INITIAL_SKIP_THRESH * (Data.rrv ? 4:1) )
					if (Data.chroma || SkipDecisionP(pCurrent, pRef, x, y, iEdgedWidth/2, pMB->quant, Data.rrv)) {
						SkipMacroblockP(pMB, sad00);
						continue;
					}
			}

			SearchP(pRef, pRefH->y, pRefV->y, pRefHV->y, pCurrent, x,
						y, MotionFlags, current->vol_flags, pMB->quant,
						&Data, pParam, pMBs, reference->mbs,
						current->vop_flags & XVID_VOP_INTER4V, pMB);

/* final skip decision, a.k.a. "the vector you found, really that good?" */
			if (!(current->vol_flags & XVID_VOL_GMC))	{
				if ( pMB->dquant == 0 && sad00 < pMB->quant * MAX_SAD00_FOR_SKIP) {
					if (!(current->vop_flags & XVID_VOP_MODEDECISION_BITS)) {
						if ( (100*pMB->sad16)/(sad00+1) > FINAL_SKIP_THRESH * (Data.rrv ? 4:1) )
							if (Data.chroma || SkipDecisionP(pCurrent, pRef, x, y, iEdgedWidth/2, pMB->quant, Data.rrv))
								SkipMacroblockP(pMB, sad00);
					} else { // BITS mode decision
						if (pMB->sad16 > 10)
							SkipMacroblockP(pMB, sad00);  // more than 10 bits would be used for this MB - skip

					}
				}
			}
			if (pMB->mode == MODE_INTRA)
				if (++iIntra > iLimit) return 1;
		}
	}

	if (current->vol_flags & XVID_VOL_GMC )	/* GMC only for S(GMC)-VOPs */
	{
		current->warp = GlobalMotionEst( pMBs, pParam, current, reference, pRefH, pRefV, pRefHV);
	}
	return 0;
}


static __inline int
make_mask(const VECTOR * const pmv, const int i)
{
	int mask = 255, j;
	for (j = 0; j < i; j++) {
		if (MVequal(pmv[i], pmv[j])) return 0; // same vector has been checked already
		if (pmv[i].x == pmv[j].x) {
			if (pmv[i].y == pmv[j].y + iDiamondSize) mask &= ~4;
			else if (pmv[i].y == pmv[j].y - iDiamondSize) mask &= ~8;
		} else
			if (pmv[i].y == pmv[j].y) {
				if (pmv[i].x == pmv[j].x + iDiamondSize) mask &= ~1;
				else if (pmv[i].x == pmv[j].x - iDiamondSize) mask &= ~2;
			}
	}
	return mask;
}

static __inline void
PreparePredictionsP(VECTOR * const pmv, int x, int y, int iWcount,
			int iHcount, const MACROBLOCK * const prevMB, int rrv)
{

//this function depends on get_pmvdata which means that it sucks. It should get the predictions by itself
	if (rrv) { iWcount /= 2; iHcount /= 2; }

	if ( (y != 0) && (x < (iWcount-1)) ) {		// [5] top-right neighbour
		pmv[5].x = EVEN(pmv[3].x);
		pmv[5].y = EVEN(pmv[3].y);
	} else pmv[5].x = pmv[5].y = 0;

	if (x != 0) { pmv[3].x = EVEN(pmv[1].x); pmv[3].y = EVEN(pmv[1].y); }// pmv[3] is left neighbour
	else pmv[3].x = pmv[3].y = 0;

	if (y != 0) { pmv[4].x = EVEN(pmv[2].x); pmv[4].y = EVEN(pmv[2].y); }// [4] top neighbour
	else pmv[4].x = pmv[4].y = 0;

	// [1] median prediction
	pmv[1].x = EVEN(pmv[0].x); pmv[1].y = EVEN(pmv[0].y);

	pmv[0].x = pmv[0].y = 0; // [0] is zero; not used in the loop (checked before) but needed here for make_mask

	pmv[2].x = EVEN(prevMB->mvs[0].x); // [2] is last frame
	pmv[2].y = EVEN(prevMB->mvs[0].y);

	if ((x < iWcount-1) && (y < iHcount-1)) {
		pmv[6].x = EVEN((prevMB+1+iWcount)->mvs[0].x); //[6] right-down neighbour in last frame
		pmv[6].y = EVEN((prevMB+1+iWcount)->mvs[0].y);
	} else pmv[6].x = pmv[6].y = 0;

	if (rrv) {
		int i;
		for (i = 0; i < 7; i++) {
			pmv[i].x = RRV_MV_SCALEUP(pmv[i].x);
			pmv[i].y = RRV_MV_SCALEUP(pmv[i].y);
		}
	}
}

static int
ModeDecision(const uint32_t iQuant, SearchData * const Data,
		int inter4v,
		MACROBLOCK * const pMB,
		const MACROBLOCK * const pMBs,
		const int x, const int y,
		const MBParam * const pParam,
		const uint32_t MotionFlags,
		const uint32_t VopFlags)
{

	int mode = MODE_INTER;

	if (!(VopFlags & XVID_VOP_MODEDECISION_BITS)) { //normal, fast, SAD-based mode decision
//		int intra = 0;
		int sad;
		int InterBias = MV16_INTER_BIAS;
		if (inter4v == 0 || Data->iMinSAD[0] < Data->iMinSAD[1] + Data->iMinSAD[2] +
			Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant) {
				mode = 0; //inter
				sad = Data->iMinSAD[0];
		} else {
			mode = MODE_INTER4V;
			sad = Data->iMinSAD[1] + Data->iMinSAD[2] +
						Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant;
			Data->iMinSAD[0] = sad;
		}

		/* intra decision */

		if (iQuant > 8) InterBias += 100 * (iQuant - 8); // to make high quants work
		if (y != 0)
			if ((pMB - pParam->mb_width)->mode == MODE_INTRA ) InterBias -= 80;
		if (x != 0)
			if ((pMB - 1)->mode == MODE_INTRA ) InterBias -= 80;

		if (Data->chroma) InterBias += 50; // to compensate bigger SAD
		if (Data->rrv) InterBias *= 4;

		if (InterBias < pMB->sad16) {
			int32_t deviation;
			if (!Data->rrv) deviation = dev16(Data->Cur, Data->iEdgedWidth);
			else deviation = dev16(Data->Cur, Data->iEdgedWidth) +
				dev16(Data->Cur+8, Data->iEdgedWidth) +
				dev16(Data->Cur + 8*Data->iEdgedWidth, Data->iEdgedWidth) +
				dev16(Data->Cur+8+8*Data->iEdgedWidth, Data->iEdgedWidth);

			if (deviation < (sad - InterBias))  return MODE_INTRA;// intra
		}
		return mode;

	} else {

		int bits, intra, i;
		VECTOR backup[5], *v;
		Data->lambda16 = iQuant;
        Data->lambda8 = (pParam->vol_flags & XVID_VOL_MPEGQUANT)?1:0;

		v = Data->qpel ? Data->currentQMV : Data->currentMV;
		for (i = 0; i < 5; i++) {
			Data->iMinSAD[i] = 256*4096;
			backup[i] = v[i];
		}

		bits = CountMBBitsInter(Data, pMBs, x, y, pParam, MotionFlags);
		if (bits == 0) return MODE_INTER; // quick stop

		if (inter4v) {
			int inter4v = CountMBBitsInter4v(Data, pMB, pMBs, x, y, pParam, MotionFlags, backup);
			if (inter4v < bits) { Data->iMinSAD[0] = bits = inter4v; mode = MODE_INTER4V; }
		}


		intra = CountMBBitsIntra(Data);

		if (intra < bits) { *Data->iMinSAD = bits = intra; return MODE_INTRA; }

		return mode;
	}
}

static void
SearchP(const IMAGE * const pRef,
		const uint8_t * const pRefH,
		const uint8_t * const pRefV,
		const uint8_t * const pRefHV,
		const IMAGE * const pCur,
		const int x,
		const int y,
		const uint32_t MotionFlags,
		const uint32_t VopFlags,
		const uint32_t iQuant,
		SearchData * const Data,
		const MBParam * const pParam,
		const MACROBLOCK * const pMBs,
		const MACROBLOCK * const prevMBs,
		int inter4v,
		MACROBLOCK * const pMB)
{

	int i, iDirection = 255, mask, threshA;
	VECTOR pmv[7];

	get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
						pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv);

	get_pmvdata2(pMBs, pParam->mb_width, 0, x, y, 0, pmv, Data->temp);

	Data->temp[5] = Data->temp[6] = 0; // chroma-sad cache
	i = Data->rrv ? 2 : 1;
	Data->Cur = pCur->y + (x + y * Data->iEdgedWidth) * 16*i;
	Data->CurV = pCur->v + (x + y * (Data->iEdgedWidth/2)) * 8*i;
	Data->CurU = pCur->u + (x + y * (Data->iEdgedWidth/2)) * 8*i;

	Data->Ref = pRef->y + (x + Data->iEdgedWidth*y) * 16*i;
	Data->RefH = pRefH + (x + Data->iEdgedWidth*y) * 16*i;
	Data->RefV = pRefV + (x + Data->iEdgedWidth*y) * 16*i;
	Data->RefHV = pRefHV + (x + Data->iEdgedWidth*y) * 16*i;
	Data->RefCV = pRef->v + (x + y * (Data->iEdgedWidth/2)) * 8*i;
	Data->RefCU = pRef->u + (x + y * (Data->iEdgedWidth/2)) * 8*i;

	Data->lambda16 = lambda_vec16[iQuant];
	Data->lambda8 = lambda_vec8[iQuant];
	Data->qpel_precision = 0;

	if (pMB->dquant != 0) inter4v = 0;

	for(i = 0; i < 5; i++)
		Data->currentMV[i].x = Data->currentMV[i].y = 0;

	if (Data->qpel) Data->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, 0);
	else Data->predMV = pmv[0];

	i = d_mv_bits(0, 0, Data->predMV, Data->iFcode, 0, 0);
	Data->iMinSAD[0] = pMB->sad16 + ((Data->lambda16 * i * pMB->sad16)>>10);
	Data->iMinSAD[1] = pMB->sad8[0] + ((Data->lambda8 * i * (pMB->sad8[0]+NEIGH_8X8_BIAS)) >> 10);
	Data->iMinSAD[2] = pMB->sad8[1];
	Data->iMinSAD[3] = pMB->sad8[2];
	Data->iMinSAD[4] = pMB->sad8[3];

	if ((!(VopFlags & XVID_VOP_MODEDECISION_BITS)) || (x | y)) {
		threshA = Data->temp[0]; // that's where we keep this SAD atm
		if (threshA < 512) threshA = 512;
		else if (threshA > 1024) threshA = 1024;
	} else
		threshA = 512;

	PreparePredictionsP(pmv, x, y, pParam->mb_width, pParam->mb_height,
					prevMBs + x + y * pParam->mb_width, Data->rrv);

	if (!Data->rrv) {
		if (inter4v | Data->chroma) CheckCandidate = CheckCandidate16;
			else CheckCandidate = CheckCandidate16no4v; //for extra speed
	} else CheckCandidate = CheckCandidate32;

/* main loop. checking all predictions (but first, which is 0,0 and has been checked in MotionEstimation())*/

	for (i = 1; i < 7; i++) {
		if (!(mask = make_mask(pmv, i)) ) continue;
		CheckCandidate(pmv[i].x, pmv[i].y, mask, &iDirection, Data);
		if (Data->iMinSAD[0] <= threshA) break;
	}

	if ((Data->iMinSAD[0] <= threshA) ||
			(MVequal(Data->currentMV[0], (prevMBs+x+y*pParam->mb_width)->mvs[0]) &&
			(Data->iMinSAD[0] < (prevMBs+x+y*pParam->mb_width)->sad16))) {
		if (!(VopFlags & XVID_VOP_MODEDECISION_BITS)) inter4v = 0;	}
	else {

		MainSearchFunc * MainSearchPtr;
		if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = SquareSearch;
		else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch;
			else MainSearchPtr = DiamondSearch;

		MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, iDirection);

/* extended search, diamond starting in 0,0 and in prediction.
	note that this search is/might be done in halfpel positions,
	which makes it more different than the diamond above */

		if (MotionFlags & XVID_ME_EXTSEARCH16) {
			int32_t bSAD;
			VECTOR startMV = Data->predMV, backupMV = Data->currentMV[0];
			if (Data->rrv) {
				startMV.x = RRV_MV_SCALEUP(startMV.x);
				startMV.y = RRV_MV_SCALEUP(startMV.y);
			}
			if (!(MVequal(startMV, backupMV))) {
				bSAD = Data->iMinSAD[0]; Data->iMinSAD[0] = MV_MAX_ERROR;

				CheckCandidate(startMV.x, startMV.y, 255, &iDirection, Data);
				MainSearchPtr(startMV.x, startMV.y, Data, 255);
				if (bSAD < Data->iMinSAD[0]) {
					Data->currentMV[0] = backupMV;
					Data->iMinSAD[0] = bSAD; }
			}

			backupMV = Data->currentMV[0];
			startMV.x = startMV.y = 1;
			if (!(MVequal(startMV, backupMV))) {
				bSAD = Data->iMinSAD[0]; Data->iMinSAD[0] = MV_MAX_ERROR;

				CheckCandidate(startMV.x, startMV.y, 255, &iDirection, Data);
				MainSearchPtr(startMV.x, startMV.y, Data, 255);
				if (bSAD < Data->iMinSAD[0]) {
					Data->currentMV[0] = backupMV;
					Data->iMinSAD[0] = bSAD; }
			}
		}
	}

	if (MotionFlags & XVID_ME_HALFPELREFINE16)
		if ((!(MotionFlags & XVID_ME_HALFPELREFINE16_BITS)) || Data->iMinSAD[0] < 200*(int)iQuant)
			SubpelRefine(Data);

	for(i = 0; i < 5; i++) {
		Data->currentQMV[i].x = 2 * Data->currentMV[i].x; // initialize qpel vectors
		Data->currentQMV[i].y = 2 * Data->currentMV[i].y;
	}

	if (MotionFlags & XVID_ME_QUARTERPELREFINE16)
		if ((!(MotionFlags & XVID_ME_QUARTERPELREFINE16_BITS)) || (Data->iMinSAD[0] < 200*(int)iQuant)) {
			Data->qpel_precision = 1;
			get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
					pParam->width, pParam->height, Data->iFcode, 1, 0);

			SubpelRefine(Data);
		}

	if ((!(VopFlags & XVID_VOP_MODEDECISION_BITS)) && (Data->iMinSAD[0] < (int32_t)iQuant * 30)) inter4v = 0;

	if (inter4v && (!(VopFlags & XVID_VOP_MODEDECISION_BITS) ||
			(!(MotionFlags & XVID_ME_QUARTERPELREFINE8_BITS)) || (!(MotionFlags & XVID_ME_HALFPELREFINE8_BITS)) ||
			((!(MotionFlags & XVID_ME_EXTSEARCH_BITS)) && (!(MotionFlags&XVID_ME_EXTSEARCH8)) ))) {
		// if decision is BITS-based and all refinement steps will be done in BITS domain, there is no reason to call this loop

		SearchData Data8;
		memcpy(&Data8, Data, sizeof(SearchData)); //quick copy of common data

		Search8(Data, 2*x, 2*y, MotionFlags, pParam, pMB, pMBs, 0, &Data8);
		Search8(Data, 2*x + 1, 2*y, MotionFlags, pParam, pMB, pMBs, 1, &Data8);
		Search8(Data, 2*x, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 2, &Data8);
		Search8(Data, 2*x + 1, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 3, &Data8);

		if ((Data->chroma) && (!(VopFlags & XVID_VOP_MODEDECISION_BITS))) {
			// chroma is only used for comparsion to INTER. if the comparsion will be done in BITS domain, there is no reason to compute it
			int sumx = 0, sumy = 0;
			const int div = 1 + Data->qpel;
			const VECTOR * const mv = Data->qpel ? pMB->qmvs : pMB->mvs;

			for (i = 0; i < 4; i++) {
				sumx += mv[i].x / div;
				sumy += mv[i].y / div;
			}

			Data->iMinSAD[1] += ChromaSAD(	(sumx >> 3) + roundtab_76[sumx & 0xf],
											(sumy >> 3) + roundtab_76[sumy & 0xf], Data);
		}
	}

	inter4v = ModeDecision(iQuant, Data, inter4v, pMB, pMBs, x, y, pParam, MotionFlags, VopFlags);

	if (Data->rrv) {
			Data->currentMV[0].x = RRV_MV_SCALEDOWN(Data->currentMV[0].x);
			Data->currentMV[0].y = RRV_MV_SCALEDOWN(Data->currentMV[0].y);
	}

	if (inter4v == MODE_INTER) {
		pMB->mode = MODE_INTER;
		pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = Data->currentMV[0];
		pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = Data->iMinSAD[0];

		if(Data->qpel) {
			pMB->qmvs[0] = pMB->qmvs[1]
				= pMB->qmvs[2] = pMB->qmvs[3] = Data->currentQMV[0];
			pMB->pmvs[0].x = Data->currentQMV[0].x - Data->predMV.x;
			pMB->pmvs[0].y = Data->currentQMV[0].y - Data->predMV.y;
		} else {
			pMB->pmvs[0].x = Data->currentMV[0].x - Data->predMV.x;
			pMB->pmvs[0].y = Data->currentMV[0].y - Data->predMV.y;
		}

	} else if (inter4v == MODE_INTER4V) {
		pMB->mode = MODE_INTER4V;
		pMB->sad16 = Data->iMinSAD[0];
	} else { // INTRA mode
		SkipMacroblockP(pMB, 0); // not skip, but similar enough
		pMB->mode = MODE_INTRA;
	}

}

static void
Search8(const SearchData * const OldData,
		const int x, const int y,
		const uint32_t MotionFlags,
		const MBParam * const pParam,
		MACROBLOCK * const pMB,
		const MACROBLOCK * const pMBs,
		const int block,
		SearchData * const Data)
{
	int i = 0;
	Data->iMinSAD = OldData->iMinSAD + 1 + block;
	Data->currentMV = OldData->currentMV + 1 + block;
	Data->currentQMV = OldData->currentQMV + 1 + block;

	if(Data->qpel) {
		Data->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x/2, y/2, block);
		if (block != 0)	i = d_mv_bits(	Data->currentQMV->x, Data->currentQMV->y,
										Data->predMV, Data->iFcode, 0, 0);
	} else {
		Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x/2, y/2, block);
		if (block != 0)	i = d_mv_bits(	Data->currentMV->x, Data->currentMV->y,
										Data->predMV, Data->iFcode, 0, Data->rrv);
	}

	*(Data->iMinSAD) += (Data->lambda8 * i * (*Data->iMinSAD + NEIGH_8X8_BIAS))>>10;

	if (MotionFlags & (XVID_ME_EXTSEARCH8|XVID_ME_HALFPELREFINE8|XVID_ME_QUARTERPELREFINE8)) {
		if (Data->rrv) i = 2; else i = 1;

		Data->Ref = OldData->Ref + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1));
		Data->RefH = OldData->RefH + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1));
		Data->RefV = OldData->RefV + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1));
		Data->RefHV = OldData->RefHV + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1));

		Data->Cur = OldData->Cur + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1));
		Data->qpel_precision = 0;

		get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 8,
					pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv);

		if (!Data->rrv) CheckCandidate = CheckCandidate8;
		else CheckCandidate = CheckCandidate16no4v;

		if (MotionFlags & XVID_ME_EXTSEARCH8 && (!(MotionFlags & XVID_ME_EXTSEARCH_BITS))) {
			int32_t temp_sad = *(Data->iMinSAD); // store current MinSAD

			MainSearchFunc *MainSearchPtr;
			if (MotionFlags & XVID_ME_USESQUARES8) MainSearchPtr = SquareSearch;
				else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND8) MainSearchPtr = AdvDiamondSearch;
					else MainSearchPtr = DiamondSearch;

			MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, 255);

			if(*(Data->iMinSAD) < temp_sad) {
					Data->currentQMV->x = 2 * Data->currentMV->x; // update our qpel vector
					Data->currentQMV->y = 2 * Data->currentMV->y;
			}
		}

		if (MotionFlags & XVID_ME_HALFPELREFINE8) {
			int32_t temp_sad = *(Data->iMinSAD); // store current MinSAD

			SubpelRefine(Data); // perform halfpel refine of current best vector

			if(*(Data->iMinSAD) < temp_sad) { // we have found a better match
				Data->currentQMV->x = 2 * Data->currentMV->x; // update our qpel vector
				Data->currentQMV->y = 2 * Data->currentMV->y;
			}
		}

		if (Data->qpel && MotionFlags & XVID_ME_QUARTERPELREFINE8) {
				Data->qpel_precision = 1;
				get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 8,
					pParam->width, pParam->height, Data->iFcode, 1, 0);
				SubpelRefine(Data);
		}
	}

	if (Data->rrv) {
			Data->currentMV->x = RRV_MV_SCALEDOWN(Data->currentMV->x);
			Data->currentMV->y = RRV_MV_SCALEDOWN(Data->currentMV->y);
	}

	if(Data->qpel) {
		pMB->pmvs[block].x = Data->currentQMV->x - Data->predMV.x;
		pMB->pmvs[block].y = Data->currentQMV->y - Data->predMV.y;
		pMB->qmvs[block] = *Data->currentQMV;
	} else {
		pMB->pmvs[block].x = Data->currentMV->x - Data->predMV.x;
		pMB->pmvs[block].y = Data->currentMV->y - Data->predMV.y;
	}

	pMB->mvs[block] = *Data->currentMV;
	pMB->sad8[block] = 4 * *Data->iMinSAD;
}

/* motion estimation for B-frames */

static __inline VECTOR
ChoosePred(const MACROBLOCK * const pMB, const uint32_t mode)
{
/* the stupidiest function ever */
	return (mode == MODE_FORWARD ? pMB->mvs[0] : pMB->b_mvs[0]);
}

static void __inline
PreparePredictionsBF(VECTOR * const pmv, const int x, const int y,
							const uint32_t iWcount,
							const MACROBLOCK * const pMB,
							const uint32_t mode_curr)
{

	// [0] is prediction
	pmv[0].x = EVEN(pmv[0].x); pmv[0].y = EVEN(pmv[0].y);

	pmv[1].x = pmv[1].y = 0; // [1] is zero

	pmv[2] = ChoosePred(pMB, mode_curr);
	pmv[2].x = EVEN(pmv[2].x); pmv[2].y = EVEN(pmv[2].y);

	if ((y != 0)&&(x != (int)(iWcount+1))) {			// [3] top-right neighbour
		pmv[3] = ChoosePred(pMB+1-iWcount, mode_curr);
		pmv[3].x = EVEN(pmv[3].x); pmv[3].y = EVEN(pmv[3].y);
	} else pmv[3].x = pmv[3].y = 0;

	if (y != 0) {
		pmv[4] = ChoosePred(pMB-iWcount, mode_curr);
		pmv[4].x = EVEN(pmv[4].x); pmv[4].y = EVEN(pmv[4].y);
	} else pmv[4].x = pmv[4].y = 0;

	if (x != 0) {
		pmv[5] = ChoosePred(pMB-1, mode_curr);
		pmv[5].x = EVEN(pmv[5].x); pmv[5].y = EVEN(pmv[5].y);
	} else pmv[5].x = pmv[5].y = 0;

	if (x != 0 && y != 0) {
		pmv[6] = ChoosePred(pMB-1-iWcount, mode_curr);
		pmv[6].x = EVEN(pmv[6].x); pmv[6].y = EVEN(pmv[6].y);
	} else pmv[6].x = pmv[6].y = 0;
}


/* search backward or forward */
static void
SearchBF(	const IMAGE * const pRef,
			const uint8_t * const pRefH,
			const uint8_t * const pRefV,
			const uint8_t * const pRefHV,
			const IMAGE * const pCur,
			const int x, const int y,
			const uint32_t MotionFlags,
			const uint32_t iFcode,
			const MBParam * const pParam,
			MACROBLOCK * const pMB,
			const VECTOR * const predMV,
			int32_t * const best_sad,
			const int32_t mode_current,
			SearchData * const Data)
{

	int i, iDirection = 255, mask;
	VECTOR pmv[7];
	MainSearchFunc *MainSearchPtr;
	*Data->iMinSAD = MV_MAX_ERROR;
	Data->iFcode = iFcode;
	Data->qpel_precision = 0;
	Data->temp[5] = Data->temp[6] = Data->temp[7] = 256*4096; // reset chroma-sad cache

	Data->Ref = pRef->y + (x + y * Data->iEdgedWidth) * 16;
	Data->RefH = pRefH + (x + y * Data->iEdgedWidth) * 16;
	Data->RefV = pRefV + (x + y * Data->iEdgedWidth) * 16;
	Data->RefHV = pRefHV + (x + y * Data->iEdgedWidth) * 16;
	Data->RefCU = pRef->u + (x + y * Data->iEdgedWidth/2) * 8;
	Data->RefCV = pRef->v + (x + y * Data->iEdgedWidth/2) * 8;

	Data->predMV = *predMV;

	get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
				pParam->width, pParam->height, iFcode - Data->qpel, 0, 0);

	pmv[0] = Data->predMV;
	if (Data->qpel) { pmv[0].x /= 2; pmv[0].y /= 2; }

	PreparePredictionsBF(pmv, x, y, pParam->mb_width, pMB, mode_current);

	Data->currentMV->x = Data->currentMV->y = 0;
	CheckCandidate = CheckCandidate16no4v;

// main loop. checking all predictions
	for (i = 0; i < 7; i++) {
		if (!(mask = make_mask(pmv, i)) ) continue;
		CheckCandidate16no4v(pmv[i].x, pmv[i].y, mask, &iDirection, Data);
	}

	if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = SquareSearch;
	else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch;
		else MainSearchPtr = DiamondSearch;

	MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, iDirection);

	SubpelRefine(Data);

	if (Data->qpel && *Data->iMinSAD < *best_sad + 300) {
		Data->currentQMV->x = 2*Data->currentMV->x;
		Data->currentQMV->y = 2*Data->currentMV->y;
		Data->qpel_precision = 1;
		get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
					pParam->width, pParam->height, iFcode, 1, 0);
		SubpelRefine(Data);
	}

// three bits are needed to code backward mode. four for forward

	if (mode_current == MODE_FORWARD) *Data->iMinSAD += 4 * Data->lambda16;
	else *Data->iMinSAD += 3 * Data->lambda16;

	if (*Data->iMinSAD < *best_sad) {
		*best_sad = *Data->iMinSAD;
		pMB->mode = mode_current;
		if (Data->qpel) {
			pMB->pmvs[0].x = Data->currentQMV->x - predMV->x;
			pMB->pmvs[0].y = Data->currentQMV->y - predMV->y;
			if (mode_current == MODE_FORWARD)
				pMB->qmvs[0] = *Data->currentQMV;
			else
				pMB->b_qmvs[0] = *Data->currentQMV;
		} else {
			pMB->pmvs[0].x = Data->currentMV->x - predMV->x;
			pMB->pmvs[0].y = Data->currentMV->y - predMV->y;
		}
		if (mode_current == MODE_FORWARD) pMB->mvs[0] = *Data->currentMV;
		else pMB->b_mvs[0] = *Data->currentMV;
	}

	if (mode_current == MODE_FORWARD) *(Data->currentMV+2) = *Data->currentMV;
	else *(Data->currentMV+1) = *Data->currentMV; //we store currmv for interpolate search
}

static void
SkipDecisionB(const IMAGE * const pCur,
				const IMAGE * const f_Ref,
				const IMAGE * const b_Ref,
				MACROBLOCK * const pMB,
				const uint32_t x, const uint32_t y,
				const SearchData * const Data)
{
	int dx = 0, dy = 0, b_dx = 0, b_dy = 0;
	int32_t sum;
	const int div = 1 + Data->qpel;
	int k;
	const uint32_t stride = Data->iEdgedWidth/2;
//this is not full chroma compensation, only it's fullpel approximation. should work though

	for (k = 0; k < 4; k++) {
		dy += Data->directmvF[k].y / div;
		dx += Data->directmvF[0].x / div;
		b_dy += Data->directmvB[0].y / div;
		b_dx += Data->directmvB[0].x / div;
	}

	dy = (dy >> 3) + roundtab_76[dy & 0xf];
	dx = (dx >> 3) + roundtab_76[dx & 0xf];
	b_dy = (b_dy >> 3) + roundtab_76[b_dy & 0xf];
	b_dx = (b_dx >> 3) + roundtab_76[b_dx & 0xf];

	sum = sad8bi(pCur->u + 8 * x + 8 * y * stride,
					f_Ref->u + (y*8 + dy/2) * stride + x*8 + dx/2,
					b_Ref->u + (y*8 + b_dy/2) * stride + x*8 + b_dx/2,
					stride);

	if (sum >= 2 * MAX_CHROMA_SAD_FOR_SKIP * pMB->quant) return; //no skip

	sum += sad8bi(pCur->v + 8*x + 8 * y * stride,
					f_Ref->v + (y*8 + dy/2) * stride + x*8 + dx/2,
					b_Ref->v + (y*8 + b_dy/2) * stride + x*8 + b_dx/2,
					stride);

	if (sum < 2 * MAX_CHROMA_SAD_FOR_SKIP * pMB->quant) pMB->mode = MODE_DIRECT_NONE_MV; //skipped
}

static __inline uint32_t
SearchDirect(const IMAGE * const f_Ref,
				const uint8_t * const f_RefH,
				const uint8_t * const f_RefV,
				const uint8_t * const f_RefHV,
				const IMAGE * const b_Ref,
				const uint8_t * const b_RefH,
				const uint8_t * const b_RefV,
				const uint8_t * const b_RefHV,
				const IMAGE * const pCur,
				const int x, const int y,
				const uint32_t MotionFlags,
				const int32_t TRB, const int32_t TRD,
				const MBParam * const pParam,
				MACROBLOCK * const pMB,
				const MACROBLOCK * const b_mb,
				int32_t * const best_sad,
				SearchData * const Data)

{
	int32_t skip_sad;
	int k = (x + Data->iEdgedWidth*y) * 16;
	MainSearchFunc *MainSearchPtr;

	*Data->iMinSAD = 256*4096;
	Data->Ref = f_Ref->y + k;
	Data->RefH = f_RefH + k;
	Data->RefV = f_RefV + k;
	Data->RefHV = f_RefHV + k;
	Data->bRef = b_Ref->y + k;
	Data->bRefH = b_RefH + k;
	Data->bRefV = b_RefV + k;
	Data->bRefHV = b_RefHV + k;
	Data->RefCU = f_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8;
	Data->RefCV = f_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8;
	Data->b_RefCU = b_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8;
	Data->b_RefCV = b_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8;

	k = Data->qpel ? 4 : 2;
	Data->max_dx = k * (pParam->width - x * 16);
	Data->max_dy = k * (pParam->height - y * 16);
	Data->min_dx = -k * (16 + x * 16);
	Data->min_dy = -k * (16 + y * 16);

	Data->referencemv = Data->qpel ? b_mb->qmvs : b_mb->mvs;
	Data->qpel_precision = 0;

	for (k = 0; k < 4; k++) {
		pMB->mvs[k].x = Data->directmvF[k].x = ((TRB * Data->referencemv[k].x) / TRD);
		pMB->b_mvs[k].x = Data->directmvB[k].x = ((TRB - TRD) * Data->referencemv[k].x) / TRD;
		pMB->mvs[k].y = Data->directmvF[k].y = ((TRB * Data->referencemv[k].y) / TRD);
		pMB->b_mvs[k].y = Data->directmvB[k].y = ((TRB - TRD) * Data->referencemv[k].y) / TRD;

		if ( (pMB->b_mvs[k].x > Data->max_dx) | (pMB->b_mvs[k].x < Data->min_dx)
			| (pMB->b_mvs[k].y > Data->max_dy) | (pMB->b_mvs[k].y < Data->min_dy) ) {

			*best_sad = 256*4096; // in that case, we won't use direct mode
			pMB->mode = MODE_DIRECT; // just to make sure it doesn't say "MODE_DIRECT_NONE_MV"
			pMB->b_mvs[0].x = pMB->b_mvs[0].y = 0;
			return 256*4096;
		}
		if (b_mb->mode != MODE_INTER4V) {
			pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = pMB->mvs[0];
			pMB->b_mvs[1] = pMB->b_mvs[2] = pMB->b_mvs[3] = pMB->b_mvs[0];
			Data->directmvF[1] = Data->directmvF[2] = Data->directmvF[3] = Data->directmvF[0];
			Data->directmvB[1] = Data->directmvB[2] = Data->directmvB[3] = Data->directmvB[0];
			break;
		}
	}

	CheckCandidate = b_mb->mode == MODE_INTER4V ? CheckCandidateDirect : CheckCandidateDirectno4v;

	CheckCandidate(0, 0, 255, &k, Data);

// initial (fast) skip decision
	if (*Data->iMinSAD < pMB->quant * INITIAL_SKIP_THRESH * (2 + Data->chroma?1:0)) {
		//possible skip
		if (Data->chroma) {
			pMB->mode = MODE_DIRECT_NONE_MV;
			return *Data->iMinSAD; // skip.
		} else {
			SkipDecisionB(pCur, f_Ref, b_Ref, pMB, x, y, Data);
			if (pMB->mode == MODE_DIRECT_NONE_MV) return *Data->iMinSAD; // skip.
		}
	}

	skip_sad = *Data->iMinSAD;

//	DIRECT MODE DELTA VECTOR SEARCH.
//	This has to be made more effective, but at the moment I'm happy it's running at all

	if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = SquareSearch;
		else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch;
			else MainSearchPtr = DiamondSearch;

	MainSearchPtr(0, 0, Data, 255);

	SubpelRefine(Data);

	*best_sad = *Data->iMinSAD;

	if (Data->qpel || b_mb->mode == MODE_INTER4V) pMB->mode = MODE_DIRECT;
	else pMB->mode = MODE_DIRECT_NO4V; //for faster compensation

	pMB->pmvs[3] = *Data->currentMV;

	for (k = 0; k < 4; k++) {
		pMB->mvs[k].x = Data->directmvF[k].x + Data->currentMV->x;
		pMB->b_mvs[k].x = (	(Data->currentMV->x == 0)
							? Data->directmvB[k].x
							:pMB->mvs[k].x - Data->referencemv[k].x);
		pMB->mvs[k].y = (Data->directmvF[k].y + Data->currentMV->y);
		pMB->b_mvs[k].y = ((Data->currentMV->y == 0)
							? Data->directmvB[k].y
							: pMB->mvs[k].y - Data->referencemv[k].y);
		if (Data->qpel) {
			pMB->qmvs[k].x = pMB->mvs[k].x; pMB->mvs[k].x /= 2;
			pMB->b_qmvs[k].x = pMB->b_mvs[k].x; pMB->b_mvs[k].x /= 2;
			pMB->qmvs[k].y = pMB->mvs[k].y; pMB->mvs[k].y /= 2;
			pMB->b_qmvs[k].y = pMB->b_mvs[k].y; pMB->b_mvs[k].y /= 2;
		}

		if (b_mb->mode != MODE_INTER4V) {
			pMB->mvs[3] = pMB->mvs[2] = pMB->mvs[1] = pMB->mvs[0];
			pMB->b_mvs[3] = pMB->b_mvs[2] = pMB->b_mvs[1] = pMB->b_mvs[0];
			pMB->qmvs[3] = pMB->qmvs[2] = pMB->qmvs[1] = pMB->qmvs[0];
			pMB->b_qmvs[3] = pMB->b_qmvs[2] = pMB->b_qmvs[1] = pMB->b_qmvs[0];
			break;
		}
	}
	return skip_sad;
}

static void
SearchInterpolate(const IMAGE * const f_Ref,
				const uint8_t * const f_RefH,
				const uint8_t * const f_RefV,
				const uint8_t * const f_RefHV,
				const IMAGE * const b_Ref,
				const uint8_t * const b_RefH,
				const uint8_t * const b_RefV,
				const uint8_t * const b_RefHV,
				const IMAGE * const pCur,
				const int x, const int y,
				const uint32_t fcode,
				const uint32_t bcode,
				const uint32_t MotionFlags,
				const MBParam * const pParam,
				const VECTOR * const f_predMV,
				const VECTOR * const b_predMV,
				MACROBLOCK * const pMB,
				int32_t * const best_sad,
				SearchData * const fData)

{

	int iDirection, i, j;
	SearchData bData;

	fData->qpel_precision = 0;
	memcpy(&bData, fData, sizeof(SearchData)); //quick copy of common data
	*fData->iMinSAD = 4096*256;
	bData.currentMV++; bData.currentQMV++;
	fData->iFcode = bData.bFcode = fcode; fData->bFcode = bData.iFcode = bcode;

	i = (x + y * fData->iEdgedWidth) * 16;
	bData.bRef = fData->Ref = f_Ref->y + i;
	bData.bRefH = fData->RefH = f_RefH + i;
	bData.bRefV = fData->RefV = f_RefV + i;
	bData.bRefHV = fData->RefHV = f_RefHV + i;
	bData.Ref = fData->bRef = b_Ref->y + i;
	bData.RefH = fData->bRefH = b_RefH + i;
	bData.RefV = fData->bRefV = b_RefV + i;
	bData.RefHV = fData->bRefHV = b_RefHV + i;
	bData.b_RefCU = fData->RefCU = f_Ref->u + (x + (fData->iEdgedWidth/2) * y) * 8;
	bData.b_RefCV = fData->RefCV = f_Ref->v + (x + (fData->iEdgedWidth/2) * y) * 8;
	bData.RefCU = fData->b_RefCU = b_Ref->u + (x + (fData->iEdgedWidth/2) * y) * 8;
	bData.RefCV = fData->b_RefCV = b_Ref->v + (x + (fData->iEdgedWidth/2) * y) * 8;


	bData.bpredMV = fData->predMV = *f_predMV;
	fData->bpredMV = bData.predMV = *b_predMV;
	fData->currentMV[0] = fData->currentMV[2];

	get_range(&fData->min_dx, &fData->max_dx, &fData->min_dy, &fData->max_dy, x, y, 16, pParam->width, pParam->height, fcode - fData->qpel, 0, 0);
	get_range(&bData.min_dx, &bData.max_dx, &bData.min_dy, &bData.max_dy, x, y, 16, pParam->width, pParam->height, bcode - fData->qpel, 0, 0);

	if (fData->currentMV[0].x > fData->max_dx) fData->currentMV[0].x = fData->max_dx;
	if (fData->currentMV[0].x < fData->min_dx) fData->currentMV[0].x = fData->min_dx;
	if (fData->currentMV[0].y > fData->max_dy) fData->currentMV[0].y = fData->max_dy;
	if (fData->currentMV[0].y < fData->min_dy) fData->currentMV[0].y = fData->min_dy;

	if (fData->currentMV[1].x > bData.max_dx) fData->currentMV[1].x = bData.max_dx;
	if (fData->currentMV[1].x < bData.min_dx) fData->currentMV[1].x = bData.min_dx;
	if (fData->currentMV[1].y > bData.max_dy) fData->currentMV[1].y = bData.max_dy;
	if (fData->currentMV[1].y < bData.min_dy) fData->currentMV[1].y = bData.min_dy;

	CheckCandidateInt(fData->currentMV[0].x, fData->currentMV[0].y, 255, &iDirection, fData);

//diamond
	do {
		iDirection = 255;
		// forward MV moves
		i = fData->currentMV[0].x; j = fData->currentMV[0].y;

		CheckCandidateInt(i + 1, j, 0, &iDirection, fData);
		CheckCandidateInt(i, j + 1, 0, &iDirection, fData);
		CheckCandidateInt(i - 1, j, 0, &iDirection, fData);
		CheckCandidateInt(i, j - 1, 0, &iDirection, fData);

		// backward MV moves
		i = fData->currentMV[1].x; j = fData->currentMV[1].y;
		fData->currentMV[2] = fData->currentMV[0];
		CheckCandidateInt(i + 1, j, 0, &iDirection, &bData);
		CheckCandidateInt(i, j + 1, 0, &iDirection, &bData);
		CheckCandidateInt(i - 1, j, 0, &iDirection, &bData);
		CheckCandidateInt(i, j - 1, 0, &iDirection, &bData);

	} while (!(iDirection));

//qpel refinement
	if (fData->qpel) {
		if (*fData->iMinSAD > *best_sad + 500) return;
		CheckCandidate = CheckCandidateInt;
		fData->qpel_precision = bData.qpel_precision = 1;
		get_range(&fData->min_dx, &fData->max_dx, &fData->min_dy, &fData->max_dy, x, y, 16, pParam->width, pParam->height, fcode, 1, 0);
		get_range(&bData.min_dx, &bData.max_dx, &bData.min_dy, &bData.max_dy, x, y, 16, pParam->width, pParam->height, bcode, 1, 0);
		fData->currentQMV[2].x = fData->currentQMV[0].x = 2 * fData->currentMV[0].x;
		fData->currentQMV[2].y = fData->currentQMV[0].y = 2 * fData->currentMV[0].y;
		fData->currentQMV[1].x = 2 * fData->currentMV[1].x;
		fData->currentQMV[1].y = 2 * fData->currentMV[1].y;
		SubpelRefine(fData);
		if (*fData->iMinSAD > *best_sad + 300) return;
		fData->currentQMV[2] = fData->currentQMV[0];
		SubpelRefine(&bData);
	}

	*fData->iMinSAD += (2+3) * fData->lambda16; // two bits are needed to code interpolate mode.

	if (*fData->iMinSAD < *best_sad) {
		*best_sad = *fData->iMinSAD;
		pMB->mvs[0] = fData->currentMV[0];
		pMB->b_mvs[0] = fData->currentMV[1];
		pMB->mode = MODE_INTERPOLATE;
		if (fData->qpel) {
			pMB->qmvs[0] = fData->currentQMV[0];
			pMB->b_qmvs[0] = fData->currentQMV[1];
			pMB->pmvs[1].x = pMB->qmvs[0].x - f_predMV->x;
			pMB->pmvs[1].y = pMB->qmvs[0].y - f_predMV->y;
			pMB->pmvs[0].x = pMB->b_qmvs[0].x - b_predMV->x;
			pMB->pmvs[0].y = pMB->b_qmvs[0].y - b_predMV->y;
		} else {
			pMB->pmvs[1].x = pMB->mvs[0].x - f_predMV->x;
			pMB->pmvs[1].y = pMB->mvs[0].y - f_predMV->y;
			pMB->pmvs[0].x = pMB->b_mvs[0].x - b_predMV->x;
			pMB->pmvs[0].y = pMB->b_mvs[0].y - b_predMV->y;
		}
	}
}

void
MotionEstimationBVOP(MBParam * const pParam,
					 FRAMEINFO * const frame,
					 const int32_t time_bp,
					 const int32_t time_pp,
					 // forward (past) reference
					 const MACROBLOCK * const f_mbs,
					 const IMAGE * const f_ref,
					 const IMAGE * const f_refH,
					 const IMAGE * const f_refV,
					 const IMAGE * const f_refHV,
					 // backward (future) reference
					 const FRAMEINFO * const b_reference,
					 const IMAGE * const b_ref,
					 const IMAGE * const b_refH,
					 const IMAGE * const b_refV,
					 const IMAGE * const b_refHV)
{
	uint32_t i, j;
	int32_t best_sad;
	uint32_t skip_sad;
	int f_count = 0, b_count = 0, i_count = 0, d_count = 0, n_count = 0;
	const MACROBLOCK * const b_mbs = b_reference->mbs;

	VECTOR f_predMV, b_predMV;	/* there is no prediction for direct mode*/

	const int32_t TRB = time_pp - time_bp;
	const int32_t TRD = time_pp;

// some pre-inintialized data for the rest of the search

	SearchData Data;
	int32_t iMinSAD;
	VECTOR currentMV[3];
	VECTOR currentQMV[3];
	int32_t temp[8];
	memset(&Data, 0, sizeof(SearchData));
	Data.iEdgedWidth = pParam->edged_width;
	Data.currentMV = currentMV; Data.currentQMV = currentQMV;
	Data.iMinSAD = &iMinSAD;
	Data.lambda16 = lambda_vec16[frame->quant];
	Data.qpel = pParam->vol_flags & XVID_VOL_QUARTERPEL;
	Data.rounding = 0;
	Data.chroma = frame->motion_flags & XVID_ME_CHROMA8;
	Data.temp = temp;

	Data.RefQ = f_refV->u; // a good place, also used in MC (for similar purpose)
	// note: i==horizontal, j==vertical
	for (j = 0; j < pParam->mb_height; j++) {

		f_predMV = b_predMV = zeroMV;	/* prediction is reset at left boundary */

		for (i = 0; i < pParam->mb_width; i++) {
			MACROBLOCK * const pMB = frame->mbs + i + j * pParam->mb_width;
			const MACROBLOCK * const b_mb = b_mbs + i + j * pParam->mb_width;

/* special case, if collocated block is SKIPed in P-VOP: encoding is forward (0,0), cpb=0 without further ado */
			if (b_reference->coding_type != S_VOP)
				if (b_mb->mode == MODE_NOT_CODED) {
					pMB->mode = MODE_NOT_CODED;
					continue;
				}

			Data.Cur = frame->image.y + (j * Data.iEdgedWidth + i) * 16;
			Data.CurU = frame->image.u + (j * Data.iEdgedWidth/2 + i) * 8;
			Data.CurV = frame->image.v + (j * Data.iEdgedWidth/2 + i) * 8;

/* direct search comes first, because it (1) checks for SKIP-mode
	and (2) sets very good predictions for forward and backward search */
			skip_sad = SearchDirect(f_ref, f_refH->y, f_refV->y, f_refHV->y,
									b_ref, b_refH->y, b_refV->y, b_refHV->y,
									&frame->image,
									i, j,
									frame->motion_flags,
									TRB, TRD,
									pParam,
									pMB, b_mb,
									&best_sad,
									&Data);

			if (pMB->mode == MODE_DIRECT_NONE_MV) { n_count++; continue; }

			// forward search
			SearchBF(f_ref, f_refH->y, f_refV->y, f_refHV->y,
						&frame->image, i, j,
						frame->motion_flags,
						frame->fcode, pParam,
						pMB, &f_predMV, &best_sad,
						MODE_FORWARD, &Data);

			// backward search
			SearchBF(b_ref, b_refH->y, b_refV->y, b_refHV->y,
						&frame->image, i, j,
						frame->motion_flags,
						frame->bcode, pParam,
						pMB, &b_predMV, &best_sad,
						MODE_BACKWARD, &Data);

			// interpolate search comes last, because it uses data from forward and backward as prediction
			SearchInterpolate(f_ref, f_refH->y, f_refV->y, f_refHV->y,
						b_ref, b_refH->y, b_refV->y, b_refHV->y,
						&frame->image,
						i, j,
						frame->fcode, frame->bcode,
						frame->motion_flags,
						pParam,
						&f_predMV, &b_predMV,
						pMB, &best_sad,
						&Data);

// final skip decision
			if ( (skip_sad < frame->quant * MAX_SAD00_FOR_SKIP * 2)
					&& ((100*best_sad)/(skip_sad+1) > FINAL_SKIP_THRESH) )
				SkipDecisionB(&frame->image, f_ref, b_ref, pMB, i, j, &Data);

			switch (pMB->mode) {
				case MODE_FORWARD:
					f_count++;
					f_predMV = Data.qpel ? pMB->qmvs[0] : pMB->mvs[0];
					break;
				case MODE_BACKWARD:
					b_count++;
					b_predMV = Data.qpel ? pMB->b_qmvs[0] : pMB->b_mvs[0];
					break;
				case MODE_INTERPOLATE:
					i_count++;
					f_predMV = Data.qpel ? pMB->qmvs[0] : pMB->mvs[0];
					b_predMV = Data.qpel ? pMB->b_qmvs[0] : pMB->b_mvs[0];
					break;
				case MODE_DIRECT:
				case MODE_DIRECT_NO4V:
					d_count++;
				default:
					break;
			}
		}
	}
}

static __inline void
MEanalyzeMB (	const uint8_t * const pRef,
				const uint8_t * const pCur,
				const int x,
				const int y,
				const MBParam * const pParam,
				MACROBLOCK * const pMBs,
				SearchData * const Data)
{

	int i, mask;
	VECTOR pmv[3];
	MACROBLOCK * pMB = &pMBs[x + y * pParam->mb_width];

	for (i = 0; i < 5; i++) Data->iMinSAD[i] = MV_MAX_ERROR;

	//median is only used as prediction. it doesn't have to be real
	if (x == 1 && y == 1) Data->predMV.x = Data->predMV.y = 0;
	else
		if (x == 1) //left macroblock does not have any vector now
			Data->predMV = (pMB - pParam->mb_width)->mvs[0]; // top instead of median
		else if (y == 1) // top macroblock doesn't have it's vector
			Data->predMV = (pMB - 1)->mvs[0]; // left instead of median
			else Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, 0); //else median

	get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
        pParam->width, pParam->height, Data->iFcode - (pParam->vol_flags&XVID_VOL_QUARTERPEL?1:0), 0, Data->rrv);

	Data->Cur = pCur + (x + y * pParam->edged_width) * 16;
	Data->Ref = pRef + (x + y * pParam->edged_width) * 16;

	pmv[1].x = EVEN(pMB->mvs[0].x);
	pmv[1].y = EVEN(pMB->mvs[0].y);
	pmv[2].x = EVEN(Data->predMV.x);
	pmv[2].y = EVEN(Data->predMV.y);
	pmv[0].x = pmv[0].y = 0;

	CheckCandidate32I(0, 0, 255, &i, Data);

	if (*Data->iMinSAD > 4 * MAX_SAD00_FOR_SKIP * 4) {

		if (!(mask = make_mask(pmv, 1)))
			CheckCandidate32I(pmv[1].x, pmv[1].y, mask, &i, Data);
		if (!(mask = make_mask(pmv, 2)))
			CheckCandidate32I(pmv[2].x, pmv[2].y, mask, &i, Data);

		if (*Data->iMinSAD > 4 * MAX_SAD00_FOR_SKIP * 4) // diamond only if needed
			DiamondSearch(Data->currentMV->x, Data->currentMV->y, Data, i);

		for (i = 0; i < 4; i++) {
			MACROBLOCK * MB = &pMBs[x + (i&1) + (y+(i>>1)) * pParam->mb_width];
			MB->mvs[0] = MB->mvs[1] = MB->mvs[2] = MB->mvs[3] = Data->currentMV[i];
			MB->mode = MODE_INTER;
			MB->sad16 = Data->iMinSAD[i+1];
		}
	}
}

#define INTRA_BIAS		2500
#define INTRA_THRESH	1500
#define INTER_THRESH	1400

int
MEanalysis(	const IMAGE * const pRef,
			FRAMEINFO * const Current,
			MBParam * const pParam,
			int maxIntra, //maximum number if non-I frames
			int intraCount, //number of non-I frames after last I frame; 0 if we force P/B frame
			int bCount) // number of B frames in a row
{
	uint32_t x, y, intra = 0;
	int sSAD = 0;
	MACROBLOCK * const pMBs = Current->mbs;
	const IMAGE * const pCurrent = &Current->image;
	int IntraThresh = INTRA_THRESH, InterThresh = INTER_THRESH;

	int32_t iMinSAD[5], temp[5];
	VECTOR currentMV[5];
	SearchData Data;
	Data.iEdgedWidth = pParam->edged_width;
	Data.currentMV = currentMV;
	Data.iMinSAD = iMinSAD;
	Data.iFcode = Current->fcode;
	Data.rrv = Current->vop_flags & XVID_VOP_REDUCED;
	Data.temp = temp;
	CheckCandidate = CheckCandidate32I;

	if (intraCount != 0 && intraCount < 10) // we're right after an I frame
		IntraThresh += 4 * (intraCount - 10) * (intraCount - 10);
	else
		if ( 5*(maxIntra - intraCount) < maxIntra) // we're close to maximum. 2 sec when max is 10 sec
			IntraThresh -= (IntraThresh * (maxIntra - 5*(maxIntra - intraCount)))/maxIntra;

	InterThresh += 400 * (1 - bCount);
	if (InterThresh < 300) InterThresh = 300;

	if (sadInit) (*sadInit) ();

	for (y = 1; y < pParam->mb_height-1; y += 2) {
		for (x = 1; x < pParam->mb_width-1; x += 2) {
			int i;

			if (bCount == 0) pMBs[x + y * pParam->mb_width].mvs[0] = zeroMV;

			MEanalyzeMB(pRef->y, pCurrent->y, x, y, pParam, pMBs, &Data);

			for (i = 0; i < 4; i++) {
				int dev;
				MACROBLOCK *pMB = &pMBs[x+(i&1) + (y+(i>>1)) * pParam->mb_width];
				if (pMB->sad16 > IntraThresh) {
					dev = dev16(pCurrent->y + (x + (i&1) + (y + (i>>1)) * pParam->edged_width) * 16,
									pParam->edged_width);
					if (dev + IntraThresh < pMB->sad16) {
						pMB->mode = MODE_INTRA;
						if (++intra > (pParam->mb_height-2)*(pParam->mb_width-2)/2) return I_VOP;
					}
				}
				sSAD += pMB->sad16;
			}
		}
	}
	sSAD /= (pParam->mb_height-2)*(pParam->mb_width-2);
//	if (sSAD > IntraThresh + INTRA_BIAS) return I_VOP;
	if (sSAD > InterThresh ) return P_VOP;
	emms();
	return B_VOP;

}


static WARPPOINTS
GlobalMotionEst(const MACROBLOCK * const pMBs,
				const MBParam * const pParam,
				const FRAMEINFO * const current,
				const FRAMEINFO * const reference,
				const IMAGE * const pRefH,
				const IMAGE * const pRefV,
				const IMAGE * const pRefHV	)
{

	const int deltax=8;		// upper bound for difference between a MV and it's neighbour MVs
	const int deltay=8;
	const int grad=512;		// lower bound for deviation in MB

	WARPPOINTS gmc;

	uint32_t mx, my;

	int MBh = pParam->mb_height;
	int MBw = pParam->mb_width;

	int *MBmask= calloc(MBh*MBw,sizeof(int));
	double DtimesF[4] = { 0.,0., 0., 0. };
	double sol[4] = { 0., 0., 0., 0. };
	double a,b,c,n,denom;
	double meanx,meany;
	int num,oldnum;

	if (!MBmask) { fprintf(stderr,"Mem error\n"); 
			       gmc.duv[0].x= gmc.duv[0].y = 
				   		gmc.duv[1].x= gmc.duv[1].y = 			
						gmc.duv[2].x= gmc.duv[2].y = 0;
					return gmc; }

// filter mask of all blocks

	for (my = 1; my < (uint32_t)MBh-1; my++)
	for (mx = 1; mx < (uint32_t)MBw-1; mx++)
	{
		const int mbnum = mx + my * MBw;
		const MACROBLOCK *pMB = &pMBs[mbnum];
		const VECTOR mv = pMB->mvs[0];

		if (pMB->mode == MODE_INTRA || pMB->mode == MODE_NOT_CODED)
			continue;

		if ( ( (ABS(mv.x -   (pMB-1)->mvs[0].x) < deltax) && (ABS(mv.y -   (pMB-1)->mvs[0].y) < deltay) )
		&&   ( (ABS(mv.x -   (pMB+1)->mvs[0].x) < deltax) && (ABS(mv.y -   (pMB+1)->mvs[0].y) < deltay) )
		&&   ( (ABS(mv.x - (pMB-MBw)->mvs[0].x) < deltax) && (ABS(mv.y - (pMB-MBw)->mvs[0].y) < deltay) )
		&&   ( (ABS(mv.x - (pMB+MBw)->mvs[0].x) < deltax) && (ABS(mv.y - (pMB+MBw)->mvs[0].y) < deltay) ) )
			MBmask[mbnum]=1;
	}

	for (my = 1; my < (uint32_t)MBh-1; my++)
	for (mx = 1; mx < (uint32_t)MBw-1; mx++)
	{
		const uint8_t *const pCur = current->image.y + 16*my*pParam->edged_width + 16*mx;

		const int mbnum = mx + my * MBw;
		if (!MBmask[mbnum])
			continue;

		if (sad16 ( pCur, pCur+1 , pParam->edged_width, 65536) <= (uint32_t)grad )
			MBmask[mbnum] = 0;
		if (sad16 ( pCur, pCur+pParam->edged_width, pParam->edged_width, 65536) <= (uint32_t)grad )
			MBmask[mbnum] = 0;

	}

	emms();

	do {		/* until convergence */

	a = b = c = n = 0;
	DtimesF[0] = DtimesF[1] = DtimesF[2] = DtimesF[3] = 0.;
	for (my = 0; my < (uint32_t)MBh; my++)
		for (mx = 0; mx < (uint32_t)MBw; mx++)
		{
			const int mbnum = mx + my * MBw;
			const MACROBLOCK *pMB = &pMBs[mbnum];
			const VECTOR mv = pMB->mvs[0];

			if (!MBmask[mbnum])
				continue;

			n++;
			a += 16*mx+8;
			b += 16*my+8;
			c += (16*mx+8)*(16*mx+8)+(16*my+8)*(16*my+8);

			DtimesF[0] += (double)mv.x;
			DtimesF[1] += (double)mv.x*(16*mx+8) + (double)mv.y*(16*my+8);
			DtimesF[2] += (double)mv.x*(16*my+8) - (double)mv.y*(16*mx+8);
			DtimesF[3] += (double)mv.y;
		}

	denom = a*a+b*b-c*n;

/* Solve the system:     sol = (D'*E*D)^{-1} D'*E*F   */
/* D'*E*F has been calculated in the same loop as matrix */

	sol[0] = -c*DtimesF[0] + a*DtimesF[1] + b*DtimesF[2];
	sol[1] =  a*DtimesF[0] - n*DtimesF[1]                + b*DtimesF[3];
	sol[2] =  b*DtimesF[0]                - n*DtimesF[2] - a*DtimesF[3];
	sol[3] =                 b*DtimesF[1] - a*DtimesF[2] - c*DtimesF[3];

	sol[0] /= denom;
	sol[1] /= denom;
	sol[2] /= denom;
	sol[3] /= denom;

	meanx = meany = 0.;
	oldnum = 0;
	for (my = 0; my < (uint32_t)MBh; my++)
		for (mx = 0; mx < (uint32_t)MBw; mx++)
		{
			const int mbnum = mx + my * MBw;
			const MACROBLOCK *pMB = &pMBs[mbnum];
			const VECTOR mv = pMB->mvs[0];

			if (!MBmask[mbnum])
				continue;

			oldnum++;
			meanx += ABS(( sol[0] + (16*mx+8)*sol[1] + (16*my+8)*sol[2] ) - mv.x );
			meany += ABS(( sol[3] - (16*mx+8)*sol[2] + (16*my+8)*sol[1] ) - mv.y );
		}

	if (4*meanx > oldnum)	/* better fit than 0.25 is useless */
		meanx /= oldnum;
	else
		meanx = 0.25;

	if (4*meany > oldnum)
		meany /= oldnum;
	else
		meany = 0.25;

/*	fprintf(stderr,"sol = (%8.5f, %8.5f, %8.5f, %8.5f)\n",sol[0],sol[1],sol[2],sol[3]);
	fprintf(stderr,"meanx = %8.5f  meany = %8.5f   %d\n",meanx,meany, oldnum);
*/
	num = 0;
	for (my = 0; my < (uint32_t)MBh; my++)
		for (mx = 0; mx < (uint32_t)MBw; mx++)
		{
			const int mbnum = mx + my * MBw;
			const MACROBLOCK *pMB = &pMBs[mbnum];
			const VECTOR mv = pMB->mvs[0];

			if (!MBmask[mbnum])
				continue;

			if  ( ( ABS(( sol[0] + (16*mx+8)*sol[1] + (16*my+8)*sol[2] ) - mv.x ) > meanx )
			   || ( ABS(( sol[3] - (16*mx+8)*sol[2] + (16*my+8)*sol[1] ) - mv.y ) > meany ) )
				MBmask[mbnum]=0;
			else
				num++;
		}

	} while ( (oldnum != num) && (num>=4) );

	if (num < 4)
	{
		gmc.duv[0].x= gmc.duv[0].y= gmc.duv[1].x= gmc.duv[1].y= gmc.duv[2].x= gmc.duv[2].y=0;
	} else {

		gmc.duv[0].x=(int)(sol[0]+0.5);
		gmc.duv[0].y=(int)(sol[3]+0.5);

		gmc.duv[1].x=(int)(sol[1]*pParam->width+0.5);
		gmc.duv[1].y=(int)(-sol[2]*pParam->width+0.5);

		gmc.duv[2].x=0;
		gmc.duv[2].y=0;
	}
//	fprintf(stderr,"wp1 = ( %4d, %4d)  wp2 = ( %4d, %4d) \n", gmc.duv[0].x, gmc.duv[0].y, gmc.duv[1].x, gmc.duv[1].y);

	free(MBmask);

	return gmc;
}

// functions which perform BITS-based search/bitcount

static int
CountMBBitsInter(SearchData * const Data,
				const MACROBLOCK * const pMBs, const int x, const int y,
				const MBParam * const pParam,
				const uint32_t MotionFlags)
{
	int i, iDirection;
	int32_t bsad[5];

	CheckCandidate = CheckCandidateBits16;

	if (Data->qpel) {
		for(i = 0; i < 5; i++) {
			Data->currentMV[i].x = Data->currentQMV[i].x/2;
			Data->currentMV[i].y = Data->currentQMV[i].y/2;
		}
		Data->qpel_precision = 1;
		CheckCandidateBits16(Data->currentQMV[0].x, Data->currentQMV[0].y, 255, &iDirection, Data);

		//checking if this vector is perfect. if it is, we stop.
		if (Data->temp[0] == 0 && Data->temp[1] == 0 && Data->temp[2] == 0 && Data->temp[3] == 0)
			return 0; //quick stop

		if (MotionFlags & (XVID_ME_HALFPELREFINE16_BITS | XVID_ME_EXTSEARCH_BITS)) { //we have to prepare for halfpixel-precision search
			for(i = 0; i < 5; i++) bsad[i] = Data->iMinSAD[i];
			get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
						pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv);
			Data->qpel_precision = 0;
			if (Data->currentQMV->x & 1 || Data->currentQMV->y & 1)
				CheckCandidateBits16(Data->currentMV[0].x, Data->currentMV[0].y, 255, &iDirection, Data);
		}

	} else { // not qpel

		CheckCandidateBits16(Data->currentMV[0].x, Data->currentMV[0].y, 255, &iDirection, Data);
		//checking if this vector is perfect. if it is, we stop.
		if (Data->temp[0] == 0 && Data->temp[1] == 0 && Data->temp[2] == 0 && Data->temp[3] == 0) {
			return 0; //inter
		}
	}

	if (MotionFlags&XVID_ME_EXTSEARCH_BITS) SquareSearch(Data->currentMV->x, Data->currentMV->y, Data, iDirection);

	if (MotionFlags&XVID_ME_HALFPELREFINE16_BITS) SubpelRefine(Data);

	if (Data->qpel) {
		if (MotionFlags&(XVID_ME_EXTSEARCH_BITS | XVID_ME_HALFPELREFINE16_BITS)) { // there was halfpel-precision search
			for(i = 0; i < 5; i++) if (bsad[i] > Data->iMinSAD[i]) {
				Data->currentQMV[i].x = 2 * Data->currentMV[i].x; // we have found a better match
				Data->currentQMV[i].y = 2 * Data->currentMV[i].y;
			}

			// preparing for qpel-precision search
			Data->qpel_precision = 1;
			get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
					pParam->width, pParam->height, Data->iFcode, 1, 0);
		}
		if (MotionFlags&XVID_ME_QUARTERPELREFINE16_BITS) SubpelRefine(Data);
	}

	if (MotionFlags&XVID_ME_CHECKPREDICTION_BITS) { //let's check vector equal to prediction
		VECTOR * v = Data->qpel ? Data->currentQMV : Data->currentMV;
		if (!(Data->predMV.x == v->x && Data->predMV.y == v->y))
			CheckCandidateBits16(Data->predMV.x, Data->predMV.y, 255, &iDirection, Data);
	}
	return Data->iMinSAD[0];
}


static int
CountMBBitsInter4v(const SearchData * const Data,
					MACROBLOCK * const pMB, const MACROBLOCK * const pMBs,
					const int x, const int y,
					const MBParam * const pParam, const uint32_t MotionFlags,
					const VECTOR * const backup)
{

	int cbp = 0, bits = 0, t = 0, i, iDirection;
	SearchData Data2, *Data8 = &Data2;
	int sumx = 0, sumy = 0;
	int16_t in[64], coeff[64];

	memcpy(Data8, Data, sizeof(SearchData));
	CheckCandidate = CheckCandidateBits8;

	for (i = 0; i < 4; i++) {
		Data8->iMinSAD = Data->iMinSAD + i + 1;
		Data8->currentMV = Data->currentMV + i + 1;
		Data8->currentQMV = Data->currentQMV + i + 1;
		Data8->Cur = Data->Cur + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
		Data8->Ref = Data->Ref + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
		Data8->RefH = Data->RefH + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
		Data8->RefV = Data->RefV + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
		Data8->RefHV = Data->RefHV + 8*((i&1) + (i>>1)*Data->iEdgedWidth);

		if(Data->qpel) {
			Data8->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, i);
			if (i != 0)	t = d_mv_bits(	Data8->currentQMV->x, Data8->currentQMV->y,
										Data8->predMV, Data8->iFcode, 0, 0);
		} else {
			Data8->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, i);
			if (i != 0)	t = d_mv_bits(	Data8->currentMV->x, Data8->currentMV->y,
										Data8->predMV, Data8->iFcode, 0, 0);
		}

		get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8,
					pParam->width, pParam->height, Data8->iFcode, Data8->qpel, 0);

		*Data8->iMinSAD += t;

		Data8->qpel_precision = Data8->qpel;
		// checking the vector which has been found by SAD-based 8x8 search (if it's different than the one found so far)
		if (Data8->qpel) {
			if (!(Data8->currentQMV->x == backup[i+1].x && Data8->currentQMV->y == backup[i+1].y))
				CheckCandidateBits8(backup[i+1].x, backup[i+1].y, 255, &iDirection, Data8);
		} else {
			if (!(Data8->currentMV->x == backup[i+1].x && Data8->currentMV->y == backup[i+1].y))
				CheckCandidateBits8(backup[i+1].x, backup[i+1].y, 255, &iDirection, Data8);
		}

		if (Data8->qpel) {
			if (MotionFlags&XVID_ME_HALFPELREFINE8_BITS || (MotionFlags&XVID_ME_EXTSEARCH8 && MotionFlags&XVID_ME_EXTSEARCH_BITS)) { // halfpixel motion search follows
				int32_t s = *Data8->iMinSAD;
				Data8->currentMV->x = Data8->currentQMV->x/2;
				Data8->currentMV->y = Data8->currentQMV->y/2;
				Data8->qpel_precision = 0;
				get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8,
							pParam->width, pParam->height, Data8->iFcode - 1, 0, 0);

				if (Data8->currentQMV->x & 1 || Data8->currentQMV->y & 1)
					CheckCandidateBits8(Data8->currentMV->x, Data8->currentMV->y, 255, &iDirection, Data8);

				if (MotionFlags & XVID_ME_EXTSEARCH8 && MotionFlags & XVID_ME_EXTSEARCH_BITS)
					SquareSearch(Data8->currentMV->x, Data8->currentMV->x, Data8, 255);

				if (MotionFlags & XVID_ME_HALFPELREFINE8_BITS) SubpelRefine(Data8);

				if(s > *Data8->iMinSAD) { //we have found a better match
					Data8->currentQMV->x = 2*Data8->currentMV->x;
					Data8->currentQMV->y = 2*Data8->currentMV->y;
				}

				Data8->qpel_precision = 1;
				get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8,
							pParam->width, pParam->height, Data8->iFcode, 1, 0);

			}
			if (MotionFlags & XVID_ME_QUARTERPELREFINE8_BITS) SubpelRefine(Data8);

		} else // not qpel
			if (MotionFlags & XVID_ME_HALFPELREFINE8_BITS) SubpelRefine(Data8); //halfpel mode, halfpel refinement

		//checking vector equal to predicion
		if (i != 0 && MotionFlags & XVID_ME_CHECKPREDICTION_BITS) {
			const VECTOR * v = Data->qpel ? Data8->currentQMV : Data8->currentMV;
			if (!(Data8->predMV.x == v->x && Data8->predMV.y == v->y))
				CheckCandidateBits8(Data8->predMV.x, Data8->predMV.y, 255, &iDirection, Data8);
		}

		bits += *Data8->iMinSAD;
		if (bits >= Data->iMinSAD[0]) break; // no chances for INTER4V

		// MB structures for INTER4V mode; we have to set them here, we don't have predictor anywhere else
		if(Data->qpel) {
			pMB->pmvs[i].x = Data8->currentQMV->x - Data8->predMV.x;
			pMB->pmvs[i].y = Data8->currentQMV->y - Data8->predMV.y;
			pMB->qmvs[i] = *Data8->currentQMV;
			sumx += Data8->currentQMV->x/2;
			sumy += Data8->currentQMV->y/2;
		} else {
			pMB->pmvs[i].x = Data8->currentMV->x - Data8->predMV.x;
			pMB->pmvs[i].y = Data8->currentMV->y - Data8->predMV.y;
			sumx += Data8->currentMV->x;
			sumy += Data8->currentMV->y;
		}
		pMB->mvs[i] = *Data8->currentMV;
		pMB->sad8[i] = 4 * *Data8->iMinSAD;
		if (Data8->temp[0]) cbp |= 1 << (5 - i);
	}

	if (bits < *Data->iMinSAD) { // there is still a chance for inter4v mode. let's check chroma
		const uint8_t * ptr;
		sumx = (sumx >> 3) + roundtab_76[sumx & 0xf];
		sumy = (sumy >> 3) + roundtab_76[sumy & 0xf];

		//chroma U
		ptr = interpolate8x8_switch2(Data->RefQ + 64, Data->RefCU, 0, 0, sumx, sumy, Data->iEdgedWidth/2, Data->rounding);
		transfer_8to16subro(in, Data->CurU, ptr, Data->iEdgedWidth/2);
		fdct(in);
		if (Data->lambda8 == 0) i = quant_inter(coeff, in, Data->lambda16);
		else i = quant4_inter(coeff, in, Data->lambda16);
		if (i > 0) {
			bits += CodeCoeffInter_CalcBits(coeff, scan_tables[0]);
			cbp |= 1 << (5 - 4);
		}

		if (bits < *Data->iMinSAD) { // still possible
			//chroma V
			ptr = interpolate8x8_switch2(Data->RefQ + 64, Data->RefCV, 0, 0, sumx, sumy, Data->iEdgedWidth/2, Data->rounding);
			transfer_8to16subro(in, Data->CurV, ptr, Data->iEdgedWidth/2);
			fdct(in);
			if (Data->lambda8 == 0) i = quant_inter(coeff, in, Data->lambda16);
			else i = quant4_inter(coeff, in, Data->lambda16);
			if (i > 0) {
				bits += CodeCoeffInter_CalcBits(coeff, scan_tables[0]);
				cbp |= 1 << (5 - 5);
			}
			bits += cbpy_tab[15-(cbp>>2)].len;
			bits += mcbpc_inter_tab[(MODE_INTER4V & 7) | ((cbp & 3) << 3)].len;
		}
	}

	return bits;
}


static int
CountMBBitsIntra(const SearchData * const Data)
{
	int bits = 1; //this one is ac/dc prediction flag. always 1.
	int cbp = 0, i, t, dc = 0, b_dc = 1024;
	const uint32_t iQuant = Data->lambda16;
	int16_t in[64], coeff[64];

	for(i = 0; i < 4; i++) {
		uint32_t iDcScaler = get_dc_scaler(iQuant, 1);

		int s = 8*((i&1) + (i>>1)*Data->iEdgedWidth);
		transfer_8to16copy(in, Data->Cur + s, Data->iEdgedWidth);
		fdct(in);
		b_dc = dc;
		dc = in[0];
		in[0] -= b_dc;
		if (Data->lambda8 == 0) quant_intra_c(coeff, in, iQuant, iDcScaler);
		else quant4_intra_c(coeff, in, iQuant, iDcScaler);

		b_dc = dc;
		dc = coeff[0];
		if (i != 0) coeff[0] -= b_dc;

		bits += t = CodeCoeffIntra_CalcBits(coeff, scan_tables[0]) + dcy_tab[coeff[0] + 255].len;;
		Data->temp[i] = t;
		if (t != 0)  cbp |= 1 << (5 - i);
		if (bits >= Data->iMinSAD[0]) break;
	}

	if (bits < Data->iMinSAD[0]) { // INTRA still looks good, let's add chroma
		uint32_t iDcScaler = get_dc_scaler(iQuant, 0);
		//chroma U
		transfer_8to16copy(in, Data->CurU, Data->iEdgedWidth/2);
		fdct(in);
		in[0] -= 1024;
		if (Data->lambda8 == 0) quant_intra(coeff, in, iQuant, iDcScaler);
		else quant4_intra(coeff, in, iQuant, iDcScaler);

		bits += t = CodeCoeffIntra_CalcBits(coeff, scan_tables[0]) + dcc_tab[coeff[0] + 255].len;
		if (t != 0) cbp |= 1 << (5 - 4);
		Data->temp[4] = t;

		if (bits < Data->iMinSAD[0]) {
			//chroma V
			transfer_8to16copy(in, Data->CurV, Data->iEdgedWidth/2);
			fdct(in);
			in[0] -= 1024;
			if (Data->lambda8 == 0) quant_intra(coeff, in, iQuant, iDcScaler);
			else quant4_intra(coeff, in, iQuant, iDcScaler);

			bits += t = CodeCoeffIntra_CalcBits(coeff, scan_tables[0]) + dcc_tab[coeff[0] + 255].len;
			if (t != 0) cbp |= 1 << (5 - 5);

			Data->temp[5] = t;

			bits += t = cbpy_tab[cbp>>2].len;
			Data->temp[6] = t;

			bits += t = mcbpc_inter_tab[(MODE_INTRA & 7) | ((cbp & 3) << 3)].len;
			Data->temp[7] = t;

		}
	}

	return bits;
}

No admin address has been configured
ViewVC Help
Powered by ViewVC 1.0.4