/************************************************************************** * * Modifications: * * 25.04.2002 partial prevMB conversion * 22.04.2002 remove some compile warning by chenm001 * 14.04.2002 added MotionEstimationBVOP() * 02.04.2002 add EPZS(^2) as ME algorithm, use PMV_USESQUARES to choose between * EPZS and EPZS^2 * 08.02.2002 split up PMVfast into three routines: PMVFast, PMVFast_MainLoop * PMVFast_Refine to support multiple searches with different start points * 07.01.2002 uv-block-based interpolation * 06.01.2002 INTER/INTRA-decision is now done before any SEARCH8 (speedup) * changed INTER_BIAS to 150 (as suggested by suxen_drol) * removed halfpel refinement step in PMVfastSearch8 + quality=5 * added new quality mode = 6 which performs halfpel refinement * filesize difference between quality 5 and 6 is smaller than 1% * (Isibaar) * 31.12.2001 PMVfastSearch16 and PMVfastSearch8 (gruel) * 30.12.2001 get_range/MotionSearchX simplified; blue/green bug fix * 22.12.2001 commented best_point==99 check * 19.12.2001 modified get_range (purple bug fix) * 15.12.2001 moved pmv displacement from mbprediction * 02.12.2001 motion estimation/compensation split (Isibaar) * 16.11.2001 rewrote/tweaked search algorithms; pross@cs.rmit.edu.au * 10.11.2001 support for sad16/sad8 functions * 28.08.2001 reactivated MODE_INTER4V for EXT_MODE * 24.08.2001 removed MODE_INTER4V_Q, disabled MODE_INTER4V for EXT_MODE * 22.08.2001 added MODE_INTER4V_Q * 20.08.2001 added pragma to get rid of internal compiler error with VC6 * idea by Cyril. Thanks. * * Michael Militzer * **************************************************************************/ #include #include #include #include "../encoder.h" #include "../utils/mbfunctions.h" #include "../prediction/mbprediction.h" #include "../global.h" #include "../utils/timer.h" #include "motion.h" #include "sad.h" // very large value #define MV_MAX_ERROR (4096 * 256) // stop search if sdelta < THRESHOLD #define MV16_THRESHOLD 192 #define MV8_THRESHOLD 56 /* sad16(0,0) bias; mpeg4 spec suggests nb/2+1 */ /* nb = vop pixels * 2^(bpp-8) */ #define MV16_00_BIAS (128+1) #define MV8_00_BIAS (0) /* INTER bias for INTER/INTRA decision; mpeg4 spec suggests 2*nb */ #define INTER_BIAS 512 /* Parameters which control inter/inter4v decision */ #define IMV16X16 5 /* vector map (vlc delta size) smoother parameters */ #define NEIGH_TEND_16X16 2 #define NEIGH_TEND_8X8 2 // fast ((A)/2)*2 #define EVEN(A) (((A)<0?(A)+1:(A)) & ~1) int32_t PMVfastSearch16( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const uint32_t iQuant, const uint32_t iFcode, const MBParam * const pParam, const MACROBLOCK * const pMBs, const MACROBLOCK * const prevMBs, VECTOR * const currMV, VECTOR * const currPMV); int32_t EPZSSearch16( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const uint32_t iQuant, const uint32_t iFcode, const MBParam * const pParam, const MACROBLOCK * const pMBs, const MACROBLOCK * const prevMBs, VECTOR * const currMV, VECTOR * const currPMV); int32_t PMVfastSearch8( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const int start_x, const int start_y, const uint32_t MotionFlags, const uint32_t iQuant, const uint32_t iFcode, const MBParam * const pParam, const MACROBLOCK * const pMBs, const MACROBLOCK * const prevMBs, VECTOR * const currMV, VECTOR * const currPMV); int32_t EPZSSearch8( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const int start_x, const int start_y, const uint32_t MotionFlags, const uint32_t iQuant, const uint32_t iFcode, const MBParam * const pParam, const MACROBLOCK * const pMBs, const MACROBLOCK * const prevMBs, VECTOR * const currMV, VECTOR * const currPMV); typedef int32_t (MainSearch16Func)( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const uint8_t * const cur, const int x, const int y, int32_t startx, int32_t starty, int32_t iMinSAD, VECTOR * const currMV, const VECTOR * const pmv, const int32_t min_dx, const int32_t max_dx, const int32_t min_dy, const int32_t max_dy, const int32_t iEdgedWidth, const int32_t iDiamondSize, const int32_t iFcode, const int32_t iQuant, int iFound); typedef MainSearch16Func* MainSearch16FuncPtr; typedef int32_t (MainSearch8Func)( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const uint8_t * const cur, const int x, const int y, int32_t startx, int32_t starty, int32_t iMinSAD, VECTOR * const currMV, const VECTOR * const pmv, const int32_t min_dx, const int32_t max_dx, const int32_t min_dy, const int32_t max_dy, const int32_t iEdgedWidth, const int32_t iDiamondSize, const int32_t iFcode, const int32_t iQuant, int iFound); typedef MainSearch8Func* MainSearch8FuncPtr; static int32_t lambda_vec16[32] = /* rounded values for lambda param for weight of motion bits as in modified H.26L */ { 0 ,(int)(1.00235+0.5), (int)(1.15582+0.5), (int)(1.31976+0.5), (int)(1.49591+0.5), (int)(1.68601+0.5), (int)(1.89187+0.5), (int)(2.11542+0.5), (int)(2.35878+0.5), (int)(2.62429+0.5), (int)(2.91455+0.5), (int)(3.23253+0.5), (int)(3.58158+0.5), (int)(3.96555+0.5), (int)(4.38887+0.5), (int)(4.85673+0.5), (int)(5.37519+0.5), (int)(5.95144+0.5), (int)(6.59408+0.5), (int)(7.31349+0.5), (int)(8.12242+0.5), (int)(9.03669+0.5), (int)(10.0763+0.5), (int)(11.2669+0.5), (int)(12.6426+0.5), (int)(14.2493+0.5), (int)(16.1512+0.5), (int)(18.442+0.5), (int)(21.2656+0.5), (int)(24.8580+0.5), (int)(29.6436+0.5), (int)(36.4949+0.5) }; static int32_t *lambda_vec8 = lambda_vec16; /* same table for INTER and INTER4V for now*/ // mv.length table static const uint32_t mvtab[33] = { 1, 2, 3, 4, 6, 7, 7, 7, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12 }; static __inline uint32_t mv_bits(int32_t component, const uint32_t iFcode) { if (component == 0) return 1; if (component < 0) component = -component; if (iFcode == 1) { if (component > 32) component = 32; return mvtab[component] + 1; } component += (1 << (iFcode - 1)) - 1; component >>= (iFcode - 1); if (component > 32) component = 32; return mvtab[component] + 1 + iFcode - 1; } static __inline uint32_t calc_delta_16(const int32_t dx, const int32_t dy, const uint32_t iFcode, const uint32_t iQuant) { return NEIGH_TEND_16X16 * lambda_vec16[iQuant] * (mv_bits(dx, iFcode) + mv_bits(dy, iFcode)); } static __inline uint32_t calc_delta_8(const int32_t dx, const int32_t dy, const uint32_t iFcode, const uint32_t iQuant) { return NEIGH_TEND_8X8 * lambda_vec8[iQuant] * (mv_bits(dx, iFcode) + mv_bits(dy, iFcode)); } #ifndef SEARCH16 #define SEARCH16 PMVfastSearch16 //#define SEARCH16 FullSearch16 //#define SEARCH16 EPZSSearch16 #endif #ifndef SEARCH8 #define SEARCH8 PMVfastSearch8 //#define SEARCH8 EPZSSearch8 #endif bool MotionEstimation( MBParam * const pParam, FRAMEINFO * const current, FRAMEINFO * const reference, const IMAGE * const pRefH, const IMAGE * const pRefV, const IMAGE * const pRefHV, const uint32_t iLimit) { const uint32_t iWcount = pParam->mb_width; const uint32_t iHcount = pParam->mb_height; MACROBLOCK * pMBs = current->mbs; IMAGE * pCurrent = ¤t->image; MACROBLOCK * prevMBs = reference->mbs; // previous frame IMAGE * pRef = &reference->image; uint32_t i, j, iIntra = 0; VECTOR mv16; VECTOR pmv16; int32_t sad8 = 0; int32_t sad16; int32_t deviation; if (sadInit) (*sadInit)(); /* eventhough we have a seperate prevMBs, pmvfast/epsz does something "funny" with the previous frames data */ /* for (i = 0; i < iHcount; i++) for (j = 0; j < iWcount; j++) { pMBs[j + i * iWcount].mvs[0] = prevMBs[j + i * iWcount].mvs[0]; pMBs[j + i * iWcount].mvs[1] = prevMBs[j + i * iWcount].mvs[1]; pMBs[j + i * iWcount].mvs[2] = prevMBs[j + i * iWcount].mvs[2]; pMBs[j + i * iWcount].mvs[3] = prevMBs[j + i * iWcount].mvs[3]; } */ /*dprintf("*** BEFORE ***"); for (i = 0; i < iHcount; i++) for (j = 0; j < iWcount; j++) { dprintf(" [%i,%i] mode=%i dquant=%i mvs=(%i %i %i %i) sad8=(%i %i %i %i) sad16=(%i)", j,i, pMBs[j + i * iWcount].mode, pMBs[j + i * iWcount].dquant, pMBs[j + i * iWcount].mvs[0], pMBs[j + i * iWcount].mvs[1], pMBs[j + i * iWcount].mvs[2], pMBs[j + i * iWcount].mvs[3], prevMBs[j + i * iWcount].sad8[0], prevMBs[j + i * iWcount].sad8[1], prevMBs[j + i * iWcount].sad8[2], prevMBs[j + i * iWcount].sad8[3], prevMBs[j + i * iWcount].sad16); } */ // note: i==horizontal, j==vertical for (i = 0; i < iHcount; i++) for (j = 0; j < iWcount; j++) { MACROBLOCK *pMB = &pMBs[j + i * iWcount]; MACROBLOCK *prevMB = &prevMBs[j + i * iWcount]; sad16 = SEARCH16(pRef->y, pRefH->y, pRefV->y, pRefHV->y, pCurrent, j, i, current->motion_flags, current->quant, current->fcode, pParam, pMBs, prevMBs, &mv16, &pmv16); pMB->sad16=sad16; /* decide: MODE_INTER or MODE_INTRA if (dev_intra < sad_inter - 2 * nb) use_intra */ deviation = dev16(pCurrent->y + j*16 + i*16*pParam->edged_width, pParam->edged_width); if (deviation < (sad16 - INTER_BIAS)) { pMB->mode = MODE_INTRA; pMB->mvs[0].x = pMB->mvs[1].x = pMB->mvs[2].x = pMB->mvs[3].x = 0; pMB->mvs[0].y = pMB->mvs[1].y = pMB->mvs[2].y = pMB->mvs[3].y = 0; pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = 0; iIntra++; if(iIntra >= iLimit) return 1; continue; } if (current->global_flags & XVID_INTER4V) { pMB->sad8[0] = SEARCH8(pRef->y, pRefH->y, pRefV->y, pRefHV->y, pCurrent, 2 * j, 2 * i, mv16.x, mv16.y, current->motion_flags, current->quant, current->fcode, pParam, pMBs, prevMBs, &pMB->mvs[0], &pMB->pmvs[0]); pMB->sad8[1] = SEARCH8(pRef->y, pRefH->y, pRefV->y, pRefHV->y, pCurrent, 2 * j + 1, 2 * i, mv16.x, mv16.y, current->motion_flags, current->quant, current->fcode, pParam, pMBs, prevMBs, &pMB->mvs[1], &pMB->pmvs[1]); pMB->sad8[2] = SEARCH8(pRef->y, pRefH->y, pRefV->y, pRefHV->y, pCurrent, 2 * j, 2 * i + 1, mv16.x, mv16.y, current->motion_flags, current->quant, current->fcode, pParam, pMBs, prevMBs, &pMB->mvs[2], &pMB->pmvs[2]); pMB->sad8[3] = SEARCH8(pRef->y, pRefH->y, pRefV->y, pRefHV->y, pCurrent, 2 * j + 1, 2 * i + 1, mv16.x, mv16.y, current->motion_flags, current->quant, current->fcode, pParam, pMBs, prevMBs, &pMB->mvs[3], &pMB->pmvs[3]); sad8 = pMB->sad8[0] + pMB->sad8[1] + pMB->sad8[2] + pMB->sad8[3]; } /* decide: MODE_INTER or MODE_INTER4V mpeg4: if (sad8 < sad16 - nb/2+1) use_inter4v */ if (!(current->global_flags & XVID_LUMIMASKING) || pMB->dquant == NO_CHANGE) { if (((current->global_flags & XVID_INTER4V)==0) || (sad16 < (sad8 + (int32_t)(IMV16X16 * current->quant)))) { sad8 = sad16; pMB->mode = MODE_INTER; pMB->mvs[0].x = pMB->mvs[1].x = pMB->mvs[2].x = pMB->mvs[3].x = mv16.x; pMB->mvs[0].y = pMB->mvs[1].y = pMB->mvs[2].y = pMB->mvs[3].y = mv16.y; pMB->pmvs[0].x = pmv16.x; pMB->pmvs[0].y = pmv16.y; } else pMB->mode = MODE_INTER4V; } else { sad8 = sad16; pMB->mode = MODE_INTER; pMB->mvs[0].x = pMB->mvs[1].x = pMB->mvs[2].x = pMB->mvs[3].x = mv16.x; pMB->mvs[0].y = pMB->mvs[1].y = pMB->mvs[2].y = pMB->mvs[3].y = mv16.y; pMB->pmvs[0].x = pmv16.x; pMB->pmvs[0].y = pmv16.y; } } /* dprintf("*** AFTER ***", pMBs[0].b_mvs[0].x); for (i = 0; i < iHcount; i++) for (j = 0; j < iWcount; j++) { dprintf(" [%i,%i] mode=%i dquant=%i mvs=(%i %i %i %i) sad8=(%i %i %i %i) sad16=(%i)", j,i, pMBs[j + i * iWcount].mode, pMBs[j + i * iWcount].dquant, pMBs[j + i * iWcount].mvs[0], pMBs[j + i * iWcount].mvs[1], pMBs[j + i * iWcount].mvs[2], pMBs[j + i * iWcount].mvs[3], pMBs[j + i * iWcount].sad8[0], pMBs[j + i * iWcount].sad8[1], pMBs[j + i * iWcount].sad8[2], pMBs[j + i * iWcount].sad8[3], pMBs[j + i * iWcount].sad16); } */ return 0; } #define MVzero(A) ( ((A).x)==(0) && ((A).y)==(0) ) #define MVequal(A,B) ( ((A).x)==((B).x) && ((A).y)==((B).y) ) #define CHECK_MV16_ZERO {\ if ( (0 <= max_dx) && (0 >= min_dx) \ && (0 <= max_dy) && (0 >= min_dy) ) \ { \ iSAD = sad16( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 16, 0, 0 , iEdgedWidth), iEdgedWidth, MV_MAX_ERROR); \ iSAD += calc_delta_16(-pmv[0].x, -pmv[0].y, (uint8_t)iFcode, iQuant);\ if (iSAD < iMinSAD) \ { iMinSAD=iSAD; currMV->x=0; currMV->y=0; } } \ } #define NOCHECK_MV16_CANDIDATE(X,Y) { \ iSAD = sad16( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 16, X, Y, iEdgedWidth),iEdgedWidth, iMinSAD); \ iSAD += calc_delta_16((X) - pmv[0].x, (Y) - pmv[0].y, (uint8_t)iFcode, iQuant);\ if (iSAD < iMinSAD) \ { iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); } \ } #define CHECK_MV16_CANDIDATE(X,Y) { \ if ( ((X) <= max_dx) && ((X) >= min_dx) \ && ((Y) <= max_dy) && ((Y) >= min_dy) ) \ { \ iSAD = sad16( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 16, X, Y, iEdgedWidth),iEdgedWidth, iMinSAD); \ iSAD += calc_delta_16((X) - pmv[0].x, (Y) - pmv[0].y, (uint8_t)iFcode, iQuant);\ if (iSAD < iMinSAD) \ { iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); } } \ } #define CHECK_MV16_CANDIDATE_DIR(X,Y,D) { \ if ( ((X) <= max_dx) && ((X) >= min_dx) \ && ((Y) <= max_dy) && ((Y) >= min_dy) ) \ { \ iSAD = sad16( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 16, X, Y, iEdgedWidth),iEdgedWidth, iMinSAD); \ iSAD += calc_delta_16((X) - pmv[0].x, (Y) - pmv[0].y, (uint8_t)iFcode, iQuant);\ if (iSAD < iMinSAD) \ { iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); iDirection=(D); } } \ } #define CHECK_MV16_CANDIDATE_FOUND(X,Y,D) { \ if ( ((X) <= max_dx) && ((X) >= min_dx) \ && ((Y) <= max_dy) && ((Y) >= min_dy) ) \ { \ iSAD = sad16( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 16, X, Y, iEdgedWidth),iEdgedWidth, iMinSAD); \ iSAD += calc_delta_16((X) - pmv[0].x, (Y) - pmv[0].y, (uint8_t)iFcode, iQuant);\ if (iSAD < iMinSAD) \ { iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); iDirection=(D); iFound=0; } } \ } #define CHECK_MV8_ZERO {\ iSAD = sad8( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 8, 0, 0 , iEdgedWidth), iEdgedWidth); \ iSAD += calc_delta_8(-pmv[0].x, -pmv[0].y, (uint8_t)iFcode, iQuant);\ if (iSAD < iMinSAD) \ { iMinSAD=iSAD; currMV->x=0; currMV->y=0; } \ } #define NOCHECK_MV8_CANDIDATE(X,Y) \ { \ iSAD = sad8( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 8, (X), (Y), iEdgedWidth),iEdgedWidth); \ iSAD += calc_delta_8((X)-pmv[0].x, (Y)-pmv[0].y, (uint8_t)iFcode, iQuant);\ if (iSAD < iMinSAD) \ { iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); } \ } #define CHECK_MV8_CANDIDATE(X,Y) { \ if ( ((X) <= max_dx) && ((X) >= min_dx) \ && ((Y) <= max_dy) && ((Y) >= min_dy) ) \ { \ iSAD = sad8( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 8, (X), (Y), iEdgedWidth),iEdgedWidth); \ iSAD += calc_delta_8((X)-pmv[0].x, (Y)-pmv[0].y, (uint8_t)iFcode, iQuant);\ if (iSAD < iMinSAD) \ { iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); } } \ } #define CHECK_MV8_CANDIDATE_DIR(X,Y,D) { \ if ( ((X) <= max_dx) && ((X) >= min_dx) \ && ((Y) <= max_dy) && ((Y) >= min_dy) ) \ { \ iSAD = sad8( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 8, (X), (Y), iEdgedWidth),iEdgedWidth); \ iSAD += calc_delta_8((X)-pmv[0].x, (Y)-pmv[0].y, (uint8_t)iFcode, iQuant);\ if (iSAD < iMinSAD) \ { iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); iDirection=(D); } } \ } #define CHECK_MV8_CANDIDATE_FOUND(X,Y,D) { \ if ( ((X) <= max_dx) && ((X) >= min_dx) \ && ((Y) <= max_dy) && ((Y) >= min_dy) ) \ { \ iSAD = sad8( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 8, (X), (Y), iEdgedWidth),iEdgedWidth); \ iSAD += calc_delta_8((X)-pmv[0].x, (Y)-pmv[0].y, (uint8_t)iFcode, iQuant);\ if (iSAD < iMinSAD) \ { iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); iDirection=(D); iFound=0; } } \ } /* too slow and not fully functional at the moment */ /* int32_t ZeroSearch16( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const uint32_t iQuant, const uint32_t iFcode, MBParam * const pParam, const MACROBLOCK * const pMBs, const MACROBLOCK * const prevMBs, VECTOR * const currMV, VECTOR * const currPMV) { const int32_t iEdgedWidth = pParam->edged_width; const uint8_t * cur = pCur->y + x*16 + y*16*iEdgedWidth; int32_t iSAD; int32_t pred_x,pred_y; get_pmv(pMBs, x, y, pParam->mb_width, 0, &pred_x, &pred_y); iSAD = sad16( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 16, 0,0, iEdgedWidth), iEdgedWidth, MV_MAX_ERROR); if (iSAD <= iQuant * 96) iSAD -= MV16_00_BIAS; currMV->x = 0; currMV->y = 0; currPMV->x = -pred_x; currPMV->y = -pred_y; return iSAD; } */ int32_t Diamond16_MainSearch( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const uint8_t * const cur, const int x, const int y, int32_t startx, int32_t starty, int32_t iMinSAD, VECTOR * const currMV, const VECTOR * const pmv, const int32_t min_dx, const int32_t max_dx, const int32_t min_dy, const int32_t max_dy, const int32_t iEdgedWidth, const int32_t iDiamondSize, const int32_t iFcode, const int32_t iQuant, int iFound) { /* Do a diamond search around given starting point, return SAD of best */ int32_t iDirection=0; int32_t iSAD; VECTOR backupMV; backupMV.x = startx; backupMV.y = starty; /* It's one search with full Diamond pattern, and only 3 of 4 for all following diamonds */ CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y,1); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y,2); CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y-iDiamondSize,3); CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y+iDiamondSize,4); if (iDirection) while (!iFound) { iFound = 1; backupMV=*currMV; if ( iDirection != 2) CHECK_MV16_CANDIDATE_FOUND(backupMV.x-iDiamondSize,backupMV.y,1); if ( iDirection != 1) CHECK_MV16_CANDIDATE_FOUND(backupMV.x+iDiamondSize,backupMV.y,2); if ( iDirection != 4) CHECK_MV16_CANDIDATE_FOUND(backupMV.x,backupMV.y-iDiamondSize,3); if ( iDirection != 3) CHECK_MV16_CANDIDATE_FOUND(backupMV.x,backupMV.y+iDiamondSize,4); } else { currMV->x = startx; currMV->y = starty; } return iMinSAD; } int32_t Square16_MainSearch( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const uint8_t * const cur, const int x, const int y, int32_t startx, int32_t starty, int32_t iMinSAD, VECTOR * const currMV, const VECTOR * const pmv, const int32_t min_dx, const int32_t max_dx, const int32_t min_dy, const int32_t max_dy, const int32_t iEdgedWidth, const int32_t iDiamondSize, const int32_t iFcode, const int32_t iQuant, int iFound) { /* Do a square search around given starting point, return SAD of best */ int32_t iDirection=0; int32_t iSAD; VECTOR backupMV; backupMV.x = startx; backupMV.y = starty; /* It's one search with full square pattern, and new parts for all following diamonds */ /* new direction are extra, so 1-4 is normal diamond 537 1*2 648 */ CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y,1); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y,2); CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y-iDiamondSize,3); CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y+iDiamondSize,4); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y-iDiamondSize,5); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y+iDiamondSize,6); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y-iDiamondSize,7); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y+iDiamondSize,8); if (iDirection) while (!iFound) { iFound = 1; backupMV=*currMV; switch (iDirection) { case 1: CHECK_MV16_CANDIDATE_FOUND(backupMV.x-iDiamondSize,backupMV.y,1); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y-iDiamondSize,5); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y-iDiamondSize,7); break; case 2: CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y,2); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y+iDiamondSize,6); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y+iDiamondSize,8); break; case 3: CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y+iDiamondSize,4); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y-iDiamondSize,7); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y+iDiamondSize,8); break; case 4: CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y-iDiamondSize,3); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y-iDiamondSize,5); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y+iDiamondSize,6); break; case 5: CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y,1); CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y-iDiamondSize,3); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y-iDiamondSize,5); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y+iDiamondSize,6); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y-iDiamondSize,7); break; case 6: CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y,2); CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y-iDiamondSize,3); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y-iDiamondSize,5); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y+iDiamondSize,6); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y+iDiamondSize,8); break; case 7: CHECK_MV16_CANDIDATE_FOUND(backupMV.x-iDiamondSize,backupMV.y,1); CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y+iDiamondSize,4); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y-iDiamondSize,5); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y-iDiamondSize,7); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y+iDiamondSize,8); break; case 8: CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y,2); CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y+iDiamondSize,4); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y+iDiamondSize,6); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y-iDiamondSize,7); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y+iDiamondSize,8); break; default: CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y,1); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y,2); CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y-iDiamondSize,3); CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y+iDiamondSize,4); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y-iDiamondSize,5); CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y+iDiamondSize,6); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y-iDiamondSize,7); CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y+iDiamondSize,8); break; } } else { currMV->x = startx; currMV->y = starty; } return iMinSAD; } int32_t Full16_MainSearch( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const uint8_t * const cur, const int x, const int y, int32_t startx, int32_t starty, int32_t iMinSAD, VECTOR * const currMV, const VECTOR * const pmv, const int32_t min_dx, const int32_t max_dx, const int32_t min_dy, const int32_t max_dy, const int32_t iEdgedWidth, const int32_t iDiamondSize, const int32_t iFcode, const int32_t iQuant, int iFound) { int32_t iSAD; int32_t dx,dy; VECTOR backupMV; backupMV.x = startx; backupMV.y = starty; for (dx = min_dx; dx<=max_dx; dx+=iDiamondSize) for (dy = min_dy; dy<= max_dy; dy+=iDiamondSize) NOCHECK_MV16_CANDIDATE(dx,dy); return iMinSAD; } int32_t Full8_MainSearch( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const uint8_t * const cur, const int x, const int y, int32_t startx, int32_t starty, int32_t iMinSAD, VECTOR * const currMV, const VECTOR * const pmv, const int32_t min_dx, const int32_t max_dx, const int32_t min_dy, const int32_t max_dy, const int32_t iEdgedWidth, const int32_t iDiamondSize, const int32_t iFcode, const int32_t iQuant, int iFound) { int32_t iSAD; int32_t dx,dy; VECTOR backupMV; backupMV.x = startx; backupMV.y = starty; for (dx = min_dx; dx<=max_dx; dx+=iDiamondSize) for (dy = min_dy; dy<= max_dy; dy+=iDiamondSize) NOCHECK_MV8_CANDIDATE(dx,dy); return iMinSAD; } int32_t Halfpel16_Refine( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const uint8_t * const cur, const int x, const int y, VECTOR * const currMV, int32_t iMinSAD, const VECTOR * const pmv, const int32_t min_dx, const int32_t max_dx, const int32_t min_dy, const int32_t max_dy, const int32_t iFcode, const int32_t iQuant, const int32_t iEdgedWidth) { /* Do a half-pel refinement (or rather a "smallest possible amount" refinement) */ int32_t iSAD; VECTOR backupMV = *currMV; CHECK_MV16_CANDIDATE(backupMV.x-1,backupMV.y-1); CHECK_MV16_CANDIDATE(backupMV.x ,backupMV.y-1); CHECK_MV16_CANDIDATE(backupMV.x+1,backupMV.y-1); CHECK_MV16_CANDIDATE(backupMV.x-1,backupMV.y); CHECK_MV16_CANDIDATE(backupMV.x+1,backupMV.y); CHECK_MV16_CANDIDATE(backupMV.x-1,backupMV.y+1); CHECK_MV16_CANDIDATE(backupMV.x ,backupMV.y+1); CHECK_MV16_CANDIDATE(backupMV.x+1,backupMV.y+1); return iMinSAD; } #define PMV_HALFPEL16 (PMV_HALFPELDIAMOND16|PMV_HALFPELREFINE16) int32_t PMVfastSearch16( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const uint32_t iQuant, const uint32_t iFcode, const MBParam * const pParam, const MACROBLOCK * const pMBs, const MACROBLOCK * const prevMBs, VECTOR * const currMV, VECTOR * const currPMV) { const uint32_t iWcount = pParam->mb_width; const int32_t iWidth = pParam->width; const int32_t iHeight = pParam->height; const int32_t iEdgedWidth = pParam->edged_width; const uint8_t * cur = pCur->y + x*16 + y*16*iEdgedWidth; int32_t iDiamondSize; int32_t min_dx; int32_t max_dx; int32_t min_dy; int32_t max_dy; int32_t iFound; VECTOR newMV; VECTOR backupMV; /* just for PMVFAST */ VECTOR pmv[4]; int32_t psad[4]; const MACROBLOCK * const pMB = pMBs + x + y * iWcount; const MACROBLOCK * const prevMB = prevMBs + x + y * iWcount; static int32_t threshA,threshB; int32_t bPredEq; int32_t iMinSAD,iSAD; /* Get maximum range */ get_range(&min_dx, &max_dx, &min_dy, &max_dy, x, y, 16, iWidth, iHeight, iFcode); /* we work with abs. MVs, not relative to prediction, so get_range is called relative to 0,0 */ if (!(MotionFlags & PMV_HALFPEL16 )) { min_dx = EVEN(min_dx); max_dx = EVEN(max_dx); min_dy = EVEN(min_dy); max_dy = EVEN(max_dy); } /* because we might use something like IF (dx>max_dx) THEN dx=max_dx; */ bPredEq = get_pmvdata(pMBs, x, y, iWcount, 0, pmv, psad); if ((x==0) && (y==0) ) { threshA = 512; threshB = 1024; } else { threshA = psad[0]; threshB = threshA+256; if (threshA< 512) threshA = 512; if (threshA>1024) threshA = 1024; if (threshB>1792) threshB = 1792; } iFound=0; /* Step 2: Calculate Distance= |MedianMVX| + |MedianMVY| where MedianMV is the motion vector of the median. If PredEq=1 and MVpredicted = Previous Frame MV, set Found=2 */ if ((bPredEq) && (MVequal(pmv[0],prevMB->mvs[0]) ) ) iFound=2; /* Step 3: If Distance>0 or thresb<1536 or PredEq=1 Select small Diamond Search. Otherwise select large Diamond Search. */ if ( (pmv[0].x != 0) || (pmv[0].y != 0) || (threshB<1536) || (bPredEq) ) iDiamondSize=1; // halfpel! else iDiamondSize=2; // halfpel! if (!(MotionFlags & PMV_HALFPELDIAMOND16) ) iDiamondSize*=2; /* Step 4: Calculate SAD around the Median prediction. MinSAD=SAD If Motion Vector equal to Previous frame motion vector and MinSADx = EVEN(currMV->x); currMV->y = EVEN(currMV->y); } if (currMV->x > max_dx) { currMV->x=max_dx; } if (currMV->x < min_dx) { currMV->x=min_dx; } if (currMV->y > max_dy) { currMV->y=max_dy; } if (currMV->y < min_dy) { currMV->y=min_dy; } iMinSAD = sad16( cur, get_ref_mv(pRef, pRefH, pRefV, pRefHV, x, y, 16, currMV, iEdgedWidth), iEdgedWidth, MV_MAX_ERROR); iMinSAD += calc_delta_16(currMV->x-pmv[0].x, currMV->y-pmv[0].y, (uint8_t)iFcode, iQuant); if ( (iMinSAD < 256 ) || ( (MVequal(*currMV,prevMB->mvs[0])) && ((uint32_t)iMinSAD < prevMB->sad16) ) ) { if (MotionFlags & PMV_QUICKSTOP16) goto PMVfast16_Terminate_without_Refine; if (MotionFlags & PMV_EARLYSTOP16) goto PMVfast16_Terminate_with_Refine; } /* Step 5: Calculate SAD for motion vectors taken from left block, top, top-right, and Previous frame block. Also calculate (0,0) but do not subtract offset. Let MinSAD be the smallest SAD up to this point. If MV is (0,0) subtract offset. */ // (0,0) is always possible CHECK_MV16_ZERO; // previous frame MV is always possible CHECK_MV16_CANDIDATE(prevMB->mvs[0].x,prevMB->mvs[0].y); // left neighbour, if allowed if (x != 0) { if (!(MotionFlags & PMV_HALFPEL16 )) { pmv[1].x = EVEN(pmv[1].x); pmv[1].y = EVEN(pmv[1].y); } CHECK_MV16_CANDIDATE(pmv[1].x,pmv[1].y); } // top neighbour, if allowed if (y != 0) { if (!(MotionFlags & PMV_HALFPEL16 )) { pmv[2].x = EVEN(pmv[2].x); pmv[2].y = EVEN(pmv[2].y); } CHECK_MV16_CANDIDATE(pmv[2].x,pmv[2].y); // top right neighbour, if allowed if ((uint32_t)x != (iWcount-1)) { if (!(MotionFlags & PMV_HALFPEL16 )) { pmv[3].x = EVEN(pmv[3].x); pmv[3].y = EVEN(pmv[3].y); } CHECK_MV16_CANDIDATE(pmv[3].x,pmv[3].y); } } if ( (MVzero(*currMV)) && (!MVzero(pmv[0])) /* && (iMinSAD <= iQuant * 96)*/ ) iMinSAD -= MV16_00_BIAS; /* Step 6: If MinSAD <= thresa goto Step 10. If Motion Vector equal to Previous frame motion vector and MinSADmvs[0]) && ((uint32_t)iMinSAD < prevMB->sad16) ) ) { if (MotionFlags & PMV_QUICKSTOP16) goto PMVfast16_Terminate_without_Refine; if (MotionFlags & PMV_EARLYSTOP16) goto PMVfast16_Terminate_with_Refine; } /************ (Diamond Search) **************/ /* Step 7: Perform Diamond search, with either the small or large diamond. If Found=2 only examine one Diamond pattern, and afterwards goto step 10 Step 8: If small diamond, iterate small diamond search pattern until motion vector lies in the center of the diamond. If center then goto step 10. Step 9: If large diamond, iterate large diamond search pattern until motion vector lies in the center. Refine by using small diamond and goto step 10. */ backupMV = *currMV; /* save best prediction, actually only for EXTSEARCH */ /* default: use best prediction as starting point for one call of PMVfast_MainSearch */ iSAD = Diamond16_MainSearch(pRef, pRefH, pRefV, pRefHV, cur, x, y, currMV->x, currMV->y, iMinSAD, &newMV, pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, iFound); if (iSAD < iMinSAD) { *currMV = newMV; iMinSAD = iSAD; } if (MotionFlags & PMV_EXTSEARCH16) { /* extended: search (up to) two more times: orignal prediction and (0,0) */ if (!(MVequal(pmv[0],backupMV)) ) { iSAD = Diamond16_MainSearch(pRef, pRefH, pRefV, pRefHV, cur, x, y, pmv[0].x, pmv[0].y, iMinSAD, &newMV, pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, iFound); if (iSAD < iMinSAD) { *currMV = newMV; iMinSAD = iSAD; } } if ( (!(MVzero(pmv[0]))) && (!(MVzero(backupMV))) ) { iSAD = Diamond16_MainSearch(pRef, pRefH, pRefV, pRefHV, cur, x, y, 0, 0, iMinSAD, &newMV, pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, iFound); if (iSAD < iMinSAD) { *currMV = newMV; iMinSAD = iSAD; } } } /* Step 10: The motion vector is chosen according to the block corresponding to MinSAD. */ PMVfast16_Terminate_with_Refine: if (MotionFlags & PMV_HALFPELREFINE16) // perform final half-pel step iMinSAD = Halfpel16_Refine( pRef, pRefH, pRefV, pRefHV, cur, x, y, currMV, iMinSAD, pmv, min_dx, max_dx, min_dy, max_dy, iFcode, iQuant, iEdgedWidth); PMVfast16_Terminate_without_Refine: currPMV->x = currMV->x - pmv[0].x; currPMV->y = currMV->y - pmv[0].y; return iMinSAD; } int32_t Diamond8_MainSearch( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const uint8_t * const cur, const int x, const int y, int32_t startx, int32_t starty, int32_t iMinSAD, VECTOR * const currMV, const VECTOR * const pmv, const int32_t min_dx, const int32_t max_dx, const int32_t min_dy, const int32_t max_dy, const int32_t iEdgedWidth, const int32_t iDiamondSize, const int32_t iFcode, const int32_t iQuant, int iFound) { /* Do a diamond search around given starting point, return SAD of best */ int32_t iDirection=0; int32_t iSAD; VECTOR backupMV; backupMV.x = startx; backupMV.y = starty; /* It's one search with full Diamond pattern, and only 3 of 4 for all following diamonds */ CHECK_MV8_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y,1); CHECK_MV8_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y,2); CHECK_MV8_CANDIDATE_DIR(backupMV.x,backupMV.y-iDiamondSize,3); CHECK_MV8_CANDIDATE_DIR(backupMV.x,backupMV.y+iDiamondSize,4); if (iDirection) while (!iFound) { iFound = 1; backupMV=*currMV; // since iDirection!=0, this is well defined! if ( iDirection != 2) CHECK_MV8_CANDIDATE_FOUND(backupMV.x-iDiamondSize,backupMV.y,1); if ( iDirection != 1) CHECK_MV8_CANDIDATE_FOUND(backupMV.x+iDiamondSize,backupMV.y,2); if ( iDirection != 4) CHECK_MV8_CANDIDATE_FOUND(backupMV.x,backupMV.y-iDiamondSize,3); if ( iDirection != 3) CHECK_MV8_CANDIDATE_FOUND(backupMV.x,backupMV.y+iDiamondSize,4); } else { currMV->x = startx; currMV->y = starty; } return iMinSAD; } int32_t Halfpel8_Refine( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const uint8_t * const cur, const int x, const int y, VECTOR * const currMV, int32_t iMinSAD, const VECTOR * const pmv, const int32_t min_dx, const int32_t max_dx, const int32_t min_dy, const int32_t max_dy, const int32_t iFcode, const int32_t iQuant, const int32_t iEdgedWidth) { /* Do a half-pel refinement (or rather a "smallest possible amount" refinement) */ int32_t iSAD; VECTOR backupMV = *currMV; CHECK_MV8_CANDIDATE(backupMV.x-1,backupMV.y-1); CHECK_MV8_CANDIDATE(backupMV.x ,backupMV.y-1); CHECK_MV8_CANDIDATE(backupMV.x+1,backupMV.y-1); CHECK_MV8_CANDIDATE(backupMV.x-1,backupMV.y); CHECK_MV8_CANDIDATE(backupMV.x+1,backupMV.y); CHECK_MV8_CANDIDATE(backupMV.x-1,backupMV.y+1); CHECK_MV8_CANDIDATE(backupMV.x ,backupMV.y+1); CHECK_MV8_CANDIDATE(backupMV.x+1,backupMV.y+1); return iMinSAD; } #define PMV_HALFPEL8 (PMV_HALFPELDIAMOND8|PMV_HALFPELREFINE8) int32_t PMVfastSearch8( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const int start_x, const int start_y, const uint32_t MotionFlags, const uint32_t iQuant, const uint32_t iFcode, const MBParam * const pParam, const MACROBLOCK * const pMBs, const MACROBLOCK * const prevMBs, VECTOR * const currMV, VECTOR * const currPMV) { const uint32_t iWcount = pParam->mb_width; const int32_t iWidth = pParam->width; const int32_t iHeight = pParam->height; const int32_t iEdgedWidth = pParam->edged_width; const uint8_t * cur = pCur->y + x*8 + y*8*iEdgedWidth; int32_t iDiamondSize; int32_t min_dx; int32_t max_dx; int32_t min_dy; int32_t max_dy; VECTOR pmv[4]; int32_t psad[4]; VECTOR newMV; VECTOR backupMV; const MACROBLOCK * const pMB = pMBs + (x>>1) + (y>>1) * iWcount; const MACROBLOCK * const prevMB = prevMBs + (x>>1) + (y>>1) * iWcount; static int32_t threshA,threshB; int32_t iFound,bPredEq; int32_t iMinSAD,iSAD; int32_t iSubBlock = ((y&1)<<1) + (x&1); /* Get maximum range */ get_range(&min_dx, &max_dx, &min_dy, &max_dy, x, y, 8, iWidth, iHeight, iFcode); if (!(MotionFlags & PMV_HALFPELDIAMOND8 )) { min_dx = EVEN(min_dx); max_dx = EVEN(max_dx); min_dy = EVEN(min_dy); max_dy = EVEN(max_dy); } /* because we might use IF (dx>max_dx) THEN dx=max_dx; */ bPredEq = get_pmvdata(pMBs, (x>>1), (y>>1), iWcount, iSubBlock, pmv, psad); if ((x==0) && (y==0) ) { threshA = 512/4; threshB = 1024/4; } else { threshA = psad[0]/4; /* good estimate */ threshB = threshA+256/4; if (threshA< 512/4) threshA = 512/4; if (threshA>1024/4) threshA = 1024/4; if (threshB>1792/4) threshB = 1792/4; } iFound=0; /* Step 2: Calculate Distance= |MedianMVX| + |MedianMVY| where MedianMV is the motion vector of the median. If PredEq=1 and MVpredicted = Previous Frame MV, set Found=2 */ if ((bPredEq) && (MVequal(pmv[0],prevMB->mvs[iSubBlock]) ) ) iFound=2; /* Step 3: If Distance>0 or thresb<1536 or PredEq=1 Select small Diamond Search. Otherwise select large Diamond Search. */ if ( (pmv[0].x != 0) || (pmv[0].y != 0) || (threshB<1536/4) || (bPredEq) ) iDiamondSize=1; // 1 halfpel! else iDiamondSize=2; // 2 halfpel = 1 full pixel! if (!(MotionFlags & PMV_HALFPELDIAMOND8) ) iDiamondSize*=2; /* Step 4: Calculate SAD around the Median prediction. MinSAD=SAD If Motion Vector equal to Previous frame motion vector and MinSADx=start_x; /* start with mv16 */ currMV->y=start_y; iMinSAD = sad8( cur, get_ref_mv(pRef, pRefH, pRefV, pRefHV, x, y, 8, currMV, iEdgedWidth), iEdgedWidth); iMinSAD += calc_delta_8(currMV->x - pmv[0].x, currMV->y - pmv[0].y, (uint8_t)iFcode, iQuant); if ( (iMinSAD < 256/4 ) || ( (MVequal(*currMV,prevMB->mvs[iSubBlock])) && ((uint32_t)iMinSAD < prevMB->sad8[iSubBlock]) ) ) { if (MotionFlags & PMV_QUICKSTOP16) goto PMVfast8_Terminate_without_Refine; if (MotionFlags & PMV_EARLYSTOP16) goto PMVfast8_Terminate_with_Refine; } /* Step 5: Calculate SAD for motion vectors taken from left block, top, top-right, and Previous frame block. Also calculate (0,0) but do not subtract offset. Let MinSAD be the smallest SAD up to this point. If MV is (0,0) subtract offset. */ // the prediction might be even better than mv16 CHECK_MV8_CANDIDATE(pmv[0].x,pmv[0].y); // (0,0) is always possible CHECK_MV8_ZERO; // previous frame MV is always possible CHECK_MV8_CANDIDATE(prevMB->mvs[iSubBlock].x,prevMB->mvs[iSubBlock].y); // left neighbour, if allowed if (psad[1] != MV_MAX_ERROR) { if (!(MotionFlags & PMV_HALFPEL8 )) { pmv[1].x = EVEN(pmv[1].x); pmv[1].y = EVEN(pmv[1].y); } CHECK_MV8_CANDIDATE(pmv[1].x,pmv[1].y); } // top neighbour, if allowed if (psad[2] != MV_MAX_ERROR) { if (!(MotionFlags & PMV_HALFPEL8 )) { pmv[2].x = EVEN(pmv[2].x); pmv[2].y = EVEN(pmv[2].y); } CHECK_MV8_CANDIDATE(pmv[2].x,pmv[2].y); // top right neighbour, if allowed if (psad[3] != MV_MAX_ERROR) { if (!(MotionFlags & PMV_HALFPEL8 )) { pmv[3].x = EVEN(pmv[3].x); pmv[3].y = EVEN(pmv[3].y); } CHECK_MV8_CANDIDATE(pmv[3].x,pmv[3].y); } } if ( (MVzero(*currMV)) && (!MVzero(pmv[0])) /* && (iMinSAD <= iQuant * 96) */ ) iMinSAD -= MV8_00_BIAS; /* Step 6: If MinSAD <= thresa goto Step 10. If Motion Vector equal to Previous frame motion vector and MinSADmvs[iSubBlock]) && ((uint32_t)iMinSAD < prevMB->sad8[iSubBlock]) ) ) { if (MotionFlags & PMV_QUICKSTOP16) goto PMVfast8_Terminate_without_Refine; if (MotionFlags & PMV_EARLYSTOP16) goto PMVfast8_Terminate_with_Refine; } /************ (Diamond Search) **************/ /* Step 7: Perform Diamond search, with either the small or large diamond. If Found=2 only examine one Diamond pattern, and afterwards goto step 10 Step 8: If small diamond, iterate small diamond search pattern until motion vector lies in the center of the diamond. If center then goto step 10. Step 9: If large diamond, iterate large diamond search pattern until motion vector lies in the center. Refine by using small diamond and goto step 10. */ backupMV = *currMV; /* save best prediction, actually only for EXTSEARCH */ /* default: use best prediction as starting point for one call of PMVfast_MainSearch */ iSAD = Diamond8_MainSearch(pRef, pRefH, pRefV, pRefHV, cur, x, y, currMV->x, currMV->y, iMinSAD, &newMV, pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, iFound); if (iSAD < iMinSAD) { *currMV = newMV; iMinSAD = iSAD; } if (MotionFlags & PMV_EXTSEARCH8) { /* extended: search (up to) two more times: orignal prediction and (0,0) */ if (!(MVequal(pmv[0],backupMV)) ) { iSAD = Diamond16_MainSearch(pRef, pRefH, pRefV, pRefHV, cur, x, y, pmv[0].x, pmv[0].y, iMinSAD, &newMV, pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, iFound); if (iSAD < iMinSAD) { *currMV = newMV; iMinSAD = iSAD; } } if ( (!(MVzero(pmv[0]))) && (!(MVzero(backupMV))) ) { iSAD = Diamond16_MainSearch(pRef, pRefH, pRefV, pRefHV, cur, x, y, 0, 0, iMinSAD, &newMV, pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, iFound); if (iSAD < iMinSAD) { *currMV = newMV; iMinSAD = iSAD; } } } /* Step 10: The motion vector is chosen according to the block corresponding to MinSAD. By performing an optional local half-pixel search, we can refine this result even further. */ PMVfast8_Terminate_with_Refine: if (MotionFlags & PMV_HALFPELREFINE8) // perform final half-pel step iMinSAD = Halfpel8_Refine( pRef, pRefH, pRefV, pRefHV, cur, x, y, currMV, iMinSAD, pmv, min_dx, max_dx, min_dy, max_dy, iFcode, iQuant, iEdgedWidth); PMVfast8_Terminate_without_Refine: currPMV->x = currMV->x - pmv[0].x; currPMV->y = currMV->y - pmv[0].y; return iMinSAD; } int32_t EPZSSearch16( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const uint32_t iQuant, const uint32_t iFcode, const MBParam * const pParam, const MACROBLOCK * const pMBs, const MACROBLOCK * const prevMBs, VECTOR * const currMV, VECTOR * const currPMV) { const uint32_t iWcount = pParam->mb_width; const uint32_t iHcount = pParam->mb_height; const int32_t iWidth = pParam->width; const int32_t iHeight = pParam->height; const int32_t iEdgedWidth = pParam->edged_width; const uint8_t * cur = pCur->y + x*16 + y*16*iEdgedWidth; int32_t min_dx; int32_t max_dx; int32_t min_dy; int32_t max_dy; VECTOR newMV; VECTOR backupMV; VECTOR pmv[4]; int32_t psad[8]; static MACROBLOCK * oldMBs = NULL; const MACROBLOCK * const pMB = pMBs + x + y * iWcount; const MACROBLOCK * const prevMB = prevMBs + x + y * iWcount; MACROBLOCK * oldMB = NULL; static int32_t thresh2; int32_t bPredEq; int32_t iMinSAD,iSAD=9999; MainSearch16FuncPtr EPZSMainSearchPtr; if (oldMBs == NULL) { oldMBs = (MACROBLOCK*) calloc(iWcount*iHcount,sizeof(MACROBLOCK)); // fprintf(stderr,"allocated %d bytes for oldMBs\n",iWcount*iHcount*sizeof(MACROBLOCK)); } oldMB = oldMBs + x + y * iWcount; /* Get maximum range */ get_range(&min_dx, &max_dx, &min_dy, &max_dy, x, y, 16, iWidth, iHeight, iFcode); if (!(MotionFlags & PMV_HALFPEL16 )) { min_dx = EVEN(min_dx); max_dx = EVEN(max_dx); min_dy = EVEN(min_dy); max_dy = EVEN(max_dy); } /* because we might use something like IF (dx>max_dx) THEN dx=max_dx; */ bPredEq = get_pmvdata(pMBs, x, y, iWcount, 0, pmv, psad); /* Step 4: Calculate SAD around the Median prediction. MinSAD=SAD If Motion Vector equal to Previous frame motion vector and MinSADx = EVEN(currMV->x); currMV->y = EVEN(currMV->y); } if (currMV->x > max_dx) currMV->x=max_dx; if (currMV->x < min_dx) currMV->x=min_dx; if (currMV->y > max_dy) currMV->y=max_dy; if (currMV->y < min_dy) currMV->y=min_dy; /***************** This is predictor SET A: only median prediction ******************/ iMinSAD = sad16( cur, get_ref_mv(pRef, pRefH, pRefV, pRefHV, x, y, 16, currMV, iEdgedWidth), iEdgedWidth, MV_MAX_ERROR); iMinSAD += calc_delta_16(currMV->x-pmv[0].x, currMV->y-pmv[0].y, (uint8_t)iFcode, iQuant); // thresh1 is fixed to 256 if ( (iMinSAD < 256 ) || ( (MVequal(*currMV, prevMB->mvs[0])) && ((uint32_t)iMinSAD < prevMB->sad16) ) ) { if (MotionFlags & PMV_QUICKSTOP16) goto EPZS16_Terminate_without_Refine; if (MotionFlags & PMV_EARLYSTOP16) goto EPZS16_Terminate_with_Refine; } /************** This is predictor SET B: (0,0), prev.frame MV, neighbours **************/ // previous frame MV CHECK_MV16_CANDIDATE(prevMB->mvs[0].x,prevMB->mvs[0].y); // set threshhold based on Min of Prediction and SAD of collocated block // CHECK_MV16 always uses iSAD for the SAD of last vector to check, so now iSAD is what we want if ((x==0) && (y==0) ) { thresh2 = 512; } else { /* T_k = 1.2 * MIN(SAD_top,SAD_left,SAD_topleft,SAD_coll) +128; [Tourapis, 2002] */ thresh2 = MIN(psad[0],iSAD)*6/5 + 128; } // MV=(0,0) is often a good choice CHECK_MV16_ZERO; // left neighbour, if allowed if (x != 0) { if (!(MotionFlags & PMV_HALFPEL16 )) { pmv[1].x = EVEN(pmv[1].x); pmv[1].y = EVEN(pmv[1].y); } CHECK_MV16_CANDIDATE(pmv[1].x,pmv[1].y); } // top neighbour, if allowed if (y != 0) { if (!(MotionFlags & PMV_HALFPEL16 )) { pmv[2].x = EVEN(pmv[2].x); pmv[2].y = EVEN(pmv[2].y); } CHECK_MV16_CANDIDATE(pmv[2].x,pmv[2].y); // top right neighbour, if allowed if ((uint32_t)x != (iWcount-1)) { if (!(MotionFlags & PMV_HALFPEL16 )) { pmv[3].x = EVEN(pmv[3].x); pmv[3].y = EVEN(pmv[3].y); } CHECK_MV16_CANDIDATE(pmv[3].x,pmv[3].y); } } /* Terminate if MinSAD <= T_2 Terminate if MV[t] == MV[t-1] and MinSAD[t] <= MinSAD[t-1] */ if ( (iMinSAD <= thresh2) || ( MVequal(*currMV,prevMB->mvs[0]) && ((uint32_t)iMinSAD <= prevMB->sad16) ) ) { if (MotionFlags & PMV_QUICKSTOP16) goto EPZS16_Terminate_without_Refine; if (MotionFlags & PMV_EARLYSTOP16) goto EPZS16_Terminate_with_Refine; } /***** predictor SET C: acceleration MV (new!), neighbours in prev. frame(new!) ****/ backupMV = prevMB->mvs[0]; // collocated MV backupMV.x += (prevMB->mvs[0].x - oldMB->mvs[0].x ); // acceleration X backupMV.y += (prevMB->mvs[0].y - oldMB->mvs[0].y ); // acceleration Y CHECK_MV16_CANDIDATE(backupMV.x,backupMV.y); // left neighbour if (x != 0) CHECK_MV16_CANDIDATE((prevMB-1)->mvs[0].x,(prevMB-1)->mvs[0].y); // top neighbour if (y != 0) CHECK_MV16_CANDIDATE((prevMB-iWcount)->mvs[0].x,(prevMB-iWcount)->mvs[0].y); // right neighbour, if allowed (this value is not written yet, so take it from pMB->mvs if ((uint32_t)x != iWcount-1) CHECK_MV16_CANDIDATE((prevMB+1)->mvs[0].x,(prevMB+1)->mvs[0].y); // bottom neighbour, dito if ((uint32_t)y != iHcount-1) CHECK_MV16_CANDIDATE((prevMB+iWcount)->mvs[0].x,(prevMB+iWcount)->mvs[0].y); /* Terminate if MinSAD <= T_3 (here T_3 = T_2) */ if (iMinSAD <= thresh2) { if (MotionFlags & PMV_QUICKSTOP16) goto EPZS16_Terminate_without_Refine; if (MotionFlags & PMV_EARLYSTOP16) goto EPZS16_Terminate_with_Refine; } /************ (if Diamond Search) **************/ backupMV = *currMV; /* save best prediction, actually only for EXTSEARCH */ /* default: use best prediction as starting point for one call of PMVfast_MainSearch */ if (MotionFlags & PMV_USESQUARES16) EPZSMainSearchPtr = Square16_MainSearch; else EPZSMainSearchPtr = Diamond16_MainSearch; iSAD = (*EPZSMainSearchPtr)(pRef, pRefH, pRefV, pRefHV, cur, x, y, currMV->x, currMV->y, iMinSAD, &newMV, pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, 2, iFcode, iQuant, 0); if (iSAD < iMinSAD) { *currMV = newMV; iMinSAD = iSAD; } if (MotionFlags & PMV_EXTSEARCH16) { /* extended mode: search (up to) two more times: orignal prediction and (0,0) */ if (!(MVequal(pmv[0],backupMV)) ) { iSAD = (*EPZSMainSearchPtr)(pRef, pRefH, pRefV, pRefHV, cur, x, y, pmv[0].x, pmv[0].y, iMinSAD, &newMV, pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, 2, iFcode, iQuant, 0); } if (iSAD < iMinSAD) { *currMV = newMV; iMinSAD = iSAD; } if ( (!(MVzero(pmv[0]))) && (!(MVzero(backupMV))) ) { iSAD = (*EPZSMainSearchPtr)(pRef, pRefH, pRefV, pRefHV, cur, x, y, 0, 0, iMinSAD, &newMV, pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, 2, iFcode, iQuant, 0); if (iSAD < iMinSAD) { *currMV = newMV; iMinSAD = iSAD; } } } /*************** Choose best MV found **************/ EPZS16_Terminate_with_Refine: if (MotionFlags & PMV_HALFPELREFINE16) // perform final half-pel step iMinSAD = Halfpel16_Refine( pRef, pRefH, pRefV, pRefHV, cur, x, y, currMV, iMinSAD, pmv, min_dx, max_dx, min_dy, max_dy, iFcode, iQuant, iEdgedWidth); EPZS16_Terminate_without_Refine: *oldMB = *prevMB; currPMV->x = currMV->x - pmv[0].x; currPMV->y = currMV->y - pmv[0].y; return iMinSAD; } int32_t EPZSSearch8( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const int start_x, const int start_y, const uint32_t MotionFlags, const uint32_t iQuant, const uint32_t iFcode, const MBParam * const pParam, const MACROBLOCK * const pMBs, const MACROBLOCK * const prevMBs, VECTOR * const currMV, VECTOR * const currPMV) { /* Please not that EPZS might not be a good choice for 8x8-block motion search ! */ const uint32_t iWcount = pParam->mb_width; const int32_t iWidth = pParam->width; const int32_t iHeight = pParam->height; const int32_t iEdgedWidth = pParam->edged_width; const uint8_t * cur = pCur->y + x*8 + y*8*iEdgedWidth; int32_t iDiamondSize=1; int32_t min_dx; int32_t max_dx; int32_t min_dy; int32_t max_dy; VECTOR newMV; VECTOR backupMV; VECTOR pmv[4]; int32_t psad[8]; const int32_t iSubBlock = ((y&1)<<1) + (x&1); const MACROBLOCK * const pMB = pMBs + (x>>1) + (y>>1) * iWcount; const MACROBLOCK * const prevMB = prevMBs + (x>>1) + (y>>1) * iWcount; int32_t bPredEq; int32_t iMinSAD,iSAD=9999; MainSearch8FuncPtr EPZSMainSearchPtr; /* Get maximum range */ get_range(&min_dx, &max_dx, &min_dy, &max_dy, x, y, 8, iWidth, iHeight, iFcode); /* we work with abs. MVs, not relative to prediction, so get_range is called relative to 0,0 */ if (!(MotionFlags & PMV_HALFPEL8 )) { min_dx = EVEN(min_dx); max_dx = EVEN(max_dx); min_dy = EVEN(min_dy); max_dy = EVEN(max_dy); } /* because we might use something like IF (dx>max_dx) THEN dx=max_dx; */ bPredEq = get_pmvdata(pMBs, x>>1, y>>1, iWcount, iSubBlock, pmv, psad); /* Step 4: Calculate SAD around the Median prediction. MinSAD=SAD If Motion Vector equal to Previous frame motion vector and MinSADx = EVEN(currMV->x); currMV->y = EVEN(currMV->y); } if (currMV->x > max_dx) currMV->x=max_dx; if (currMV->x < min_dx) currMV->x=min_dx; if (currMV->y > max_dy) currMV->y=max_dy; if (currMV->y < min_dy) currMV->y=min_dy; /***************** This is predictor SET A: only median prediction ******************/ iMinSAD = sad8( cur, get_ref_mv(pRef, pRefH, pRefV, pRefHV, x, y, 8, currMV, iEdgedWidth), iEdgedWidth); iMinSAD += calc_delta_8(currMV->x-pmv[0].x, currMV->y-pmv[0].y, (uint8_t)iFcode, iQuant); // thresh1 is fixed to 256 if (iMinSAD < 256/4 ) { if (MotionFlags & PMV_QUICKSTOP8) goto EPZS8_Terminate_without_Refine; if (MotionFlags & PMV_EARLYSTOP8) goto EPZS8_Terminate_with_Refine; } /************** This is predictor SET B: (0,0), prev.frame MV, neighbours **************/ // MV=(0,0) is often a good choice CHECK_MV8_ZERO; // previous frame MV CHECK_MV8_CANDIDATE(prevMB->mvs[iSubBlock].x,prevMB->mvs[iSubBlock].y); // left neighbour, if allowed if (psad[1] != MV_MAX_ERROR) { if (!(MotionFlags & PMV_HALFPEL8 )) { pmv[1].x = EVEN(pmv[1].x); pmv[1].y = EVEN(pmv[1].y); } CHECK_MV8_CANDIDATE(pmv[1].x,pmv[1].y); } // top neighbour, if allowed if (psad[2] != MV_MAX_ERROR) { if (!(MotionFlags & PMV_HALFPEL8 )) { pmv[2].x = EVEN(pmv[2].x); pmv[2].y = EVEN(pmv[2].y); } CHECK_MV8_CANDIDATE(pmv[2].x,pmv[2].y); // top right neighbour, if allowed if (psad[3] != MV_MAX_ERROR) { if (!(MotionFlags & PMV_HALFPEL8 )) { pmv[3].x = EVEN(pmv[3].x); pmv[3].y = EVEN(pmv[3].y); } CHECK_MV8_CANDIDATE(pmv[3].x,pmv[3].y); } } /* // this bias is zero anyway, at the moment! if ( (MVzero(*currMV)) && (!MVzero(pmv[0])) ) // && (iMinSAD <= iQuant * 96) iMinSAD -= MV8_00_BIAS; */ /* Terminate if MinSAD <= T_2 Terminate if MV[t] == MV[t-1] and MinSAD[t] <= MinSAD[t-1] */ if (iMinSAD < 512/4) /* T_2 == 512/4 hardcoded */ { if (MotionFlags & PMV_QUICKSTOP8) goto EPZS8_Terminate_without_Refine; if (MotionFlags & PMV_EARLYSTOP8) goto EPZS8_Terminate_with_Refine; } /************ (Diamond Search) **************/ backupMV = *currMV; /* save best prediction, actually only for EXTSEARCH */ if (!(MotionFlags & PMV_HALFPELDIAMOND8)) iDiamondSize *= 2; /* default: use best prediction as starting point for one call of EPZS_MainSearch */ /* // there is no EPZS^2 for inter4v at the moment if (MotionFlags & PMV_USESQUARES8) EPZSMainSearchPtr = Square8_MainSearch; else */ EPZSMainSearchPtr = Diamond8_MainSearch; iSAD = (*EPZSMainSearchPtr)(pRef, pRefH, pRefV, pRefHV, cur, x, y, currMV->x, currMV->y, iMinSAD, &newMV, pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, 0); if (iSAD < iMinSAD) { *currMV = newMV; iMinSAD = iSAD; } if (MotionFlags & PMV_EXTSEARCH8) { /* extended mode: search (up to) two more times: orignal prediction and (0,0) */ if (!(MVequal(pmv[0],backupMV)) ) { iSAD = (*EPZSMainSearchPtr)(pRef, pRefH, pRefV, pRefHV, cur, x, y, pmv[0].x, pmv[0].y, iMinSAD, &newMV, pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, 0); if (iSAD < iMinSAD) { *currMV = newMV; iMinSAD = iSAD; } } if ( (!(MVzero(pmv[0]))) && (!(MVzero(backupMV))) ) { iSAD = (*EPZSMainSearchPtr)(pRef, pRefH, pRefV, pRefHV, cur, x, y, 0, 0, iMinSAD, &newMV, pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, 0); if (iSAD < iMinSAD) { *currMV = newMV; iMinSAD = iSAD; } } } /*************** Choose best MV found **************/ EPZS8_Terminate_with_Refine: if (MotionFlags & PMV_HALFPELREFINE8) // perform final half-pel step iMinSAD = Halfpel8_Refine( pRef, pRefH, pRefV, pRefHV, cur, x, y, currMV, iMinSAD, pmv, min_dx, max_dx, min_dy, max_dy, iFcode, iQuant, iEdgedWidth); EPZS8_Terminate_without_Refine: currPMV->x = currMV->x - pmv[0].x; currPMV->y = currMV->y - pmv[0].y; return iMinSAD; } /* *********************************************************** bvop motion estimation // TODO: need to incorporate prediction here (eg. sad += calc_delta_16) ***************************************************************/ /* void MotionEstimationBVOP( MBParam * const pParam, FRAMEINFO * const frame, // forward (past) reference const MACROBLOCK * const f_mbs, const IMAGE * const f_ref, const IMAGE * const f_refH, const IMAGE * const f_refV, const IMAGE * const f_refHV, // backward (future) reference const MACROBLOCK * const b_mbs, const IMAGE * const b_ref, const IMAGE * const b_refH, const IMAGE * const b_refV, const IMAGE * const b_refHV) { const uint32_t mb_width = pParam->mb_width; const uint32_t mb_height = pParam->mb_height; const int32_t edged_width = pParam->edged_width; int32_t i,j; int32_t f_sad16; int32_t b_sad16; int32_t i_sad16; int32_t d_sad16; int32_t best_sad; VECTOR pmv_dontcare; // note: i==horizontal, j==vertical for (j = 0; j < mb_height; j++) { for (i = 0; i < mb_width; i++) { MACROBLOCK *mb = &frame->mbs[i + j*mb_width]; const MACROBLOCK *f_mb = &f_mbs[i + j*mb_width]; const MACROBLOCK *b_mb = &b_mbs[i + j*mb_width]; if (b_mb->mode == MODE_INTER && b_mb->cbp == 0 && b_mb->mvs[0].x == 0 && b_mb->mvs[0].y == 0) { mb->mode = MB_IGNORE; mb->mvs[0].x = 0; mb->mvs[0].y = 0; mb->b_mvs[0].x = 0; mb->b_mvs[0].y = 0; continue; } // forward search f_sad16 = SEARCH16(f_ref->y, f_refH->y, f_refV->y, f_refHV->y, &frame->image, i, j, frame->motion_flags, frame->quant, frame->fcode, pParam, f_mbs, &mb->mvs[0], &pmv_dontcare); // ignore pmv // backward search b_sad16 = SEARCH16(b_ref->y, b_refH->y, b_refV->y, b_refHV->y, &frame->image, i, j, frame->motion_flags, frame->quant, frame->bcode, pParam, b_mbs, &mb->b_mvs[0], &pmv_dontcare); // ignore pmv // interpolate search (simple, but effective) i_sad16 = sad16bi_c( frame->image.y + i*16 + j*16*edged_width, get_ref(f_ref->y, f_refH->y, f_refV->y, f_refHV->y, i, j, 16, mb->mvs[0].x, mb->mvs[0].y, edged_width), get_ref(b_ref->y, b_refH->y, b_refV->y, b_refHV->y, i, j, 16, mb->b_mvs[0].x, mb->b_mvs[0].x, edged_width), edged_width); // TODO: direct search // predictor + range of [-32,32] d_sad16 = 65535; if (f_sad16 < b_sad16) { best_sad = f_sad16; mb->mode = MB_FORWARD; } else { best_sad = b_sad16; mb->mode = MB_BACKWARD; } if (i_sad16 < best_sad) { best_sad = i_sad16; mb->mode = MB_INTERPOLATE; } if (d_sad16 < best_sad) { best_sad = d_sad16; mb->mode = MB_DIRECT; } } } } */