/************************************************************************** * * XVID MPEG-4 VIDEO CODEC * motion estimation * * This program is an implementation of a part of one or more MPEG-4 * Video tools as specified in ISO/IEC 14496-2 standard. Those intending * to use this software module in hardware or software products are * advised that its use may infringe existing patents or copyrights, and * any such use would be at such party's own risk. The original * developer of this software module and his/her company, and subsequent * editors and their companies, will have no liability for use of this * software or modifications or derivatives thereof. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * *************************************************************************/ #include #include #include #include // memcpy #include // lrint #include "../encoder.h" #include "../utils/mbfunctions.h" #include "../prediction/mbprediction.h" #include "../global.h" #include "../utils/timer.h" #include "../image/interpolate8x8.h" #include "motion_est.h" #include "motion.h" #include "sad.h" #include "../utils/emms.h" #include "../dct/fdct.h" /***************************************************************************** * Modified rounding tables -- declared in motion.h * Original tables see ISO spec tables 7-6 -> 7-9 ****************************************************************************/ const uint32_t roundtab[16] = {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 }; /* K = 4 */ const uint32_t roundtab_76[16] = { 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1 }; /* K = 2 */ const uint32_t roundtab_78[8] = { 0, 0, 1, 1, 0, 0, 0, 1 }; /* K = 1 */ const uint32_t roundtab_79[4] = { 0, 1, 0, 0 }; #define INITIAL_SKIP_THRESH (10) #define FINAL_SKIP_THRESH (50) #define MAX_SAD00_FOR_SKIP (20) #define MAX_CHROMA_SAD_FOR_SKIP (22) #define CHECK_CANDIDATE(X,Y,D) { \ CheckCandidate((X),(Y), (D), &iDirection, data ); } /***************************************************************************** * Code ****************************************************************************/ static __inline uint32_t d_mv_bits(int x, int y, const VECTOR pred, const uint32_t iFcode, const int qpel, const int rrv) { int xb, yb; x = qpel ? x<<1 : x; y = qpel ? y<<1 : y; if (rrv) { x = RRV_MV_SCALEDOWN(x); y = RRV_MV_SCALEDOWN(y); } x -= pred.x; y -= pred.y; if (x) { x = ABS(x); x += (1 << (iFcode - 1)) - 1; x >>= (iFcode - 1); if (x > 32) x = 32; xb = mvtab[x] + iFcode; } else xb = 1; if (y) { y = ABS(y); y += (1 << (iFcode - 1)) - 1; y >>= (iFcode - 1); if (y > 32) y = 32; yb = mvtab[y] + iFcode; } else yb = 1; return xb + yb; } static int32_t ChromaSAD2(int fx, int fy, int bx, int by, const SearchData * const data) { int sad; const uint32_t stride = data->iEdgedWidth/2; uint8_t * f_refu = data->RefQ, * f_refv = data->RefQ + 8, * b_refu = data->RefQ + 16, * b_refv = data->RefQ + 24; switch (((fx & 1) << 1) | (fy & 1)) { case 0: fx = fx / 2; fy = fy / 2; f_refu = (uint8_t*)data->RefCU + fy * stride + fx, stride; f_refv = (uint8_t*)data->RefCV + fy * stride + fx, stride; break; case 1: fx = fx / 2; fy = (fy - 1) / 2; interpolate8x8_halfpel_v(f_refu, data->RefCU + fy * stride + fx, stride, data->rounding); interpolate8x8_halfpel_v(f_refv, data->RefCV + fy * stride + fx, stride, data->rounding); break; case 2: fx = (fx - 1) / 2; fy = fy / 2; interpolate8x8_halfpel_h(f_refu, data->RefCU + fy * stride + fx, stride, data->rounding); interpolate8x8_halfpel_h(f_refv, data->RefCV + fy * stride + fx, stride, data->rounding); break; default: fx = (fx - 1) / 2; fy = (fy - 1) / 2; interpolate8x8_halfpel_hv(f_refu, data->RefCU + fy * stride + fx, stride, data->rounding); interpolate8x8_halfpel_hv(f_refv, data->RefCV + fy * stride + fx, stride, data->rounding); break; } switch (((bx & 1) << 1) | (by & 1)) { case 0: bx = bx / 2; by = by / 2; b_refu = (uint8_t*)data->b_RefCU + by * stride + bx, stride; b_refv = (uint8_t*)data->b_RefCV + by * stride + bx, stride; break; case 1: bx = bx / 2; by = (by - 1) / 2; interpolate8x8_halfpel_v(b_refu, data->b_RefCU + by * stride + bx, stride, data->rounding); interpolate8x8_halfpel_v(b_refv, data->b_RefCV + by * stride + bx, stride, data->rounding); break; case 2: bx = (bx - 1) / 2; by = by / 2; interpolate8x8_halfpel_h(b_refu, data->b_RefCU + by * stride + bx, stride, data->rounding); interpolate8x8_halfpel_h(b_refv, data->b_RefCV + by * stride + bx, stride, data->rounding); break; default: bx = (bx - 1) / 2; by = (by - 1) / 2; interpolate8x8_halfpel_hv(b_refu, data->b_RefCU + by * stride + bx, stride, data->rounding); interpolate8x8_halfpel_hv(b_refv, data->b_RefCV + by * stride + bx, stride, data->rounding); break; } sad = sad8bi(data->CurU, b_refu, f_refu, stride); sad += sad8bi(data->CurV, b_refv, f_refv, stride); return sad; } static int32_t ChromaSAD(int dx, int dy, const SearchData * const data) { int sad; const uint32_t stride = data->iEdgedWidth/2; if (dx == data->temp[5] && dy == data->temp[6]) return data->temp[7]; //it has been checked recently data->temp[5] = dx; data->temp[6] = dy; // backup switch (((dx & 1) << 1) | (dy & 1)) { case 0: dx = dx / 2; dy = dy / 2; sad = sad8(data->CurU, data->RefCU + dy * stride + dx, stride); sad += sad8(data->CurV, data->RefCV + dy * stride + dx, stride); break; case 1: dx = dx / 2; dy = (dy - 1) / 2; sad = sad8bi(data->CurU, data->RefCU + dy * stride + dx, data->RefCU + (dy+1) * stride + dx, stride); sad += sad8bi(data->CurV, data->RefCV + dy * stride + dx, data->RefCV + (dy+1) * stride + dx, stride); break; case 2: dx = (dx - 1) / 2; dy = dy / 2; sad = sad8bi(data->CurU, data->RefCU + dy * stride + dx, data->RefCU + dy * stride + dx+1, stride); sad += sad8bi(data->CurV, data->RefCV + dy * stride + dx, data->RefCV + dy * stride + dx+1, stride); break; default: dx = (dx - 1) / 2; dy = (dy - 1) / 2; interpolate8x8_halfpel_hv(data->RefQ, data->RefCU + dy * stride + dx, stride, data->rounding); sad = sad8(data->CurU, data->RefQ, stride); interpolate8x8_halfpel_hv(data->RefQ, data->RefCV + dy * stride + dx, stride, data->rounding); sad += sad8(data->CurV, data->RefQ, stride); break; } data->temp[7] = sad; //backup, part 2 return sad; } static __inline const uint8_t * GetReferenceB(const int x, const int y, const uint32_t dir, const SearchData * const data) { // dir : 0 = forward, 1 = backward switch ( (dir << 2) | ((x&1)<<1) | (y&1) ) { case 0 : return data->Ref + x/2 + (y/2)*(data->iEdgedWidth); case 1 : return data->RefV + x/2 + ((y-1)/2)*(data->iEdgedWidth); case 2 : return data->RefH + (x-1)/2 + (y/2)*(data->iEdgedWidth); case 3 : return data->RefHV + (x-1)/2 + ((y-1)/2)*(data->iEdgedWidth); case 4 : return data->bRef + x/2 + (y/2)*(data->iEdgedWidth); case 5 : return data->bRefV + x/2 + ((y-1)/2)*(data->iEdgedWidth); case 6 : return data->bRefH + (x-1)/2 + (y/2)*(data->iEdgedWidth); default : return data->bRefHV + (x-1)/2 + ((y-1)/2)*(data->iEdgedWidth); } } // this is a simpler copy of GetReferenceB, but as it's __inline anyway, we can keep the two separate static __inline const uint8_t * GetReference(const int x, const int y, const SearchData * const data) { switch ( ((x&1)<<1) | (y&1) ) { case 0 : return data->Ref + x/2 + (y/2)*(data->iEdgedWidth); case 3 : return data->RefHV + (x-1)/2 + ((y-1)/2)*(data->iEdgedWidth); case 1 : return data->RefV + x/2 + ((y-1)/2)*(data->iEdgedWidth); default : return data->RefH + (x-1)/2 + (y/2)*(data->iEdgedWidth); //case 2 } } static uint8_t * Interpolate8x8qpel(const int x, const int y, const uint32_t block, const uint32_t dir, const SearchData * const data) { // create or find a qpel-precision reference picture; return pointer to it uint8_t * Reference = data->RefQ + 16*dir; const uint32_t iEdgedWidth = data->iEdgedWidth; const uint32_t rounding = data->rounding; const int halfpel_x = x/2; const int halfpel_y = y/2; const uint8_t *ref1, *ref2, *ref3, *ref4; ref1 = GetReferenceB(halfpel_x, halfpel_y, dir, data); ref1 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth; switch( ((x&1)<<1) + (y&1) ) { case 3: // x and y in qpel resolution - the "corners" (top left/right and // bottom left/right) during qpel refinement ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data); ref3 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data); ref4 = GetReferenceB(x - halfpel_x, y - halfpel_y, dir, data); ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth; ref3 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth; ref4 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth; interpolate8x8_avg4(Reference, ref1, ref2, ref3, ref4, iEdgedWidth, rounding); break; case 1: // x halfpel, y qpel - top or bottom during qpel refinement ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data); ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth; interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8); break; case 2: // x qpel, y halfpel - left or right during qpel refinement ref2 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data); ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth; interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8); break; default: // pure halfpel position return (uint8_t *) ref1; } return Reference; } static uint8_t * Interpolate16x16qpel(const int x, const int y, const uint32_t dir, const SearchData * const data) { // create or find a qpel-precision reference picture; return pointer to it uint8_t * Reference = data->RefQ + 16*dir; const uint32_t iEdgedWidth = data->iEdgedWidth; const uint32_t rounding = data->rounding; const int halfpel_x = x/2; const int halfpel_y = y/2; const uint8_t *ref1, *ref2, *ref3, *ref4; ref1 = GetReferenceB(halfpel_x, halfpel_y, dir, data); switch( ((x&1)<<1) + (y&1) ) { case 3: // x and y in qpel resolution - the "corners" (top left/right and // bottom left/right) during qpel refinement ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data); ref3 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data); ref4 = GetReferenceB(x - halfpel_x, y - halfpel_y, dir, data); interpolate8x8_avg4(Reference, ref1, ref2, ref3, ref4, iEdgedWidth, rounding); interpolate8x8_avg4(Reference+8, ref1+8, ref2+8, ref3+8, ref4+8, iEdgedWidth, rounding); interpolate8x8_avg4(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, ref3+8*iEdgedWidth, ref4+8*iEdgedWidth, iEdgedWidth, rounding); interpolate8x8_avg4(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, ref3+8*iEdgedWidth+8, ref4+8*iEdgedWidth+8, iEdgedWidth, rounding); break; case 1: // x halfpel, y qpel - top or bottom during qpel refinement ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data); interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8); interpolate8x8_avg2(Reference+8, ref1+8, ref2+8, iEdgedWidth, rounding, 8); interpolate8x8_avg2(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, iEdgedWidth, rounding, 8); interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding, 8); break; case 2: // x qpel, y halfpel - left or right during qpel refinement ref2 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data); interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8); interpolate8x8_avg2(Reference+8, ref1+8, ref2+8, iEdgedWidth, rounding, 8); interpolate8x8_avg2(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, iEdgedWidth, rounding, 8); interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding, 8); break; default: // pure halfpel position return (uint8_t *) ref1; } return Reference; } /* CHECK_CANDIATE FUNCTIONS START */ static void CheckCandidate16(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int xc, yc; const uint8_t * Reference; VECTOR * current; int32_t sad; uint32_t t; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; if (!data->qpel_precision) { Reference = GetReference(x, y, data); current = data->currentMV; xc = x; yc = y; } else { // x and y are in 1/4 precision Reference = Interpolate16x16qpel(x, y, 0, data); xc = x/2; yc = y/2; //for chroma sad current = data->currentQMV; } sad = sad16v(data->Cur, Reference, data->iEdgedWidth, data->temp + 1); t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0); sad += (data->lambda16 * t * sad)>>10; data->temp[1] += (data->lambda8 * t * (data->temp[1] + NEIGH_8X8_BIAS))>>10; if (data->chroma) sad += ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3], (yc >> 1) + roundtab_79[yc & 0x3], data); if (sad < data->iMinSAD[0]) { data->iMinSAD[0] = sad; current[0].x = x; current[0].y = y; *dir = Direction; } if (data->temp[1] < data->iMinSAD[1]) { data->iMinSAD[1] = data->temp[1]; current[1].x = x; current[1].y = y; } if (data->temp[2] < data->iMinSAD[2]) { data->iMinSAD[2] = data->temp[2]; current[2].x = x; current[2].y = y; } if (data->temp[3] < data->iMinSAD[3]) { data->iMinSAD[3] = data->temp[3]; current[3].x = x; current[3].y = y; } if (data->temp[4] < data->iMinSAD[4]) { data->iMinSAD[4] = data->temp[4]; current[4].x = x; current[4].y = y; } } static void CheckCandidate8(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int32_t sad; uint32_t t; const uint8_t * Reference; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; if (!data->qpel_precision) Reference = GetReference(x, y, data); else Reference = Interpolate8x8qpel(x, y, 0, 0, data); sad = sad8(data->Cur, Reference, data->iEdgedWidth); t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0); sad += (data->lambda8 * t * (sad+NEIGH_8X8_BIAS))>>10; if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV->x = x; data->currentMV->y = y; *dir = Direction; } } static void CheckCandidate32(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { uint32_t t; const uint8_t * Reference; if ( (!(x&1) && x !=0) || (!(y&1) && y !=0) || //non-zero even value (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; Reference = GetReference(x, y, data); t = d_mv_bits(x, y, data->predMV, data->iFcode, 0, 1); data->temp[0] = sad32v_c(data->Cur, Reference, data->iEdgedWidth, data->temp + 1); data->temp[0] += (data->lambda16 * t * data->temp[0]) >> 10; data->temp[1] += (data->lambda8 * t * (data->temp[1] + NEIGH_8X8_BIAS))>>10; if (data->temp[0] < data->iMinSAD[0]) { data->iMinSAD[0] = data->temp[0]; data->currentMV[0].x = x; data->currentMV[0].y = y; *dir = Direction; } if (data->temp[1] < data->iMinSAD[1]) { data->iMinSAD[1] = data->temp[1]; data->currentMV[1].x = x; data->currentMV[1].y = y; } if (data->temp[2] < data->iMinSAD[2]) { data->iMinSAD[2] = data->temp[2]; data->currentMV[2].x = x; data->currentMV[2].y = y; } if (data->temp[3] < data->iMinSAD[3]) { data->iMinSAD[3] = data->temp[3]; data->currentMV[3].x = x; data->currentMV[3].y = y; } if (data->temp[4] < data->iMinSAD[4]) { data->iMinSAD[4] = data->temp[4]; data->currentMV[4].x = x; data->currentMV[4].y = y; } } static void CheckCandidate16no4v(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int32_t sad, xc, yc; const uint8_t * Reference; uint32_t t; VECTOR * current; if ( (x > data->max_dx) || ( x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; if (data->rrv && (!(x&1) && x !=0) | (!(y&1) && y !=0) ) return; //non-zero even value if (data->qpel_precision) { // x and y are in 1/4 precision Reference = Interpolate16x16qpel(x, y, 0, data); current = data->currentQMV; xc = x/2; yc = y/2; } else { Reference = GetReference(x, y, data); current = data->currentMV; xc = x; yc = y; } t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, data->rrv); sad = sad16(data->Cur, Reference, data->iEdgedWidth, 256*4096); sad += (data->lambda16 * t * sad)>>10; if (data->chroma) sad += ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3], (yc >> 1) + roundtab_79[yc & 0x3], data); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; current->x = x; current->y = y; *dir = Direction; } } static void CheckCandidate32I(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { // maximum speed - for P/B/I decision int32_t sad; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; sad = sad32v_c(data->Cur, data->Ref + x/2 + (y/2)*(data->iEdgedWidth), data->iEdgedWidth, data->temp+1); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV[0].x = x; data->currentMV[0].y = y; *dir = Direction; } if (data->temp[1] < data->iMinSAD[1]) { data->iMinSAD[1] = data->temp[1]; data->currentMV[1].x = x; data->currentMV[1].y = y; } if (data->temp[2] < data->iMinSAD[2]) { data->iMinSAD[2] = data->temp[2]; data->currentMV[2].x = x; data->currentMV[2].y = y; } if (data->temp[3] < data->iMinSAD[3]) { data->iMinSAD[3] = data->temp[3]; data->currentMV[3].x = x; data->currentMV[3].y = y; } if (data->temp[4] < data->iMinSAD[4]) { data->iMinSAD[4] = data->temp[4]; data->currentMV[4].x = x; data->currentMV[4].y = y; } } static void CheckCandidateInt(const int xf, const int yf, const int Direction, int * const dir, const SearchData * const data) { int32_t sad, xb, yb, xcf, ycf, xcb, ycb; uint32_t t; const uint8_t *ReferenceF, *ReferenceB; VECTOR *current; if ((xf > data->max_dx) || (xf < data->min_dx) || (yf > data->max_dy) || (yf < data->min_dy)) return; if (!data->qpel_precision) { ReferenceF = GetReference(xf, yf, data); xb = data->currentMV[1].x; yb = data->currentMV[1].y; ReferenceB = GetReferenceB(xb, yb, 1, data); current = data->currentMV; xcf = xf; ycf = yf; xcb = xb; ycb = yb; } else { ReferenceF = Interpolate16x16qpel(xf, yf, 0, data); xb = data->currentQMV[1].x; yb = data->currentQMV[1].y; current = data->currentQMV; ReferenceB = Interpolate16x16qpel(xb, yb, 1, data); xcf = xf/2; ycf = yf/2; xcb = xb/2; ycb = yb/2; } t = d_mv_bits(xf, yf, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0) + d_mv_bits(xb, yb, data->bpredMV, data->iFcode, data->qpel^data->qpel_precision, 0); sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth); sad += (data->lambda16 * t * sad)>>10; if (data->chroma) sad += ChromaSAD2((xcf >> 1) + roundtab_79[xcf & 0x3], (ycf >> 1) + roundtab_79[ycf & 0x3], (xcb >> 1) + roundtab_79[xcb & 0x3], (ycb >> 1) + roundtab_79[ycb & 0x3], data); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; current->x = xf; current->y = yf; *dir = Direction; } } static void CheckCandidateDirect(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int32_t sad = 0, xcf = 0, ycf = 0, xcb = 0, ycb = 0; uint32_t k; const uint8_t *ReferenceF; const uint8_t *ReferenceB; VECTOR mvs, b_mvs; if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return; for (k = 0; k < 4; k++) { mvs.x = data->directmvF[k].x + x; b_mvs.x = ((x == 0) ? data->directmvB[k].x : mvs.x - data->referencemv[k].x); mvs.y = data->directmvF[k].y + y; b_mvs.y = ((y == 0) ? data->directmvB[k].y : mvs.y - data->referencemv[k].y); if ((mvs.x > data->max_dx) || (mvs.x < data->min_dx) || (mvs.y > data->max_dy) || (mvs.y < data->min_dy) || (b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx) || (b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) ) return; if (data->qpel) { xcf += mvs.x/2; ycf += mvs.y/2; xcb += b_mvs.x/2; ycb += b_mvs.y/2; } else { xcf += mvs.x; ycf += mvs.y; xcb += b_mvs.x; ycb += b_mvs.y; mvs.x *= 2; mvs.y *= 2; //we move to qpel precision anyway b_mvs.x *= 2; b_mvs.y *= 2; } ReferenceF = Interpolate8x8qpel(mvs.x, mvs.y, k, 0, data); ReferenceB = Interpolate8x8qpel(b_mvs.x, b_mvs.y, k, 1, data); sad += sad8bi(data->Cur + 8*(k&1) + 8*(k>>1)*(data->iEdgedWidth), ReferenceF, ReferenceB, data->iEdgedWidth); if (sad > *(data->iMinSAD)) return; } sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10; if (data->chroma) sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf], (ycf >> 3) + roundtab_76[ycf & 0xf], (xcb >> 3) + roundtab_76[xcb & 0xf], (ycb >> 3) + roundtab_76[ycb & 0xf], data); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV->x = x; data->currentMV->y = y; *dir = Direction; } } static void CheckCandidateDirectno4v(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int32_t sad, xcf, ycf, xcb, ycb; const uint8_t *ReferenceF; const uint8_t *ReferenceB; VECTOR mvs, b_mvs; if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return; mvs.x = data->directmvF[0].x + x; b_mvs.x = ((x == 0) ? data->directmvB[0].x : mvs.x - data->referencemv[0].x); mvs.y = data->directmvF[0].y + y; b_mvs.y = ((y == 0) ? data->directmvB[0].y : mvs.y - data->referencemv[0].y); if ( (mvs.x > data->max_dx) || (mvs.x < data->min_dx) || (mvs.y > data->max_dy) || (mvs.y < data->min_dy) || (b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx) || (b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) ) return; if (data->qpel) { xcf = 4*(mvs.x/2); ycf = 4*(mvs.y/2); xcb = 4*(b_mvs.x/2); ycb = 4*(b_mvs.y/2); ReferenceF = Interpolate16x16qpel(mvs.x, mvs.y, 0, data); ReferenceB = Interpolate16x16qpel(b_mvs.x, b_mvs.y, 1, data); } else { xcf = 4*mvs.x; ycf = 4*mvs.y; xcb = 4*b_mvs.x; ycb = 4*b_mvs.y; ReferenceF = GetReference(mvs.x, mvs.y, data); ReferenceB = GetReferenceB(b_mvs.x, b_mvs.y, 1, data); } sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth); sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10; if (data->chroma) sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf], (ycf >> 3) + roundtab_76[ycf & 0xf], (xcb >> 3) + roundtab_76[xcb & 0xf], (ycb >> 3) + roundtab_76[ycb & 0xf], data); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV->x = x; data->currentMV->y = y; *dir = Direction; } } static void CheckCandidateBits16(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int16_t *in = data->dctSpace, *coeff = data->dctSpace + 64; int32_t bits = 0, sum; VECTOR * current; const uint8_t * ptr; int i, cbp = 0, t, xc, yc; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; if (!data->qpel_precision) { ptr = GetReference(x, y, data); current = data->currentMV; xc = x; yc = y; } else { // x and y are in 1/4 precision ptr = Interpolate16x16qpel(x, y, 0, data); current = data->currentQMV; xc = x/2; yc = y/2; } for(i = 0; i < 4; i++) { int s = 8*((i&1) + (i>>1)*data->iEdgedWidth); transfer_8to16subro(in, data->Cur + s, ptr + s, data->iEdgedWidth); fdct(in); if (data->lambda8 == 0) sum = quant_inter(coeff, in, data->lambda16); else sum = quant4_inter(coeff, in, data->lambda16); if (sum > 0) { cbp |= 1 << (5 - i); bits += data->temp[i] = CodeCoeffInter_CalcBits(coeff, scan_tables[0]); } else data->temp[i] = 0; } bits += t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0); if (bits < data->iMinSAD[0]) { // there is still a chance, adding chroma xc = (xc >> 1) + roundtab_79[xc & 0x3]; yc = (yc >> 1) + roundtab_79[yc & 0x3]; //chroma U ptr = interpolate8x8_switch2(data->RefQ + 64, data->RefCU, 0, 0, xc, yc, data->iEdgedWidth/2, data->rounding); transfer_8to16subro(in, ptr, data->CurU, data->iEdgedWidth/2); fdct(in); if (data->lambda8 == 0) sum = quant_inter(coeff, in, data->lambda16); else sum = quant4_inter(coeff, in, data->lambda16); if (sum > 0) { cbp |= 1 << (5 - 4); bits += CodeCoeffInter_CalcBits(coeff, scan_tables[0]); } if (bits < data->iMinSAD[0]) { //chroma V ptr = interpolate8x8_switch2(data->RefQ + 64, data->RefCV, 0, 0, xc, yc, data->iEdgedWidth/2, data->rounding); transfer_8to16subro(in, ptr, data->CurV, data->iEdgedWidth/2); fdct(in); if (data->lambda8 == 0) sum = quant_inter(coeff, in, data->lambda16); else sum = quant4_inter(coeff, in, data->lambda16); if (sum > 0) { cbp |= 1 << (5 - 5); bits += CodeCoeffInter_CalcBits(coeff, scan_tables[0]); } } } bits += xvid_cbpy_tab[15-(cbp>>2)].len; bits += mcbpc_inter_tab[(MODE_INTER & 7) | ((cbp & 3) << 3)].len; if (bits < data->iMinSAD[0]) { data->iMinSAD[0] = bits; current[0].x = x; current[0].y = y; *dir = Direction; } if (data->temp[0] + t < data->iMinSAD[1]) { data->iMinSAD[1] = data->temp[0] + t; current[1].x = x; current[1].y = y; } if (data->temp[1] < data->iMinSAD[2]) { data->iMinSAD[2] = data->temp[1]; current[2].x = x; current[2].y = y; } if (data->temp[2] < data->iMinSAD[3]) { data->iMinSAD[3] = data->temp[2]; current[3].x = x; current[3].y = y; } if (data->temp[3] < data->iMinSAD[4]) { data->iMinSAD[4] = data->temp[3]; current[4].x = x; current[4].y = y; } } static void CheckCandidateBits8(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int16_t *in = data->dctSpace, *coeff = data->dctSpace + 64; int32_t sum, bits; VECTOR * current; const uint8_t * ptr; int cbp; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; if (!data->qpel_precision) { ptr = GetReference(x, y, data); current = data->currentMV; } else { // x and y are in 1/4 precision ptr = Interpolate8x8qpel(x, y, 0, 0, data); current = data->currentQMV; } transfer_8to16subro(in, data->Cur, ptr, data->iEdgedWidth); fdct(in); if (data->lambda8 == 0) sum = quant_inter(coeff, in, data->lambda16); else sum = quant4_inter(coeff, in, data->lambda16); if (sum > 0) { bits = CodeCoeffInter_CalcBits(coeff, scan_tables[0]); cbp = 1; } else cbp = bits = 0; bits += sum = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0); if (bits < data->iMinSAD[0]) { data->temp[0] = cbp; data->iMinSAD[0] = bits; current[0].x = x; current[0].y = y; *dir = Direction; } } /* CHECK_CANDIATE FUNCTIONS END */ /* MAINSEARCH FUNCTIONS START */ static void AdvDiamondSearch(int x, int y, const SearchData * const data, int bDirection) { /* directions: 1 - left (x-1); 2 - right (x+1), 4 - up (y-1); 8 - down (y+1) */ int iDirection; for(;;) { //forever iDirection = 0; if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1); if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2); if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4); if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8); /* now we're doing diagonal checks near our candidate */ if (iDirection) { //if anything found bDirection = iDirection; iDirection = 0; x = data->currentMV->x; y = data->currentMV->y; if (bDirection & 3) { //our candidate is left or right CHECK_CANDIDATE(x, y + iDiamondSize, 8); CHECK_CANDIDATE(x, y - iDiamondSize, 4); } else { // what remains here is up or down CHECK_CANDIDATE(x + iDiamondSize, y, 2); CHECK_CANDIDATE(x - iDiamondSize, y, 1); } if (iDirection) { bDirection += iDirection; x = data->currentMV->x; y = data->currentMV->y; } } else { //about to quit, eh? not so fast.... switch (bDirection) { case 2: CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); break; case 1: CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); break; case 2 + 4: CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); break; case 4: CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); break; case 8: CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); break; case 1 + 4: CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); break; case 2 + 8: CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); break; case 1 + 8: CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); break; default: //1+2+4+8 == we didn't find anything at all CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); break; } if (!iDirection) break; //ok, the end. really bDirection = iDirection; x = data->currentMV->x; y = data->currentMV->y; } } } static void SquareSearch(int x, int y, const SearchData * const data, int bDirection) { int iDirection; do { iDirection = 0; if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1+16+64); if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2+32+128); if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4+16+32); if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8+64+128); if (bDirection & 16) CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1+4+16+32+64); if (bDirection & 32) CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2+4+16+32+128); if (bDirection & 64) CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1+8+16+64+128); if (bDirection & 128) CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2+8+32+64+128); bDirection = iDirection; x = data->currentMV->x; y = data->currentMV->y; } while (iDirection); } static void DiamondSearch(int x, int y, const SearchData * const data, int bDirection) { /* directions: 1 - left (x-1); 2 - right (x+1), 4 - up (y-1); 8 - down (y+1) */ int iDirection; do { iDirection = 0; if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1); if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2); if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4); if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8); /* now we're doing diagonal checks near our candidate */ if (iDirection) { //checking if anything found bDirection = iDirection; iDirection = 0; x = data->currentMV->x; y = data->currentMV->y; if (bDirection & 3) { //our candidate is left or right CHECK_CANDIDATE(x, y + iDiamondSize, 8); CHECK_CANDIDATE(x, y - iDiamondSize, 4); } else { // what remains here is up or down CHECK_CANDIDATE(x + iDiamondSize, y, 2); CHECK_CANDIDATE(x - iDiamondSize, y, 1); } bDirection += iDirection; x = data->currentMV->x; y = data->currentMV->y; } } while (iDirection); } /* MAINSEARCH FUNCTIONS END */ static void SubpelRefine(const SearchData * const data) { /* Do a half-pel or q-pel refinement */ const VECTOR centerMV = data->qpel_precision ? *data->currentQMV : *data->currentMV; int iDirection; //only needed because macro expects it CHECK_CANDIDATE(centerMV.x, centerMV.y - 1, 0); CHECK_CANDIDATE(centerMV.x + 1, centerMV.y - 1, 0); CHECK_CANDIDATE(centerMV.x + 1, centerMV.y, 0); CHECK_CANDIDATE(centerMV.x + 1, centerMV.y + 1, 0); CHECK_CANDIDATE(centerMV.x, centerMV.y + 1, 0); CHECK_CANDIDATE(centerMV.x - 1, centerMV.y + 1, 0); CHECK_CANDIDATE(centerMV.x - 1, centerMV.y, 0); CHECK_CANDIDATE(centerMV.x - 1, centerMV.y - 1, 0); } static __inline int SkipDecisionP(const IMAGE * current, const IMAGE * reference, const int x, const int y, const uint32_t stride, const uint32_t iQuant, int rrv) { int offset = (x + y*stride)*8; if(!rrv) { uint32_t sadC = sad8(current->u + offset, reference->u + offset, stride); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0; sadC += sad8(current->v + offset, reference->v + offset, stride); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0; return 1; } else { uint32_t sadC = sad16(current->u + 2*offset, reference->u + 2*offset, stride, 256*4096); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0; sadC += sad16(current->v + 2*offset, reference->v + 2*offset, stride, 256*4096); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0; return 1; } } static __inline void SkipMacroblockP(MACROBLOCK *pMB, const int32_t sad) { pMB->mode = MODE_NOT_CODED; pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = zeroMV; pMB->qmvs[0] = pMB->qmvs[1] = pMB->qmvs[2] = pMB->qmvs[3] = zeroMV; pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = sad; } bool MotionEstimation(MBParam * const pParam, FRAMEINFO * const current, FRAMEINFO * const reference, const IMAGE * const pRefH, const IMAGE * const pRefV, const IMAGE * const pRefHV, const uint32_t iLimit) { MACROBLOCK *const pMBs = current->mbs; const IMAGE *const pCurrent = ¤t->image; const IMAGE *const pRef = &reference->image; uint32_t mb_width = pParam->mb_width; uint32_t mb_height = pParam->mb_height; const uint32_t iEdgedWidth = pParam->edged_width; const uint32_t MotionFlags = MakeGoodMotionFlags(current->motion_flags, current->vop_flags, current->vol_flags); uint32_t x, y; uint32_t iIntra = 0; int32_t quant = current->quant, sad00; int skip_thresh = \ INITIAL_SKIP_THRESH * \ (current->vop_flags & XVID_VOP_REDUCED ? 4:1) * \ (current->vop_flags & XVID_VOP_MODEDECISION_BITS ? 2:1); // some pre-initialized thingies for SearchP int32_t temp[8]; VECTOR currentMV[5]; VECTOR currentQMV[5]; int32_t iMinSAD[5]; DECLARE_ALIGNED_MATRIX(dct_space, 2, 64, int16_t, CACHE_LINE); SearchData Data; memset(&Data, 0, sizeof(SearchData)); Data.iEdgedWidth = iEdgedWidth; Data.currentMV = currentMV; Data.currentQMV = currentQMV; Data.iMinSAD = iMinSAD; Data.temp = temp; Data.iFcode = current->fcode; Data.rounding = pParam->m_rounding_type; Data.qpel = (current->vol_flags & XVID_VOL_QUARTERPEL ? 1:0); Data.chroma = MotionFlags & XVID_ME_CHROMA16; Data.rrv = (current->vop_flags & XVID_VOP_REDUCED ? 1:0); Data.dctSpace = dct_space; if ((current->vop_flags & XVID_VOP_REDUCED)) { mb_width = (pParam->width + 31) / 32; mb_height = (pParam->height + 31) / 32; Data.qpel = 0; } Data.RefQ = pRefV->u; // a good place, also used in MC (for similar purpose) if (sadInit) (*sadInit) (); for (y = 0; y < mb_height; y++) { for (x = 0; x < mb_width; x++) { MACROBLOCK *pMB = &pMBs[x + y * pParam->mb_width]; if (!Data.rrv) pMB->sad16 = sad16v(pCurrent->y + (x + y * iEdgedWidth) * 16, pRef->y + (x + y * iEdgedWidth) * 16, pParam->edged_width, pMB->sad8 ); else pMB->sad16 = sad32v_c(pCurrent->y + (x + y * iEdgedWidth) * 32, pRef->y + (x + y * iEdgedWidth) * 32, pParam->edged_width, pMB->sad8 ); if (Data.chroma) { Data.temp[7] = sad8(pCurrent->u + x*8 + y*(iEdgedWidth/2)*8, pRef->u + x*8 + y*(iEdgedWidth/2)*8, iEdgedWidth/2) + sad8(pCurrent->v + (x + y*(iEdgedWidth/2))*8, pRef->v + (x + y*(iEdgedWidth/2))*8, iEdgedWidth/2); pMB->sad16 += Data.temp[7]; } sad00 = pMB->sad16; if (pMB->dquant != 0) { quant += DQtab[pMB->dquant]; if (quant > 31) quant = 31; else if (quant < 1) quant = 1; } pMB->quant = current->quant; //initial skip decision /* no early skip for GMC (global vector = skip vector is unknown!) */ if (!(current->vol_flags & XVID_VOL_GMC)) { /* no fast SKIP for S(GMC)-VOPs */ if (pMB->dquant == 0 && sad00 < pMB->quant * skip_thresh) if (Data.chroma || SkipDecisionP(pCurrent, pRef, x, y, iEdgedWidth/2, pMB->quant, Data.rrv)) { SkipMacroblockP(pMB, sad00); continue; } } SearchP(pRef, pRefH->y, pRefV->y, pRefHV->y, pCurrent, x, y, MotionFlags, current->vol_flags, pMB->quant, &Data, pParam, pMBs, reference->mbs, current->vop_flags & XVID_VOP_INTER4V, pMB); /* final skip decision, a.k.a. "the vector you found, really that good?" */ if (!(current->vol_flags & XVID_VOL_GMC || current->vop_flags & XVID_VOP_MODEDECISION_BITS)) { if ( pMB->dquant == 0 && sad00 < pMB->quant * MAX_SAD00_FOR_SKIP) { if ( (100*pMB->sad16)/(sad00+1) > FINAL_SKIP_THRESH * (Data.rrv ? 4:1) ) if (Data.chroma || SkipDecisionP(pCurrent, pRef, x, y, iEdgedWidth/2, pMB->quant, Data.rrv)) SkipMacroblockP(pMB, sad00); } } if (pMB->mode == MODE_INTRA) if (++iIntra > iLimit) return 1; } } if (current->vol_flags & XVID_VOL_GMC ) /* GMC only for S(GMC)-VOPs */ current->warp = GlobalMotionEst( pMBs, pParam, current, reference, pRefH, pRefV, pRefHV); return 0; } static __inline int make_mask(const VECTOR * const pmv, const int i) { int mask = 255, j; for (j = 0; j < i; j++) { if (MVequal(pmv[i], pmv[j])) return 0; // same vector has been checked already if (pmv[i].x == pmv[j].x) { if (pmv[i].y == pmv[j].y + iDiamondSize) mask &= ~4; else if (pmv[i].y == pmv[j].y - iDiamondSize) mask &= ~8; } else if (pmv[i].y == pmv[j].y) { if (pmv[i].x == pmv[j].x + iDiamondSize) mask &= ~1; else if (pmv[i].x == pmv[j].x - iDiamondSize) mask &= ~2; } } return mask; } static __inline void PreparePredictionsP(VECTOR * const pmv, int x, int y, int iWcount, int iHcount, const MACROBLOCK * const prevMB, int rrv) { //this function depends on get_pmvdata which means that it sucks. It should get the predictions by itself if (rrv) { iWcount /= 2; iHcount /= 2; } if ( (y != 0) && (x < (iWcount-1)) ) { // [5] top-right neighbour pmv[5].x = EVEN(pmv[3].x); pmv[5].y = EVEN(pmv[3].y); } else pmv[5].x = pmv[5].y = 0; if (x != 0) { pmv[3].x = EVEN(pmv[1].x); pmv[3].y = EVEN(pmv[1].y); }// pmv[3] is left neighbour else pmv[3].x = pmv[3].y = 0; if (y != 0) { pmv[4].x = EVEN(pmv[2].x); pmv[4].y = EVEN(pmv[2].y); }// [4] top neighbour else pmv[4].x = pmv[4].y = 0; // [1] median prediction pmv[1].x = EVEN(pmv[0].x); pmv[1].y = EVEN(pmv[0].y); pmv[0].x = pmv[0].y = 0; // [0] is zero; not used in the loop (checked before) but needed here for make_mask pmv[2].x = EVEN(prevMB->mvs[0].x); // [2] is last frame pmv[2].y = EVEN(prevMB->mvs[0].y); if ((x < iWcount-1) && (y < iHcount-1)) { pmv[6].x = EVEN((prevMB+1+iWcount)->mvs[0].x); //[6] right-down neighbour in last frame pmv[6].y = EVEN((prevMB+1+iWcount)->mvs[0].y); } else pmv[6].x = pmv[6].y = 0; if (rrv) { int i; for (i = 0; i < 7; i++) { pmv[i].x = RRV_MV_SCALEUP(pmv[i].x); pmv[i].y = RRV_MV_SCALEUP(pmv[i].y); } } } static int ModeDecision(const uint32_t iQuant, SearchData * const Data, int inter4v, MACROBLOCK * const pMB, const MACROBLOCK * const pMBs, const int x, const int y, const MBParam * const pParam, const uint32_t MotionFlags, const uint32_t VopFlags) { int mode = MODE_INTER; if (!(VopFlags & XVID_VOP_MODEDECISION_BITS)) { //normal, fast, SAD-based mode decision int sad; int InterBias = MV16_INTER_BIAS; if (inter4v == 0 || Data->iMinSAD[0] < Data->iMinSAD[1] + Data->iMinSAD[2] + Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant) { mode = MODE_INTER; sad = Data->iMinSAD[0]; } else { mode = MODE_INTER4V; sad = Data->iMinSAD[1] + Data->iMinSAD[2] + Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant; Data->iMinSAD[0] = sad; } /* intra decision */ if (iQuant > 8) InterBias += 100 * (iQuant - 8); // to make high quants work if (y != 0) if ((pMB - pParam->mb_width)->mode == MODE_INTRA ) InterBias -= 80; if (x != 0) if ((pMB - 1)->mode == MODE_INTRA ) InterBias -= 80; if (Data->chroma) InterBias += 50; // to compensate bigger SAD if (Data->rrv) InterBias *= 4; if (InterBias < pMB->sad16) { int32_t deviation; if (!Data->rrv) deviation = dev16(Data->Cur, Data->iEdgedWidth); else deviation = dev16(Data->Cur, Data->iEdgedWidth) + dev16(Data->Cur+8, Data->iEdgedWidth) + dev16(Data->Cur + 8*Data->iEdgedWidth, Data->iEdgedWidth) + dev16(Data->Cur+8+8*Data->iEdgedWidth, Data->iEdgedWidth); if (deviation < (sad - InterBias)) return MODE_INTRA; } return mode; } else { int bits, intra, i; VECTOR backup[5], *v; Data->lambda16 = iQuant; Data->lambda8 = (pParam->vol_flags & XVID_VOL_MPEGQUANT)?1:0; v = Data->qpel ? Data->currentQMV : Data->currentMV; for (i = 0; i < 5; i++) { Data->iMinSAD[i] = 256*4096; backup[i] = v[i]; } bits = CountMBBitsInter(Data, pMBs, x, y, pParam, MotionFlags); if (bits == 0) return MODE_INTER; // quick stop if (inter4v) { int bits_inter4v = CountMBBitsInter4v(Data, pMB, pMBs, x, y, pParam, MotionFlags, backup); if (bits_inter4v < bits) { Data->iMinSAD[0] = bits = bits_inter4v; mode = MODE_INTER4V; } } intra = CountMBBitsIntra(Data); if (intra < bits) { *Data->iMinSAD = bits = intra; return MODE_INTRA; } return mode; } } static void SearchP(const IMAGE * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const uint32_t VopFlags, const uint32_t iQuant, SearchData * const Data, const MBParam * const pParam, const MACROBLOCK * const pMBs, const MACROBLOCK * const prevMBs, int inter4v, MACROBLOCK * const pMB) { int i, iDirection = 255, mask, threshA; VECTOR pmv[7]; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv); get_pmvdata2(pMBs, pParam->mb_width, 0, x, y, 0, pmv, Data->temp); Data->temp[5] = Data->temp[6] = 0; // chroma-sad cache i = Data->rrv ? 2 : 1; Data->Cur = pCur->y + (x + y * Data->iEdgedWidth) * 16*i; Data->CurV = pCur->v + (x + y * (Data->iEdgedWidth/2)) * 8*i; Data->CurU = pCur->u + (x + y * (Data->iEdgedWidth/2)) * 8*i; Data->Ref = pRef->y + (x + Data->iEdgedWidth*y) * 16*i; Data->RefH = pRefH + (x + Data->iEdgedWidth*y) * 16*i; Data->RefV = pRefV + (x + Data->iEdgedWidth*y) * 16*i; Data->RefHV = pRefHV + (x + Data->iEdgedWidth*y) * 16*i; Data->RefCV = pRef->v + (x + y * (Data->iEdgedWidth/2)) * 8*i; Data->RefCU = pRef->u + (x + y * (Data->iEdgedWidth/2)) * 8*i; Data->lambda16 = lambda_vec16[iQuant]; Data->lambda8 = lambda_vec8[iQuant]; Data->qpel_precision = 0; if (pMB->dquant != 0) inter4v = 0; memset(Data->currentMV, 0, 5*sizeof(VECTOR)); if (Data->qpel) Data->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, 0); else Data->predMV = pmv[0]; i = d_mv_bits(0, 0, Data->predMV, Data->iFcode, 0, 0); Data->iMinSAD[0] = pMB->sad16 + ((Data->lambda16 * i * pMB->sad16)>>10); Data->iMinSAD[1] = pMB->sad8[0] + ((Data->lambda8 * i * (pMB->sad8[0]+NEIGH_8X8_BIAS)) >> 10); Data->iMinSAD[2] = pMB->sad8[1]; Data->iMinSAD[3] = pMB->sad8[2]; Data->iMinSAD[4] = pMB->sad8[3]; if ((!(VopFlags & XVID_VOP_MODEDECISION_BITS)) || (x | y)) { threshA = Data->temp[0]; // that's where we keep this SAD atm if (threshA < 512) threshA = 512; else if (threshA > 1024) threshA = 1024; } else threshA = 512; PreparePredictionsP(pmv, x, y, pParam->mb_width, pParam->mb_height, prevMBs + x + y * pParam->mb_width, Data->rrv); if (!Data->rrv) { if (inter4v | Data->chroma) CheckCandidate = CheckCandidate16; else CheckCandidate = CheckCandidate16no4v; //for extra speed } else CheckCandidate = CheckCandidate32; /* main loop. checking all predictions (but first, which is 0,0 and has been checked in MotionEstimation())*/ for (i = 1; i < 7; i++) { if (!(mask = make_mask(pmv, i)) ) continue; CheckCandidate(pmv[i].x, pmv[i].y, mask, &iDirection, Data); if (Data->iMinSAD[0] <= threshA) break; } if ((Data->iMinSAD[0] <= threshA) || (MVequal(Data->currentMV[0], (prevMBs+x+y*pParam->mb_width)->mvs[0]) && (Data->iMinSAD[0] < (prevMBs+x+y*pParam->mb_width)->sad16))) { if (!(VopFlags & XVID_VOP_MODEDECISION_BITS)) inter4v = 0; } else { MainSearchFunc * MainSearchPtr; if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, iDirection); /* extended search, diamond starting in 0,0 and in prediction. note that this search is/might be done in halfpel positions, which makes it more different than the diamond above */ if (MotionFlags & XVID_ME_EXTSEARCH16) { int32_t bSAD; VECTOR startMV = Data->predMV, backupMV = Data->currentMV[0]; if (Data->rrv) { startMV.x = RRV_MV_SCALEUP(startMV.x); startMV.y = RRV_MV_SCALEUP(startMV.y); } if (!(MVequal(startMV, backupMV))) { bSAD = Data->iMinSAD[0]; Data->iMinSAD[0] = MV_MAX_ERROR; CheckCandidate(startMV.x, startMV.y, 255, &iDirection, Data); MainSearchPtr(startMV.x, startMV.y, Data, 255); if (bSAD < Data->iMinSAD[0]) { Data->currentMV[0] = backupMV; Data->iMinSAD[0] = bSAD; } } backupMV = Data->currentMV[0]; startMV.x = startMV.y = 1; if (!(MVequal(startMV, backupMV))) { bSAD = Data->iMinSAD[0]; Data->iMinSAD[0] = MV_MAX_ERROR; CheckCandidate(startMV.x, startMV.y, 255, &iDirection, Data); MainSearchPtr(startMV.x, startMV.y, Data, 255); if (bSAD < Data->iMinSAD[0]) { Data->currentMV[0] = backupMV; Data->iMinSAD[0] = bSAD; } } } } if (MotionFlags & XVID_ME_HALFPELREFINE16) if ((!(MotionFlags & XVID_ME_HALFPELREFINE16_BITS)) || Data->iMinSAD[0] < 200*(int)iQuant) SubpelRefine(Data); for(i = 0; i < 5; i++) { Data->currentQMV[i].x = 2 * Data->currentMV[i].x; // initialize qpel vectors Data->currentQMV[i].y = 2 * Data->currentMV[i].y; } if (MotionFlags & XVID_ME_QUARTERPELREFINE16) { get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode, 1, 0); if ((!(MotionFlags & XVID_ME_QUARTERPELREFINE16_BITS)) || (Data->iMinSAD[0] < 200*(int)iQuant)) { Data->qpel_precision = 1; SubpelRefine(Data); } } if ((!(VopFlags & XVID_VOP_MODEDECISION_BITS)) && (Data->iMinSAD[0] < (int32_t)iQuant * 30)) inter4v = 0; if (inter4v && (!(VopFlags & XVID_VOP_MODEDECISION_BITS) || (!(MotionFlags & XVID_ME_QUARTERPELREFINE8_BITS)) || (!(MotionFlags & XVID_ME_HALFPELREFINE8_BITS)) || ((!(MotionFlags & XVID_ME_EXTSEARCH_BITS)) && (!(MotionFlags&XVID_ME_EXTSEARCH8)) ))) { // if decision is BITS-based and all refinement steps will be done in BITS domain, there is no reason to call this loop SearchData Data8; memcpy(&Data8, Data, sizeof(SearchData)); //quick copy of common data Search8(Data, 2*x, 2*y, MotionFlags, pParam, pMB, pMBs, 0, &Data8); Search8(Data, 2*x + 1, 2*y, MotionFlags, pParam, pMB, pMBs, 1, &Data8); Search8(Data, 2*x, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 2, &Data8); Search8(Data, 2*x + 1, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 3, &Data8); if ((Data->chroma) && (!(VopFlags & XVID_VOP_MODEDECISION_BITS))) { // chroma is only used for comparsion to INTER. if the comparsion will be done in BITS domain, there is no reason to compute it int sumx = 0, sumy = 0; const int div = 1 + Data->qpel; const VECTOR * const mv = Data->qpel ? pMB->qmvs : pMB->mvs; for (i = 0; i < 4; i++) { sumx += mv[i].x / div; sumy += mv[i].y / div; } Data->iMinSAD[1] += ChromaSAD( (sumx >> 3) + roundtab_76[sumx & 0xf], (sumy >> 3) + roundtab_76[sumy & 0xf], Data); } } inter4v = ModeDecision(iQuant, Data, inter4v, pMB, pMBs, x, y, pParam, MotionFlags, VopFlags); if (Data->rrv) { Data->currentMV[0].x = RRV_MV_SCALEDOWN(Data->currentMV[0].x); Data->currentMV[0].y = RRV_MV_SCALEDOWN(Data->currentMV[0].y); } if (inter4v == MODE_INTER) { pMB->mode = MODE_INTER; pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = Data->currentMV[0]; pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = Data->iMinSAD[0]; if(Data->qpel) { pMB->qmvs[0] = pMB->qmvs[1] = pMB->qmvs[2] = pMB->qmvs[3] = Data->currentQMV[0]; pMB->pmvs[0].x = Data->currentQMV[0].x - Data->predMV.x; pMB->pmvs[0].y = Data->currentQMV[0].y - Data->predMV.y; } else { pMB->pmvs[0].x = Data->currentMV[0].x - Data->predMV.x; pMB->pmvs[0].y = Data->currentMV[0].y - Data->predMV.y; } } else if (inter4v == MODE_INTER4V) { pMB->mode = MODE_INTER4V; pMB->sad16 = Data->iMinSAD[0]; } else { // INTRA mode SkipMacroblockP(pMB, 0); // not skip, but similar enough pMB->mode = MODE_INTRA; } } static void Search8(const SearchData * const OldData, const int x, const int y, const uint32_t MotionFlags, const MBParam * const pParam, MACROBLOCK * const pMB, const MACROBLOCK * const pMBs, const int block, SearchData * const Data) { int i = 0; Data->iMinSAD = OldData->iMinSAD + 1 + block; Data->currentMV = OldData->currentMV + 1 + block; Data->currentQMV = OldData->currentQMV + 1 + block; if(Data->qpel) { Data->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x/2, y/2, block); if (block != 0) i = d_mv_bits( Data->currentQMV->x, Data->currentQMV->y, Data->predMV, Data->iFcode, 0, 0); } else { Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x/2, y/2, block); if (block != 0) i = d_mv_bits( Data->currentMV->x, Data->currentMV->y, Data->predMV, Data->iFcode, 0, Data->rrv); } *(Data->iMinSAD) += (Data->lambda8 * i * (*Data->iMinSAD + NEIGH_8X8_BIAS))>>10; if (MotionFlags & (XVID_ME_EXTSEARCH8|XVID_ME_HALFPELREFINE8|XVID_ME_QUARTERPELREFINE8)) { if (Data->rrv) i = 2; else i = 1; Data->Ref = OldData->Ref + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->RefH = OldData->RefH + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->RefV = OldData->RefV + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->RefHV = OldData->RefHV + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->Cur = OldData->Cur + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->qpel_precision = 0; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 8, pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv); if (!Data->rrv) CheckCandidate = CheckCandidate8; else CheckCandidate = CheckCandidate16no4v; if (MotionFlags & XVID_ME_EXTSEARCH8 && (!(MotionFlags & XVID_ME_EXTSEARCH_BITS))) { int32_t temp_sad = *(Data->iMinSAD); // store current MinSAD MainSearchFunc *MainSearchPtr; if (MotionFlags & XVID_ME_USESQUARES8) MainSearchPtr = SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND8) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, 255); if(*(Data->iMinSAD) < temp_sad) { Data->currentQMV->x = 2 * Data->currentMV->x; // update our qpel vector Data->currentQMV->y = 2 * Data->currentMV->y; } } if (MotionFlags & XVID_ME_HALFPELREFINE8) { int32_t temp_sad = *(Data->iMinSAD); // store current MinSAD SubpelRefine(Data); // perform halfpel refine of current best vector if(*(Data->iMinSAD) < temp_sad) { // we have found a better match Data->currentQMV->x = 2 * Data->currentMV->x; // update our qpel vector Data->currentQMV->y = 2 * Data->currentMV->y; } } if (Data->qpel && MotionFlags & XVID_ME_QUARTERPELREFINE8) { Data->qpel_precision = 1; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 8, pParam->width, pParam->height, Data->iFcode, 1, 0); SubpelRefine(Data); } } if (Data->rrv) { Data->currentMV->x = RRV_MV_SCALEDOWN(Data->currentMV->x); Data->currentMV->y = RRV_MV_SCALEDOWN(Data->currentMV->y); } if(Data->qpel) { pMB->pmvs[block].x = Data->currentQMV->x - Data->predMV.x; pMB->pmvs[block].y = Data->currentQMV->y - Data->predMV.y; pMB->qmvs[block] = *Data->currentQMV; } else { pMB->pmvs[block].x = Data->currentMV->x - Data->predMV.x; pMB->pmvs[block].y = Data->currentMV->y - Data->predMV.y; } pMB->mvs[block] = *Data->currentMV; pMB->sad8[block] = 4 * *Data->iMinSAD; } /* motion estimation for B-frames */ static __inline VECTOR ChoosePred(const MACROBLOCK * const pMB, const uint32_t mode) { /* the stupidiest function ever */ return (mode == MODE_FORWARD ? pMB->mvs[0] : pMB->b_mvs[0]); } static void __inline PreparePredictionsBF(VECTOR * const pmv, const int x, const int y, const uint32_t iWcount, const MACROBLOCK * const pMB, const uint32_t mode_curr) { // [0] is prediction pmv[0].x = EVEN(pmv[0].x); pmv[0].y = EVEN(pmv[0].y); pmv[1].x = pmv[1].y = 0; // [1] is zero pmv[2] = ChoosePred(pMB, mode_curr); pmv[2].x = EVEN(pmv[2].x); pmv[2].y = EVEN(pmv[2].y); if ((y != 0)&&(x != (int)(iWcount+1))) { // [3] top-right neighbour pmv[3] = ChoosePred(pMB+1-iWcount, mode_curr); pmv[3].x = EVEN(pmv[3].x); pmv[3].y = EVEN(pmv[3].y); } else pmv[3].x = pmv[3].y = 0; if (y != 0) { pmv[4] = ChoosePred(pMB-iWcount, mode_curr); pmv[4].x = EVEN(pmv[4].x); pmv[4].y = EVEN(pmv[4].y); } else pmv[4].x = pmv[4].y = 0; if (x != 0) { pmv[5] = ChoosePred(pMB-1, mode_curr); pmv[5].x = EVEN(pmv[5].x); pmv[5].y = EVEN(pmv[5].y); } else pmv[5].x = pmv[5].y = 0; if (x != 0 && y != 0) { pmv[6] = ChoosePred(pMB-1-iWcount, mode_curr); pmv[6].x = EVEN(pmv[6].x); pmv[6].y = EVEN(pmv[6].y); } else pmv[6].x = pmv[6].y = 0; } /* search backward or forward */ static void SearchBF( const IMAGE * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const uint32_t iFcode, const MBParam * const pParam, MACROBLOCK * const pMB, const VECTOR * const predMV, int32_t * const best_sad, const int32_t mode_current, SearchData * const Data) { int i, iDirection = 255, mask; VECTOR pmv[7]; MainSearchFunc *MainSearchPtr; *Data->iMinSAD = MV_MAX_ERROR; Data->iFcode = iFcode; Data->qpel_precision = 0; Data->temp[5] = Data->temp[6] = Data->temp[7] = 256*4096; // reset chroma-sad cache Data->Ref = pRef->y + (x + y * Data->iEdgedWidth) * 16; Data->RefH = pRefH + (x + y * Data->iEdgedWidth) * 16; Data->RefV = pRefV + (x + y * Data->iEdgedWidth) * 16; Data->RefHV = pRefHV + (x + y * Data->iEdgedWidth) * 16; Data->RefCU = pRef->u + (x + y * Data->iEdgedWidth/2) * 8; Data->RefCV = pRef->v + (x + y * Data->iEdgedWidth/2) * 8; Data->predMV = *predMV; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, iFcode - Data->qpel, 0, 0); pmv[0] = Data->predMV; if (Data->qpel) { pmv[0].x /= 2; pmv[0].y /= 2; } PreparePredictionsBF(pmv, x, y, pParam->mb_width, pMB, mode_current); Data->currentMV->x = Data->currentMV->y = 0; CheckCandidate = CheckCandidate16no4v; // main loop. checking all predictions for (i = 0; i < 7; i++) { if (!(mask = make_mask(pmv, i)) ) continue; CheckCandidate16no4v(pmv[i].x, pmv[i].y, mask, &iDirection, Data); } if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, iDirection); SubpelRefine(Data); if (Data->qpel && *Data->iMinSAD < *best_sad + 300) { Data->currentQMV->x = 2*Data->currentMV->x; Data->currentQMV->y = 2*Data->currentMV->y; Data->qpel_precision = 1; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, iFcode, 1, 0); SubpelRefine(Data); } // three bits are needed to code backward mode. four for forward if (mode_current == MODE_FORWARD) *Data->iMinSAD += 4 * Data->lambda16; else *Data->iMinSAD += 3 * Data->lambda16; if (*Data->iMinSAD < *best_sad) { *best_sad = *Data->iMinSAD; pMB->mode = mode_current; if (Data->qpel) { pMB->pmvs[0].x = Data->currentQMV->x - predMV->x; pMB->pmvs[0].y = Data->currentQMV->y - predMV->y; if (mode_current == MODE_FORWARD) pMB->qmvs[0] = *Data->currentQMV; else pMB->b_qmvs[0] = *Data->currentQMV; } else { pMB->pmvs[0].x = Data->currentMV->x - predMV->x; pMB->pmvs[0].y = Data->currentMV->y - predMV->y; } if (mode_current == MODE_FORWARD) pMB->mvs[0] = *Data->currentMV; else pMB->b_mvs[0] = *Data->currentMV; } if (mode_current == MODE_FORWARD) *(Data->currentMV+2) = *Data->currentMV; else *(Data->currentMV+1) = *Data->currentMV; //we store currmv for interpolate search } static void SkipDecisionB(const IMAGE * const pCur, const IMAGE * const f_Ref, const IMAGE * const b_Ref, MACROBLOCK * const pMB, const uint32_t x, const uint32_t y, const SearchData * const Data) { int dx = 0, dy = 0, b_dx = 0, b_dy = 0; int32_t sum; const int div = 1 + Data->qpel; int k; const uint32_t stride = Data->iEdgedWidth/2; //this is not full chroma compensation, only it's fullpel approximation. should work though for (k = 0; k < 4; k++) { dy += Data->directmvF[k].y / div; dx += Data->directmvF[k].x / div; b_dy += Data->directmvB[k].y / div; b_dx += Data->directmvB[k].x / div; } dy = (dy >> 3) + roundtab_76[dy & 0xf]; dx = (dx >> 3) + roundtab_76[dx & 0xf]; b_dy = (b_dy >> 3) + roundtab_76[b_dy & 0xf]; b_dx = (b_dx >> 3) + roundtab_76[b_dx & 0xf]; sum = sad8bi(pCur->u + 8 * x + 8 * y * stride, f_Ref->u + (y*8 + dy/2) * stride + x*8 + dx/2, b_Ref->u + (y*8 + b_dy/2) * stride + x*8 + b_dx/2, stride); if (sum >= 2 * MAX_CHROMA_SAD_FOR_SKIP * pMB->quant) return; //no skip sum += sad8bi(pCur->v + 8*x + 8 * y * stride, f_Ref->v + (y*8 + dy/2) * stride + x*8 + dx/2, b_Ref->v + (y*8 + b_dy/2) * stride + x*8 + b_dx/2, stride); if (sum < 2 * MAX_CHROMA_SAD_FOR_SKIP * pMB->quant) { pMB->mode = MODE_DIRECT_NONE_MV; //skipped for (k = 0; k < 4; k++) { pMB->qmvs[k] = pMB->mvs[k]; pMB->b_qmvs[k] = pMB->b_mvs[k]; } } } static __inline uint32_t SearchDirect(const IMAGE * const f_Ref, const uint8_t * const f_RefH, const uint8_t * const f_RefV, const uint8_t * const f_RefHV, const IMAGE * const b_Ref, const uint8_t * const b_RefH, const uint8_t * const b_RefV, const uint8_t * const b_RefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const int32_t TRB, const int32_t TRD, const MBParam * const pParam, MACROBLOCK * const pMB, const MACROBLOCK * const b_mb, int32_t * const best_sad, SearchData * const Data) { int32_t skip_sad; int k = (x + Data->iEdgedWidth*y) * 16; MainSearchFunc *MainSearchPtr; *Data->iMinSAD = 256*4096; Data->Ref = f_Ref->y + k; Data->RefH = f_RefH + k; Data->RefV = f_RefV + k; Data->RefHV = f_RefHV + k; Data->bRef = b_Ref->y + k; Data->bRefH = b_RefH + k; Data->bRefV = b_RefV + k; Data->bRefHV = b_RefHV + k; Data->RefCU = f_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8; Data->RefCV = f_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8; Data->b_RefCU = b_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8; Data->b_RefCV = b_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8; k = Data->qpel ? 4 : 2; Data->max_dx = k * (pParam->width - x * 16); Data->max_dy = k * (pParam->height - y * 16); Data->min_dx = -k * (16 + x * 16); Data->min_dy = -k * (16 + y * 16); Data->referencemv = Data->qpel ? b_mb->qmvs : b_mb->mvs; Data->qpel_precision = 0; for (k = 0; k < 4; k++) { pMB->mvs[k].x = Data->directmvF[k].x = ((TRB * Data->referencemv[k].x) / TRD); pMB->b_mvs[k].x = Data->directmvB[k].x = ((TRB - TRD) * Data->referencemv[k].x) / TRD; pMB->mvs[k].y = Data->directmvF[k].y = ((TRB * Data->referencemv[k].y) / TRD); pMB->b_mvs[k].y = Data->directmvB[k].y = ((TRB - TRD) * Data->referencemv[k].y) / TRD; if ( (pMB->b_mvs[k].x > Data->max_dx) | (pMB->b_mvs[k].x < Data->min_dx) | (pMB->b_mvs[k].y > Data->max_dy) | (pMB->b_mvs[k].y < Data->min_dy) ) { *best_sad = 256*4096; // in that case, we won't use direct mode pMB->mode = MODE_DIRECT; // just to make sure it doesn't say "MODE_DIRECT_NONE_MV" pMB->b_mvs[0].x = pMB->b_mvs[0].y = 0; return 256*4096; } if (b_mb->mode != MODE_INTER4V) { pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = pMB->mvs[0]; pMB->b_mvs[1] = pMB->b_mvs[2] = pMB->b_mvs[3] = pMB->b_mvs[0]; Data->directmvF[1] = Data->directmvF[2] = Data->directmvF[3] = Data->directmvF[0]; Data->directmvB[1] = Data->directmvB[2] = Data->directmvB[3] = Data->directmvB[0]; break; } } CheckCandidate = b_mb->mode == MODE_INTER4V ? CheckCandidateDirect : CheckCandidateDirectno4v; CheckCandidate(0, 0, 255, &k, Data); // initial (fast) skip decision if (*Data->iMinSAD < pMB->quant * INITIAL_SKIP_THRESH * (2 + Data->chroma?1:0)) { //possible skip if (Data->chroma) { pMB->mode = MODE_DIRECT_NONE_MV; return *Data->iMinSAD; // skip. } else { SkipDecisionB(pCur, f_Ref, b_Ref, pMB, x, y, Data); if (pMB->mode == MODE_DIRECT_NONE_MV) return *Data->iMinSAD; // skip. } } *Data->iMinSAD += Data->lambda16; skip_sad = *Data->iMinSAD; // DIRECT MODE DELTA VECTOR SEARCH. // This has to be made more effective, but at the moment I'm happy it's running at all if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; MainSearchPtr(0, 0, Data, 255); SubpelRefine(Data); *best_sad = *Data->iMinSAD; if (Data->qpel || b_mb->mode == MODE_INTER4V) pMB->mode = MODE_DIRECT; else pMB->mode = MODE_DIRECT_NO4V; //for faster compensation pMB->pmvs[3] = *Data->currentMV; for (k = 0; k < 4; k++) { pMB->mvs[k].x = Data->directmvF[k].x + Data->currentMV->x; pMB->b_mvs[k].x = ( (Data->currentMV->x == 0) ? Data->directmvB[k].x :pMB->mvs[k].x - Data->referencemv[k].x); pMB->mvs[k].y = (Data->directmvF[k].y + Data->currentMV->y); pMB->b_mvs[k].y = ((Data->currentMV->y == 0) ? Data->directmvB[k].y : pMB->mvs[k].y - Data->referencemv[k].y); if (Data->qpel) { pMB->qmvs[k].x = pMB->mvs[k].x; pMB->mvs[k].x /= 2; pMB->b_qmvs[k].x = pMB->b_mvs[k].x; pMB->b_mvs[k].x /= 2; pMB->qmvs[k].y = pMB->mvs[k].y; pMB->mvs[k].y /= 2; pMB->b_qmvs[k].y = pMB->b_mvs[k].y; pMB->b_mvs[k].y /= 2; } if (b_mb->mode != MODE_INTER4V) { pMB->mvs[3] = pMB->mvs[2] = pMB->mvs[1] = pMB->mvs[0]; pMB->b_mvs[3] = pMB->b_mvs[2] = pMB->b_mvs[1] = pMB->b_mvs[0]; pMB->qmvs[3] = pMB->qmvs[2] = pMB->qmvs[1] = pMB->qmvs[0]; pMB->b_qmvs[3] = pMB->b_qmvs[2] = pMB->b_qmvs[1] = pMB->b_qmvs[0]; break; } } return skip_sad; } static void SearchInterpolate(const IMAGE * const f_Ref, const uint8_t * const f_RefH, const uint8_t * const f_RefV, const uint8_t * const f_RefHV, const IMAGE * const b_Ref, const uint8_t * const b_RefH, const uint8_t * const b_RefV, const uint8_t * const b_RefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t fcode, const uint32_t bcode, const uint32_t MotionFlags, const MBParam * const pParam, const VECTOR * const f_predMV, const VECTOR * const b_predMV, MACROBLOCK * const pMB, int32_t * const best_sad, SearchData * const fData) { int iDirection, i, j; SearchData bData; fData->qpel_precision = 0; memcpy(&bData, fData, sizeof(SearchData)); //quick copy of common data *fData->iMinSAD = 4096*256; bData.currentMV++; bData.currentQMV++; fData->iFcode = bData.bFcode = fcode; fData->bFcode = bData.iFcode = bcode; i = (x + y * fData->iEdgedWidth) * 16; bData.bRef = fData->Ref = f_Ref->y + i; bData.bRefH = fData->RefH = f_RefH + i; bData.bRefV = fData->RefV = f_RefV + i; bData.bRefHV = fData->RefHV = f_RefHV + i; bData.Ref = fData->bRef = b_Ref->y + i; bData.RefH = fData->bRefH = b_RefH + i; bData.RefV = fData->bRefV = b_RefV + i; bData.RefHV = fData->bRefHV = b_RefHV + i; bData.b_RefCU = fData->RefCU = f_Ref->u + (x + (fData->iEdgedWidth/2) * y) * 8; bData.b_RefCV = fData->RefCV = f_Ref->v + (x + (fData->iEdgedWidth/2) * y) * 8; bData.RefCU = fData->b_RefCU = b_Ref->u + (x + (fData->iEdgedWidth/2) * y) * 8; bData.RefCV = fData->b_RefCV = b_Ref->v + (x + (fData->iEdgedWidth/2) * y) * 8; bData.bpredMV = fData->predMV = *f_predMV; fData->bpredMV = bData.predMV = *b_predMV; fData->currentMV[0] = fData->currentMV[2]; get_range(&fData->min_dx, &fData->max_dx, &fData->min_dy, &fData->max_dy, x, y, 16, pParam->width, pParam->height, fcode - fData->qpel, 0, 0); get_range(&bData.min_dx, &bData.max_dx, &bData.min_dy, &bData.max_dy, x, y, 16, pParam->width, pParam->height, bcode - fData->qpel, 0, 0); if (fData->currentMV[0].x > fData->max_dx) fData->currentMV[0].x = fData->max_dx; if (fData->currentMV[0].x < fData->min_dx) fData->currentMV[0].x = fData->min_dx; if (fData->currentMV[0].y > fData->max_dy) fData->currentMV[0].y = fData->max_dy; if (fData->currentMV[0].y < fData->min_dy) fData->currentMV[0].y = fData->min_dy; if (fData->currentMV[1].x > bData.max_dx) fData->currentMV[1].x = bData.max_dx; if (fData->currentMV[1].x < bData.min_dx) fData->currentMV[1].x = bData.min_dx; if (fData->currentMV[1].y > bData.max_dy) fData->currentMV[1].y = bData.max_dy; if (fData->currentMV[1].y < bData.min_dy) fData->currentMV[1].y = bData.min_dy; CheckCandidateInt(fData->currentMV[0].x, fData->currentMV[0].y, 255, &iDirection, fData); //diamond do { iDirection = 255; // forward MV moves i = fData->currentMV[0].x; j = fData->currentMV[0].y; CheckCandidateInt(i + 1, j, 0, &iDirection, fData); CheckCandidateInt(i, j + 1, 0, &iDirection, fData); CheckCandidateInt(i - 1, j, 0, &iDirection, fData); CheckCandidateInt(i, j - 1, 0, &iDirection, fData); // backward MV moves i = fData->currentMV[1].x; j = fData->currentMV[1].y; fData->currentMV[2] = fData->currentMV[0]; CheckCandidateInt(i + 1, j, 0, &iDirection, &bData); CheckCandidateInt(i, j + 1, 0, &iDirection, &bData); CheckCandidateInt(i - 1, j, 0, &iDirection, &bData); CheckCandidateInt(i, j - 1, 0, &iDirection, &bData); } while (!(iDirection)); //qpel refinement if (fData->qpel) { if (*fData->iMinSAD > *best_sad + 500) return; CheckCandidate = CheckCandidateInt; fData->qpel_precision = bData.qpel_precision = 1; get_range(&fData->min_dx, &fData->max_dx, &fData->min_dy, &fData->max_dy, x, y, 16, pParam->width, pParam->height, fcode, 1, 0); get_range(&bData.min_dx, &bData.max_dx, &bData.min_dy, &bData.max_dy, x, y, 16, pParam->width, pParam->height, bcode, 1, 0); fData->currentQMV[2].x = fData->currentQMV[0].x = 2 * fData->currentMV[0].x; fData->currentQMV[2].y = fData->currentQMV[0].y = 2 * fData->currentMV[0].y; fData->currentQMV[1].x = 2 * fData->currentMV[1].x; fData->currentQMV[1].y = 2 * fData->currentMV[1].y; SubpelRefine(fData); if (*fData->iMinSAD > *best_sad + 300) return; fData->currentQMV[2] = fData->currentQMV[0]; SubpelRefine(&bData); } *fData->iMinSAD += (2+3) * fData->lambda16; // two bits are needed to code interpolate mode. if (*fData->iMinSAD < *best_sad) { *best_sad = *fData->iMinSAD; pMB->mvs[0] = fData->currentMV[0]; pMB->b_mvs[0] = fData->currentMV[1]; pMB->mode = MODE_INTERPOLATE; if (fData->qpel) { pMB->qmvs[0] = fData->currentQMV[0]; pMB->b_qmvs[0] = fData->currentQMV[1]; pMB->pmvs[1].x = pMB->qmvs[0].x - f_predMV->x; pMB->pmvs[1].y = pMB->qmvs[0].y - f_predMV->y; pMB->pmvs[0].x = pMB->b_qmvs[0].x - b_predMV->x; pMB->pmvs[0].y = pMB->b_qmvs[0].y - b_predMV->y; } else { pMB->pmvs[1].x = pMB->mvs[0].x - f_predMV->x; pMB->pmvs[1].y = pMB->mvs[0].y - f_predMV->y; pMB->pmvs[0].x = pMB->b_mvs[0].x - b_predMV->x; pMB->pmvs[0].y = pMB->b_mvs[0].y - b_predMV->y; } } } void MotionEstimationBVOP(MBParam * const pParam, FRAMEINFO * const frame, const int32_t time_bp, const int32_t time_pp, // forward (past) reference const MACROBLOCK * const f_mbs, const IMAGE * const f_ref, const IMAGE * const f_refH, const IMAGE * const f_refV, const IMAGE * const f_refHV, // backward (future) reference const FRAMEINFO * const b_reference, const IMAGE * const b_ref, const IMAGE * const b_refH, const IMAGE * const b_refV, const IMAGE * const b_refHV) { uint32_t i, j; int32_t best_sad; uint32_t skip_sad; int f_count = 0, b_count = 0, i_count = 0, d_count = 0, n_count = 0; const MACROBLOCK * const b_mbs = b_reference->mbs; VECTOR f_predMV, b_predMV; /* there is no prediction for direct mode*/ const int32_t TRB = time_pp - time_bp; const int32_t TRD = time_pp; // some pre-inintialized data for the rest of the search SearchData Data; int32_t iMinSAD; VECTOR currentMV[3]; VECTOR currentQMV[3]; int32_t temp[8]; memset(&Data, 0, sizeof(SearchData)); Data.iEdgedWidth = pParam->edged_width; Data.currentMV = currentMV; Data.currentQMV = currentQMV; Data.iMinSAD = &iMinSAD; Data.lambda16 = lambda_vec16[frame->quant]; Data.qpel = pParam->vol_flags & XVID_VOL_QUARTERPEL; Data.rounding = 0; Data.chroma = frame->motion_flags & XVID_ME_CHROMA8; Data.temp = temp; Data.RefQ = f_refV->u; // a good place, also used in MC (for similar purpose) // note: i==horizontal, j==vertical for (j = 0; j < pParam->mb_height; j++) { f_predMV = b_predMV = zeroMV; /* prediction is reset at left boundary */ for (i = 0; i < pParam->mb_width; i++) { MACROBLOCK * const pMB = frame->mbs + i + j * pParam->mb_width; const MACROBLOCK * const b_mb = b_mbs + i + j * pParam->mb_width; /* special case, if collocated block is SKIPed in P-VOP: encoding is forward (0,0), cpb=0 without further ado */ if (b_reference->coding_type != S_VOP) if (b_mb->mode == MODE_NOT_CODED) { pMB->mode = MODE_NOT_CODED; continue; } Data.Cur = frame->image.y + (j * Data.iEdgedWidth + i) * 16; Data.CurU = frame->image.u + (j * Data.iEdgedWidth/2 + i) * 8; Data.CurV = frame->image.v + (j * Data.iEdgedWidth/2 + i) * 8; pMB->quant = frame->quant; /* direct search comes first, because it (1) checks for SKIP-mode and (2) sets very good predictions for forward and backward search */ skip_sad = SearchDirect(f_ref, f_refH->y, f_refV->y, f_refHV->y, b_ref, b_refH->y, b_refV->y, b_refHV->y, &frame->image, i, j, frame->motion_flags, TRB, TRD, pParam, pMB, b_mb, &best_sad, &Data); if (pMB->mode == MODE_DIRECT_NONE_MV) { n_count++; continue; } // forward search SearchBF(f_ref, f_refH->y, f_refV->y, f_refHV->y, &frame->image, i, j, frame->motion_flags, frame->fcode, pParam, pMB, &f_predMV, &best_sad, MODE_FORWARD, &Data); // backward search SearchBF(b_ref, b_refH->y, b_refV->y, b_refHV->y, &frame->image, i, j, frame->motion_flags, frame->bcode, pParam, pMB, &b_predMV, &best_sad, MODE_BACKWARD, &Data); // interpolate search comes last, because it uses data from forward and backward as prediction SearchInterpolate(f_ref, f_refH->y, f_refV->y, f_refHV->y, b_ref, b_refH->y, b_refV->y, b_refHV->y, &frame->image, i, j, frame->fcode, frame->bcode, frame->motion_flags, pParam, &f_predMV, &b_predMV, pMB, &best_sad, &Data); // final skip decision if ( (skip_sad < frame->quant * MAX_SAD00_FOR_SKIP * 2) && ((100*best_sad)/(skip_sad+1) > FINAL_SKIP_THRESH) ) SkipDecisionB(&frame->image, f_ref, b_ref, pMB, i, j, &Data); switch (pMB->mode) { case MODE_FORWARD: f_count++; f_predMV = Data.qpel ? pMB->qmvs[0] : pMB->mvs[0]; break; case MODE_BACKWARD: b_count++; b_predMV = Data.qpel ? pMB->b_qmvs[0] : pMB->b_mvs[0]; break; case MODE_INTERPOLATE: i_count++; f_predMV = Data.qpel ? pMB->qmvs[0] : pMB->mvs[0]; b_predMV = Data.qpel ? pMB->b_qmvs[0] : pMB->b_mvs[0]; break; case MODE_DIRECT: case MODE_DIRECT_NO4V: d_count++; default: break; } } } } static __inline void MEanalyzeMB ( const uint8_t * const pRef, const uint8_t * const pCur, const int x, const int y, const MBParam * const pParam, MACROBLOCK * const pMBs, SearchData * const Data) { int i, mask; int quarterpel = (pParam->vol_flags & XVID_VOL_QUARTERPEL)? 1: 0; VECTOR pmv[3]; MACROBLOCK * const pMB = &pMBs[x + y * pParam->mb_width]; for (i = 0; i < 5; i++) Data->iMinSAD[i] = MV_MAX_ERROR; //median is only used as prediction. it doesn't have to be real if (x == 1 && y == 1) Data->predMV.x = Data->predMV.y = 0; else if (x == 1) //left macroblock does not have any vector now Data->predMV = (pMB - pParam->mb_width)->mvs[0]; // top instead of median else if (y == 1) // top macroblock doesn't have it's vector Data->predMV = (pMB - 1)->mvs[0]; // left instead of median else Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, 0); //else median get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode - quarterpel, 0, 0); Data->Cur = pCur + (x + y * pParam->edged_width) * 16; Data->Ref = pRef + (x + y * pParam->edged_width) * 16; pmv[1].x = EVEN(pMB->mvs[0].x); pmv[1].y = EVEN(pMB->mvs[0].y); pmv[2].x = EVEN(Data->predMV.x); pmv[2].y = EVEN(Data->predMV.y); pmv[0].x = pmv[0].y = 0; CheckCandidate32I(0, 0, 255, &i, Data); Data->iMinSAD[1] -= 50; Data->iMinSAD[2] -= 50; Data->iMinSAD[3] -= 50; Data->iMinSAD[4] -= 50; if (*Data->iMinSAD > 4 * MAX_SAD00_FOR_SKIP) { if (!(mask = make_mask(pmv, 1))) CheckCandidate32I(pmv[1].x, pmv[1].y, mask, &i, Data); if (!(mask = make_mask(pmv, 2))) CheckCandidate32I(pmv[2].x, pmv[2].y, mask, &i, Data); if (*Data->iMinSAD > 4 * MAX_SAD00_FOR_SKIP) // diamond only if needed DiamondSearch(Data->currentMV->x, Data->currentMV->y, Data, i); } for (i = 0; i < 4; i++) { MACROBLOCK * MB = &pMBs[x + (i&1) + (y+(i>>1)) * pParam->mb_width]; MB->mvs[0] = MB->mvs[1] = MB->mvs[2] = MB->mvs[3] = Data->currentMV[i]; MB->mode = MODE_INTER; MB->sad16 = Data->iMinSAD[i+1]; } } #define INTRA_THRESH 2400 #define INTER_THRESH 1100 int MEanalysis( const IMAGE * const pRef, const FRAMEINFO * const Current, const MBParam * const pParam, const int maxIntra, //maximum number if non-I frames const int intraCount, //number of non-I frames after last I frame; 0 if we force P/B frame const int bCount, // number of B frames in a row const int b_thresh) { uint32_t x, y, intra = 0; int sSAD = 0; MACROBLOCK * const pMBs = Current->mbs; const IMAGE * const pCurrent = &Current->image; int IntraThresh = INTRA_THRESH, InterThresh = INTER_THRESH + 10*b_thresh; int s = 0, blocks = 0; int32_t iMinSAD[5], temp[5]; VECTOR currentMV[5]; SearchData Data; Data.iEdgedWidth = pParam->edged_width; Data.currentMV = currentMV; Data.iMinSAD = iMinSAD; Data.iFcode = Current->fcode; Data.temp = temp; CheckCandidate = CheckCandidate32I; if (intraCount != 0 && intraCount < 10) // we're right after an I frame IntraThresh += 8 * (intraCount - 10) * (intraCount - 10); else if ( 5*(maxIntra - intraCount) < maxIntra) // we're close to maximum. 2 sec when max is 10 sec IntraThresh -= (IntraThresh * (maxIntra - 5*(maxIntra - intraCount)))/maxIntra; InterThresh -= (350 - 8*b_thresh) * bCount; if (InterThresh < 300 + 5*b_thresh) InterThresh = 300 + 5*b_thresh; if (sadInit) (*sadInit) (); for (y = 1; y < pParam->mb_height-1; y += 2) { for (x = 1; x < pParam->mb_width-1; x += 2) { int i; blocks += 4; if (bCount == 0) pMBs[x + y * pParam->mb_width].mvs[0] = zeroMV; else { //extrapolation of the vector found for last frame pMBs[x + y * pParam->mb_width].mvs[0].x = (pMBs[x + y * pParam->mb_width].mvs[0].x * (bCount+1) ) / bCount; pMBs[x + y * pParam->mb_width].mvs[0].y = (pMBs[x + y * pParam->mb_width].mvs[0].y * (bCount+1) ) / bCount; } MEanalyzeMB(pRef->y, pCurrent->y, x, y, pParam, pMBs, &Data); for (i = 0; i < 4; i++) { int dev; MACROBLOCK *pMB = &pMBs[x+(i&1) + (y+(i>>1)) * pParam->mb_width]; if (pMB->sad16 > IntraThresh) { dev = dev16(pCurrent->y + (x + (i&1) + (y + (i>>1)) * pParam->edged_width) * 16, pParam->edged_width); if (dev + IntraThresh < pMB->sad16) { pMB->mode = MODE_INTRA; if (++intra > ((pParam->mb_height-2)*(pParam->mb_width-2))/2) return I_VOP; } } if (pMB->mvs[0].x == 0 && pMB->mvs[0].y == 0) s++; sSAD += pMB->sad16; } } } sSAD /= blocks; s = (10*s) / blocks; if (s > 5) sSAD += (s - 4) * (180 - 2*b_thresh); //static block - looks bad when in bframe... if (sSAD > InterThresh ) return P_VOP; emms(); return B_VOP; } static WARPPOINTS GlobalMotionEst(const MACROBLOCK * const pMBs, const MBParam * const pParam, const FRAMEINFO * const current, const FRAMEINFO * const reference, const IMAGE * const pRefH, const IMAGE * const pRefV, const IMAGE * const pRefHV ) { const int deltax=8; // upper bound for difference between a MV and it's neighbour MVs const int deltay=8; const int grad=512; // lower bound for deviation in MB WARPPOINTS gmc; uint32_t mx, my; int MBh = pParam->mb_height; int MBw = pParam->mb_width; int *MBmask= calloc(MBh*MBw,sizeof(int)); double DtimesF[4] = { 0.,0., 0., 0. }; double sol[4] = { 0., 0., 0., 0. }; double a,b,c,n,denom; double meanx,meany; int num,oldnum; if (!MBmask) { fprintf(stderr,"Mem error\n"); gmc.duv[0].x= gmc.duv[0].y = gmc.duv[1].x= gmc.duv[1].y = gmc.duv[2].x= gmc.duv[2].y = 0; return gmc; } // filter mask of all blocks for (my = 1; my < (uint32_t)MBh-1; my++) for (mx = 1; mx < (uint32_t)MBw-1; mx++) { const int mbnum = mx + my * MBw; const MACROBLOCK *pMB = &pMBs[mbnum]; const VECTOR mv = pMB->mvs[0]; if (pMB->mode == MODE_INTRA || pMB->mode == MODE_NOT_CODED) continue; if ( ( (ABS(mv.x - (pMB-1)->mvs[0].x) < deltax) && (ABS(mv.y - (pMB-1)->mvs[0].y) < deltay) ) && ( (ABS(mv.x - (pMB+1)->mvs[0].x) < deltax) && (ABS(mv.y - (pMB+1)->mvs[0].y) < deltay) ) && ( (ABS(mv.x - (pMB-MBw)->mvs[0].x) < deltax) && (ABS(mv.y - (pMB-MBw)->mvs[0].y) < deltay) ) && ( (ABS(mv.x - (pMB+MBw)->mvs[0].x) < deltax) && (ABS(mv.y - (pMB+MBw)->mvs[0].y) < deltay) ) ) MBmask[mbnum]=1; } for (my = 1; my < (uint32_t)MBh-1; my++) for (mx = 1; mx < (uint32_t)MBw-1; mx++) { const uint8_t *const pCur = current->image.y + 16*my*pParam->edged_width + 16*mx; const int mbnum = mx + my * MBw; if (!MBmask[mbnum]) continue; if (sad16 ( pCur, pCur+1 , pParam->edged_width, 65536) <= (uint32_t)grad ) MBmask[mbnum] = 0; if (sad16 ( pCur, pCur+pParam->edged_width, pParam->edged_width, 65536) <= (uint32_t)grad ) MBmask[mbnum] = 0; } emms(); do { /* until convergence */ a = b = c = n = 0; DtimesF[0] = DtimesF[1] = DtimesF[2] = DtimesF[3] = 0.; for (my = 0; my < (uint32_t)MBh; my++) for (mx = 0; mx < (uint32_t)MBw; mx++) { const int mbnum = mx + my * MBw; const MACROBLOCK *pMB = &pMBs[mbnum]; const VECTOR mv = pMB->mvs[0]; if (!MBmask[mbnum]) continue; n++; a += 16*mx+8; b += 16*my+8; c += (16*mx+8)*(16*mx+8)+(16*my+8)*(16*my+8); DtimesF[0] += (double)mv.x; DtimesF[1] += (double)mv.x*(16*mx+8) + (double)mv.y*(16*my+8); DtimesF[2] += (double)mv.x*(16*my+8) - (double)mv.y*(16*mx+8); DtimesF[3] += (double)mv.y; } denom = a*a+b*b-c*n; /* Solve the system: sol = (D'*E*D)^{-1} D'*E*F */ /* D'*E*F has been calculated in the same loop as matrix */ sol[0] = -c*DtimesF[0] + a*DtimesF[1] + b*DtimesF[2]; sol[1] = a*DtimesF[0] - n*DtimesF[1] + b*DtimesF[3]; sol[2] = b*DtimesF[0] - n*DtimesF[2] - a*DtimesF[3]; sol[3] = b*DtimesF[1] - a*DtimesF[2] - c*DtimesF[3]; sol[0] /= denom; sol[1] /= denom; sol[2] /= denom; sol[3] /= denom; meanx = meany = 0.; oldnum = 0; for (my = 0; my < (uint32_t)MBh; my++) for (mx = 0; mx < (uint32_t)MBw; mx++) { const int mbnum = mx + my * MBw; const MACROBLOCK *pMB = &pMBs[mbnum]; const VECTOR mv = pMB->mvs[0]; if (!MBmask[mbnum]) continue; oldnum++; meanx += ABS(( sol[0] + (16*mx+8)*sol[1] + (16*my+8)*sol[2] ) - mv.x ); meany += ABS(( sol[3] - (16*mx+8)*sol[2] + (16*my+8)*sol[1] ) - mv.y ); } if (4*meanx > oldnum) /* better fit than 0.25 is useless */ meanx /= oldnum; else meanx = 0.25; if (4*meany > oldnum) meany /= oldnum; else meany = 0.25; /* fprintf(stderr,"sol = (%8.5f, %8.5f, %8.5f, %8.5f)\n",sol[0],sol[1],sol[2],sol[3]); fprintf(stderr,"meanx = %8.5f meany = %8.5f %d\n",meanx,meany, oldnum); */ num = 0; for (my = 0; my < (uint32_t)MBh; my++) for (mx = 0; mx < (uint32_t)MBw; mx++) { const int mbnum = mx + my * MBw; const MACROBLOCK *pMB = &pMBs[mbnum]; const VECTOR mv = pMB->mvs[0]; if (!MBmask[mbnum]) continue; if ( ( ABS(( sol[0] + (16*mx+8)*sol[1] + (16*my+8)*sol[2] ) - mv.x ) > meanx ) || ( ABS(( sol[3] - (16*mx+8)*sol[2] + (16*my+8)*sol[1] ) - mv.y ) > meany ) ) MBmask[mbnum]=0; else num++; } } while ( (oldnum != num) && (num>=4) ); if (num < 4) { gmc.duv[0].x= gmc.duv[0].y= gmc.duv[1].x= gmc.duv[1].y= gmc.duv[2].x= gmc.duv[2].y=0; } else { gmc.duv[0].x=(int)(sol[0]+0.5); gmc.duv[0].y=(int)(sol[3]+0.5); gmc.duv[1].x=(int)(sol[1]*pParam->width+0.5); gmc.duv[1].y=(int)(-sol[2]*pParam->width+0.5); gmc.duv[2].x=0; gmc.duv[2].y=0; } // fprintf(stderr,"wp1 = ( %4d, %4d) wp2 = ( %4d, %4d) \n", gmc.duv[0].x, gmc.duv[0].y, gmc.duv[1].x, gmc.duv[1].y); free(MBmask); return gmc; } // functions which perform BITS-based search/bitcount static int CountMBBitsInter(SearchData * const Data, const MACROBLOCK * const pMBs, const int x, const int y, const MBParam * const pParam, const uint32_t MotionFlags) { int i, iDirection; int32_t bsad[5]; CheckCandidate = CheckCandidateBits16; if (Data->qpel) { for(i = 0; i < 5; i++) { Data->currentMV[i].x = Data->currentQMV[i].x/2; Data->currentMV[i].y = Data->currentQMV[i].y/2; } Data->qpel_precision = 1; CheckCandidateBits16(Data->currentQMV[0].x, Data->currentQMV[0].y, 255, &iDirection, Data); //checking if this vector is perfect. if it is, we stop. if (Data->temp[0] == 0 && Data->temp[1] == 0 && Data->temp[2] == 0 && Data->temp[3] == 0) return 0; //quick stop if (MotionFlags & (XVID_ME_HALFPELREFINE16_BITS | XVID_ME_EXTSEARCH_BITS)) { //we have to prepare for halfpixel-precision search for(i = 0; i < 5; i++) bsad[i] = Data->iMinSAD[i]; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv); Data->qpel_precision = 0; if (Data->currentQMV->x & 1 || Data->currentQMV->y & 1) CheckCandidateBits16(Data->currentMV[0].x, Data->currentMV[0].y, 255, &iDirection, Data); } } else { // not qpel CheckCandidateBits16(Data->currentMV[0].x, Data->currentMV[0].y, 255, &iDirection, Data); //checking if this vector is perfect. if it is, we stop. if (Data->temp[0] == 0 && Data->temp[1] == 0 && Data->temp[2] == 0 && Data->temp[3] == 0) { return 0; //inter } } if (MotionFlags&XVID_ME_EXTSEARCH_BITS) SquareSearch(Data->currentMV->x, Data->currentMV->y, Data, iDirection); if (MotionFlags&XVID_ME_HALFPELREFINE16_BITS) SubpelRefine(Data); if (Data->qpel) { if (MotionFlags&(XVID_ME_EXTSEARCH_BITS | XVID_ME_HALFPELREFINE16_BITS)) { // there was halfpel-precision search for(i = 0; i < 5; i++) if (bsad[i] > Data->iMinSAD[i]) { Data->currentQMV[i].x = 2 * Data->currentMV[i].x; // we have found a better match Data->currentQMV[i].y = 2 * Data->currentMV[i].y; } // preparing for qpel-precision search Data->qpel_precision = 1; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode, 1, 0); } if (MotionFlags&XVID_ME_QUARTERPELREFINE16_BITS) SubpelRefine(Data); } if (MotionFlags&XVID_ME_CHECKPREDICTION_BITS) { //let's check vector equal to prediction VECTOR * v = Data->qpel ? Data->currentQMV : Data->currentMV; if (!(Data->predMV.x == v->x && Data->predMV.y == v->y)) CheckCandidateBits16(Data->predMV.x, Data->predMV.y, 255, &iDirection, Data); } return Data->iMinSAD[0]; } static int CountMBBitsInter4v(const SearchData * const Data, MACROBLOCK * const pMB, const MACROBLOCK * const pMBs, const int x, const int y, const MBParam * const pParam, const uint32_t MotionFlags, const VECTOR * const backup) { int cbp = 0, bits = 0, t = 0, i, iDirection; SearchData Data2, *Data8 = &Data2; int sumx = 0, sumy = 0; int16_t *in = Data->dctSpace, *coeff = Data->dctSpace + 64; memcpy(Data8, Data, sizeof(SearchData)); CheckCandidate = CheckCandidateBits8; for (i = 0; i < 4; i++) { Data8->iMinSAD = Data->iMinSAD + i + 1; Data8->currentMV = Data->currentMV + i + 1; Data8->currentQMV = Data->currentQMV + i + 1; Data8->Cur = Data->Cur + 8*((i&1) + (i>>1)*Data->iEdgedWidth); Data8->Ref = Data->Ref + 8*((i&1) + (i>>1)*Data->iEdgedWidth); Data8->RefH = Data->RefH + 8*((i&1) + (i>>1)*Data->iEdgedWidth); Data8->RefV = Data->RefV + 8*((i&1) + (i>>1)*Data->iEdgedWidth); Data8->RefHV = Data->RefHV + 8*((i&1) + (i>>1)*Data->iEdgedWidth); if(Data->qpel) { Data8->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, i); if (i != 0) t = d_mv_bits( Data8->currentQMV->x, Data8->currentQMV->y, Data8->predMV, Data8->iFcode, 0, 0); } else { Data8->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, i); if (i != 0) t = d_mv_bits( Data8->currentMV->x, Data8->currentMV->y, Data8->predMV, Data8->iFcode, 0, 0); } get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8, pParam->width, pParam->height, Data8->iFcode, Data8->qpel, 0); *Data8->iMinSAD += t; Data8->qpel_precision = Data8->qpel; // checking the vector which has been found by SAD-based 8x8 search (if it's different than the one found so far) if (Data8->qpel) { if (!(Data8->currentQMV->x == backup[i+1].x && Data8->currentQMV->y == backup[i+1].y)) CheckCandidateBits8(backup[i+1].x, backup[i+1].y, 255, &iDirection, Data8); } else { if (!(Data8->currentMV->x == backup[i+1].x && Data8->currentMV->y == backup[i+1].y)) CheckCandidateBits8(backup[i+1].x, backup[i+1].y, 255, &iDirection, Data8); } if (Data8->qpel) { if (MotionFlags&XVID_ME_HALFPELREFINE8_BITS || (MotionFlags&XVID_ME_EXTSEARCH8 && MotionFlags&XVID_ME_EXTSEARCH_BITS)) { // halfpixel motion search follows int32_t s = *Data8->iMinSAD; Data8->currentMV->x = Data8->currentQMV->x/2; Data8->currentMV->y = Data8->currentQMV->y/2; Data8->qpel_precision = 0; get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8, pParam->width, pParam->height, Data8->iFcode - 1, 0, 0); if (Data8->currentQMV->x & 1 || Data8->currentQMV->y & 1) CheckCandidateBits8(Data8->currentMV->x, Data8->currentMV->y, 255, &iDirection, Data8); if (MotionFlags & XVID_ME_EXTSEARCH8 && MotionFlags & XVID_ME_EXTSEARCH_BITS) SquareSearch(Data8->currentMV->x, Data8->currentMV->x, Data8, 255); if (MotionFlags & XVID_ME_HALFPELREFINE8_BITS) SubpelRefine(Data8); if(s > *Data8->iMinSAD) { //we have found a better match Data8->currentQMV->x = 2*Data8->currentMV->x; Data8->currentQMV->y = 2*Data8->currentMV->y; } Data8->qpel_precision = 1; get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8, pParam->width, pParam->height, Data8->iFcode, 1, 0); } if (MotionFlags & XVID_ME_QUARTERPELREFINE8_BITS) SubpelRefine(Data8); } else // not qpel if (MotionFlags & XVID_ME_HALFPELREFINE8_BITS) SubpelRefine(Data8); //halfpel mode, halfpel refinement //checking vector equal to predicion if (i != 0 && MotionFlags & XVID_ME_CHECKPREDICTION_BITS) { const VECTOR * v = Data->qpel ? Data8->currentQMV : Data8->currentMV; if (!(Data8->predMV.x == v->x && Data8->predMV.y == v->y)) CheckCandidateBits8(Data8->predMV.x, Data8->predMV.y, 255, &iDirection, Data8); } bits += *Data8->iMinSAD; if (bits >= Data->iMinSAD[0]) break; // no chances for INTER4V // MB structures for INTER4V mode; we have to set them here, we don't have predictor anywhere else if(Data->qpel) { pMB->pmvs[i].x = Data8->currentQMV->x - Data8->predMV.x; pMB->pmvs[i].y = Data8->currentQMV->y - Data8->predMV.y; pMB->qmvs[i] = *Data8->currentQMV; sumx += Data8->currentQMV->x/2; sumy += Data8->currentQMV->y/2; } else { pMB->pmvs[i].x = Data8->currentMV->x - Data8->predMV.x; pMB->pmvs[i].y = Data8->currentMV->y - Data8->predMV.y; sumx += Data8->currentMV->x; sumy += Data8->currentMV->y; } pMB->mvs[i] = *Data8->currentMV; pMB->sad8[i] = 4 * *Data8->iMinSAD; if (Data8->temp[0]) cbp |= 1 << (5 - i); } if (bits < *Data->iMinSAD) { // there is still a chance for inter4v mode. let's check chroma const uint8_t * ptr; sumx = (sumx >> 3) + roundtab_76[sumx & 0xf]; sumy = (sumy >> 3) + roundtab_76[sumy & 0xf]; //chroma U ptr = interpolate8x8_switch2(Data->RefQ + 64, Data->RefCU, 0, 0, sumx, sumy, Data->iEdgedWidth/2, Data->rounding); transfer_8to16subro(in, Data->CurU, ptr, Data->iEdgedWidth/2); fdct(in); if (Data->lambda8 == 0) i = quant_inter(coeff, in, Data->lambda16); else i = quant4_inter(coeff, in, Data->lambda16); if (i > 0) { bits += CodeCoeffInter_CalcBits(coeff, scan_tables[0]); cbp |= 1 << (5 - 4); } if (bits < *Data->iMinSAD) { // still possible //chroma V ptr = interpolate8x8_switch2(Data->RefQ + 64, Data->RefCV, 0, 0, sumx, sumy, Data->iEdgedWidth/2, Data->rounding); transfer_8to16subro(in, Data->CurV, ptr, Data->iEdgedWidth/2); fdct(in); if (Data->lambda8 == 0) i = quant_inter(coeff, in, Data->lambda16); else i = quant4_inter(coeff, in, Data->lambda16); if (i > 0) { bits += CodeCoeffInter_CalcBits(coeff, scan_tables[0]); cbp |= 1 << (5 - 5); } bits += xvid_cbpy_tab[15-(cbp>>2)].len; bits += mcbpc_inter_tab[(MODE_INTER4V & 7) | ((cbp & 3) << 3)].len; } } return bits; } static int CountMBBitsIntra(const SearchData * const Data) { int bits = 1; //this one is ac/dc prediction flag. always 1. int cbp = 0, i, t, dc = 0, b_dc = 1024; const uint32_t iQuant = Data->lambda16; int16_t *in = Data->dctSpace, * coeff = Data->dctSpace + 64; for(i = 0; i < 4; i++) { uint32_t iDcScaler = get_dc_scaler(iQuant, 1); int s = 8*((i&1) + (i>>1)*Data->iEdgedWidth); transfer_8to16copy(in, Data->Cur + s, Data->iEdgedWidth); fdct(in); b_dc = dc; dc = in[0]; in[0] -= b_dc; if (Data->lambda8 == 0) quant_intra_c(coeff, in, iQuant, iDcScaler); else quant4_intra_c(coeff, in, iQuant, iDcScaler); b_dc = dc; dc = coeff[0]; if (i != 0) coeff[0] -= b_dc; bits += t = CodeCoeffIntra_CalcBits(coeff, scan_tables[0]) + dcy_tab[coeff[0] + 255].len;; Data->temp[i] = t; if (t != 0) cbp |= 1 << (5 - i); if (bits >= Data->iMinSAD[0]) break; } if (bits < Data->iMinSAD[0]) { // INTRA still looks good, let's add chroma uint32_t iDcScaler = get_dc_scaler(iQuant, 0); //chroma U transfer_8to16copy(in, Data->CurU, Data->iEdgedWidth/2); fdct(in); in[0] -= 1024; if (Data->lambda8 == 0) quant_intra(coeff, in, iQuant, iDcScaler); else quant4_intra(coeff, in, iQuant, iDcScaler); bits += t = CodeCoeffIntra_CalcBits(coeff, scan_tables[0]) + dcc_tab[coeff[0] + 255].len; if (t != 0) cbp |= 1 << (5 - 4); if (bits < Data->iMinSAD[0]) { iDcScaler = get_dc_scaler(iQuant, 1); //chroma V transfer_8to16copy(in, Data->CurV, Data->iEdgedWidth/2); fdct(in); in[0] -= 1024; if (Data->lambda8 == 0) quant_intra(coeff, in, iQuant, iDcScaler); else quant4_intra(coeff, in, iQuant, iDcScaler); bits += t = CodeCoeffIntra_CalcBits(coeff, scan_tables[0]) + dcc_tab[coeff[0] + 255].len; if (t != 0) cbp |= 1 << (5 - 5); bits += xvid_cbpy_tab[cbp>>2].len; bits += mcbpc_inter_tab[(MODE_INTRA & 7) | ((cbp & 3) << 3)].len; } } return bits; }