/***************************************************************************** * * XVID MPEG-4 VIDEO CODEC * - Motion Estimation related code - * * Copyright(C) 2002 Christoph Lampert * 2002 Michael Militzer * 2002-2003 Radoslaw Czyz * * This program is free software ; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation ; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY ; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program ; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: motion_est.c,v 1.58.2.25 2003-08-03 10:10:08 syskin Exp $ * ****************************************************************************/ #include #include #include #include /* memcpy */ #include /* lrint */ #include "../encoder.h" #include "../utils/mbfunctions.h" #include "../prediction/mbprediction.h" #include "../global.h" #include "../utils/timer.h" #include "../image/interpolate8x8.h" #include "motion_est.h" #include "motion.h" #include "sad.h" #include "gmc.h" #include "../utils/emms.h" #include "../dct/fdct.h" /***************************************************************************** * Modified rounding tables -- declared in motion.h * Original tables see ISO spec tables 7-6 -> 7-9 ****************************************************************************/ const uint32_t roundtab[16] = {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 }; /* K = 4 */ const uint32_t roundtab_76[16] = { 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1 }; /* K = 2 */ const uint32_t roundtab_78[8] = { 0, 0, 1, 1, 0, 0, 0, 1 }; /* K = 1 */ const uint32_t roundtab_79[4] = { 0, 1, 0, 0 }; #define INITIAL_SKIP_THRESH (10) #define FINAL_SKIP_THRESH (50) #define MAX_SAD00_FOR_SKIP (20) #define MAX_CHROMA_SAD_FOR_SKIP (22) #define CHECK_CANDIDATE(X,Y,D) { \ CheckCandidate((X),(Y), (D), &iDirection, data ); } /***************************************************************************** * Code ****************************************************************************/ static __inline uint32_t d_mv_bits(int x, int y, const VECTOR pred, const uint32_t iFcode, const int qpel, const int rrv) { int bits; const int q = (1 << (iFcode - 1)) - 1; x <<= qpel; y <<= qpel; if (rrv) { x = RRV_MV_SCALEDOWN(x); y = RRV_MV_SCALEDOWN(y); } x -= pred.x; bits = (x != 0 ? iFcode:0); x = abs(x); x += q; x >>= (iFcode - 1); bits += mvtab[x]; y -= pred.y; bits += (y != 0 ? iFcode:0); y = abs(y); y += q; y >>= (iFcode - 1); bits += mvtab[y]; return bits; } static int32_t ChromaSAD2(const int fx, const int fy, const int bx, const int by, const SearchData * const data) { int sad; const uint32_t stride = data->iEdgedWidth/2; uint8_t * f_refu = data->RefQ, * f_refv = data->RefQ + 8, * b_refu = data->RefQ + 16, * b_refv = data->RefQ + 24; int offset = (fx>>1) + (fy>>1)*stride; switch (((fx & 1) << 1) | (fy & 1)) { case 0: f_refu = (uint8_t*)data->RefP[4] + offset; f_refv = (uint8_t*)data->RefP[5] + offset; break; case 1: interpolate8x8_halfpel_v(f_refu, data->RefP[4] + offset, stride, data->rounding); interpolate8x8_halfpel_v(f_refv, data->RefP[5] + offset, stride, data->rounding); break; case 2: interpolate8x8_halfpel_h(f_refu, data->RefP[4] + offset, stride, data->rounding); interpolate8x8_halfpel_h(f_refv, data->RefP[5] + offset, stride, data->rounding); break; default: interpolate8x8_halfpel_hv(f_refu, data->RefP[4] + offset, stride, data->rounding); interpolate8x8_halfpel_hv(f_refv, data->RefP[5] + offset, stride, data->rounding); break; } offset = (bx>>1) + (by>>1)*stride; switch (((bx & 1) << 1) | (by & 1)) { case 0: b_refu = (uint8_t*)data->b_RefP[4] + offset; b_refv = (uint8_t*)data->b_RefP[5] + offset; break; case 1: interpolate8x8_halfpel_v(b_refu, data->b_RefP[4] + offset, stride, data->rounding); interpolate8x8_halfpel_v(b_refv, data->b_RefP[5] + offset, stride, data->rounding); break; case 2: interpolate8x8_halfpel_h(b_refu, data->b_RefP[4] + offset, stride, data->rounding); interpolate8x8_halfpel_h(b_refv, data->b_RefP[5] + offset, stride, data->rounding); break; default: interpolate8x8_halfpel_hv(b_refu, data->b_RefP[4] + offset, stride, data->rounding); interpolate8x8_halfpel_hv(b_refv, data->b_RefP[5] + offset, stride, data->rounding); break; } sad = sad8bi(data->CurU, b_refu, f_refu, stride); sad += sad8bi(data->CurV, b_refv, f_refv, stride); return sad; } static int32_t ChromaSAD(const int dx, const int dy, const SearchData * const data) { int sad; const uint32_t stride = data->iEdgedWidth/2; int offset = (dx>>1) + (dy>>1)*stride; if (dx == data->temp[5] && dy == data->temp[6]) return data->temp[7]; /* it has been checked recently */ data->temp[5] = dx; data->temp[6] = dy; /* backup */ switch (((dx & 1) << 1) | (dy & 1)) { case 0: sad = sad8(data->CurU, data->RefP[4] + offset, stride); sad += sad8(data->CurV, data->RefP[5] + offset, stride); break; case 1: sad = sad8bi(data->CurU, data->RefP[4] + offset, data->RefP[4] + offset + stride, stride); sad += sad8bi(data->CurV, data->RefP[5] + offset, data->RefP[5] + offset + stride, stride); break; case 2: sad = sad8bi(data->CurU, data->RefP[4] + offset, data->RefP[4] + offset + 1, stride); sad += sad8bi(data->CurV, data->RefP[5] + offset, data->RefP[5] + offset + 1, stride); break; default: interpolate8x8_halfpel_hv(data->RefQ, data->RefP[4] + offset, stride, data->rounding); sad = sad8(data->CurU, data->RefQ, stride); interpolate8x8_halfpel_hv(data->RefQ, data->RefP[5] + offset, stride, data->rounding); sad += sad8(data->CurV, data->RefQ, stride); break; } data->temp[7] = sad; /* backup, part 2 */ return sad; } static __inline const uint8_t * GetReferenceB(const int x, const int y, const uint32_t dir, const SearchData * const data) { /* dir : 0 = forward, 1 = backward */ const uint8_t *const *const direction = ( dir == 0 ? data->RefP : data->b_RefP ); const int picture = ((x&1)<<1) | (y&1); const int offset = (x>>1) + (y>>1)*data->iEdgedWidth; return direction[picture] + offset; } /* this is a simpler copy of GetReferenceB, but as it's __inline anyway, we can keep the two separate */ static __inline const uint8_t * GetReference(const int x, const int y, const SearchData * const data) { const int picture = ((x&1)<<1) | (y&1); const int offset = (x>>1) + (y>>1)*data->iEdgedWidth; return data->RefP[picture] + offset; } static uint8_t * Interpolate8x8qpel(const int x, const int y, const uint32_t block, const uint32_t dir, const SearchData * const data) { /* create or find a qpel-precision reference picture; return pointer to it */ uint8_t * Reference = data->RefQ + 16*dir; const uint32_t iEdgedWidth = data->iEdgedWidth; const uint32_t rounding = data->rounding; const int halfpel_x = x/2; const int halfpel_y = y/2; const uint8_t *ref1, *ref2, *ref3, *ref4; ref1 = GetReferenceB(halfpel_x, halfpel_y, dir, data); ref1 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth; switch( ((x&1)<<1) + (y&1) ) { case 3: /* x and y in qpel resolution - the "corners" (top left/right and */ /* bottom left/right) during qpel refinement */ ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data); ref3 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data); ref4 = GetReferenceB(x - halfpel_x, y - halfpel_y, dir, data); ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth; ref3 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth; ref4 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth; interpolate8x8_avg4(Reference, ref1, ref2, ref3, ref4, iEdgedWidth, rounding); break; case 1: /* x halfpel, y qpel - top or bottom during qpel refinement */ ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data); ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth; interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8); break; case 2: /* x qpel, y halfpel - left or right during qpel refinement */ ref2 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data); ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth; interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8); break; default: /* pure halfpel position */ return (uint8_t *) ref1; } return Reference; } static uint8_t * Interpolate16x16qpel(const int x, const int y, const uint32_t dir, const SearchData * const data) { /* create or find a qpel-precision reference picture; return pointer to it */ uint8_t * Reference = data->RefQ + 16*dir; const uint32_t iEdgedWidth = data->iEdgedWidth; const uint32_t rounding = data->rounding; const int halfpel_x = x/2; const int halfpel_y = y/2; const uint8_t *ref1, *ref2, *ref3, *ref4; ref1 = GetReferenceB(halfpel_x, halfpel_y, dir, data); switch( ((x&1)<<1) + (y&1) ) { case 3: /* * x and y in qpel resolution - the "corners" (top left/right and * bottom left/right) during qpel refinement */ ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data); ref3 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data); ref4 = GetReferenceB(x - halfpel_x, y - halfpel_y, dir, data); interpolate8x8_avg4(Reference, ref1, ref2, ref3, ref4, iEdgedWidth, rounding); interpolate8x8_avg4(Reference+8, ref1+8, ref2+8, ref3+8, ref4+8, iEdgedWidth, rounding); interpolate8x8_avg4(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, ref3+8*iEdgedWidth, ref4+8*iEdgedWidth, iEdgedWidth, rounding); interpolate8x8_avg4(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, ref3+8*iEdgedWidth+8, ref4+8*iEdgedWidth+8, iEdgedWidth, rounding); break; case 1: /* x halfpel, y qpel - top or bottom during qpel refinement */ ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data); interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8); interpolate8x8_avg2(Reference+8, ref1+8, ref2+8, iEdgedWidth, rounding, 8); interpolate8x8_avg2(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, iEdgedWidth, rounding, 8); interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding, 8); break; case 2: /* x qpel, y halfpel - left or right during qpel refinement */ ref2 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data); interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8); interpolate8x8_avg2(Reference+8, ref1+8, ref2+8, iEdgedWidth, rounding, 8); interpolate8x8_avg2(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, iEdgedWidth, rounding, 8); interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding, 8); break; default: /* pure halfpel position */ return (uint8_t *) ref1; } return Reference; } /* CHECK_CANDIATE FUNCTIONS START */ static void CheckCandidate16(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int xc, yc; const uint8_t * Reference; VECTOR * current; int32_t sad; uint32_t t; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; if (!data->qpel_precision) { Reference = GetReference(x, y, data); current = data->currentMV; xc = x; yc = y; } else { /* x and y are in 1/4 precision */ Reference = Interpolate16x16qpel(x, y, 0, data); xc = x/2; yc = y/2; /* for chroma sad */ current = data->currentQMV; } sad = sad16v(data->Cur, Reference, data->iEdgedWidth, data->temp + 1); t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0); sad += (data->lambda16 * t * sad)>>10; data->temp[1] += (data->lambda8 * t * (data->temp[1] + NEIGH_8X8_BIAS))>>10; if (data->chroma && sad < data->iMinSAD[0]) sad += ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3], (yc >> 1) + roundtab_79[yc & 0x3], data); if (sad < data->iMinSAD[0]) { data->iMinSAD[0] = sad; current[0].x = x; current[0].y = y; *dir = Direction; } if (data->temp[1] < data->iMinSAD[1]) { data->iMinSAD[1] = data->temp[1]; current[1].x = x; current[1].y = y; } if (data->temp[2] < data->iMinSAD[2]) { data->iMinSAD[2] = data->temp[2]; current[2].x = x; current[2].y = y; } if (data->temp[3] < data->iMinSAD[3]) { data->iMinSAD[3] = data->temp[3]; current[3].x = x; current[3].y = y; } if (data->temp[4] < data->iMinSAD[4]) { data->iMinSAD[4] = data->temp[4]; current[4].x = x; current[4].y = y; } } static void CheckCandidate8(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int32_t sad; uint32_t t; const uint8_t * Reference; VECTOR * current; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; if (!data->qpel_precision) { Reference = GetReference(x, y, data); current = data->currentMV; } else { /* x and y are in 1/4 precision */ Reference = Interpolate8x8qpel(x, y, 0, 0, data); current = data->currentQMV; } sad = sad8(data->Cur, Reference, data->iEdgedWidth); t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0); sad += (data->lambda8 * t * (sad+NEIGH_8X8_BIAS))>>10; if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; current->x = x; current->y = y; *dir = Direction; } } static void CheckCandidate32(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { uint32_t t; const uint8_t * Reference; if ( (!(x&1) && x !=0) || (!(y&1) && y !=0) || /* non-zero even value */ (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; Reference = GetReference(x, y, data); t = d_mv_bits(x, y, data->predMV, data->iFcode, 0, 1); data->temp[0] = sad32v_c(data->Cur, Reference, data->iEdgedWidth, data->temp + 1); data->temp[0] += (data->lambda16 * t * data->temp[0]) >> 10; data->temp[1] += (data->lambda8 * t * (data->temp[1] + NEIGH_8X8_BIAS))>>10; if (data->temp[0] < data->iMinSAD[0]) { data->iMinSAD[0] = data->temp[0]; data->currentMV[0].x = x; data->currentMV[0].y = y; *dir = Direction; } if (data->temp[1] < data->iMinSAD[1]) { data->iMinSAD[1] = data->temp[1]; data->currentMV[1].x = x; data->currentMV[1].y = y; } if (data->temp[2] < data->iMinSAD[2]) { data->iMinSAD[2] = data->temp[2]; data->currentMV[2].x = x; data->currentMV[2].y = y; } if (data->temp[3] < data->iMinSAD[3]) { data->iMinSAD[3] = data->temp[3]; data->currentMV[3].x = x; data->currentMV[3].y = y; } if (data->temp[4] < data->iMinSAD[4]) { data->iMinSAD[4] = data->temp[4]; data->currentMV[4].x = x; data->currentMV[4].y = y; } } static void CheckCandidate16no4v(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int32_t sad, xc, yc; const uint8_t * Reference; uint32_t t; VECTOR * current; if ( (x > data->max_dx) || ( x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; if (data->rrv && (!(x&1) && x !=0) | (!(y&1) && y !=0) ) return; /* non-zero even value */ if (data->qpel_precision) { /* x and y are in 1/4 precision */ Reference = Interpolate16x16qpel(x, y, 0, data); current = data->currentQMV; xc = x/2; yc = y/2; } else { Reference = GetReference(x, y, data); current = data->currentMV; xc = x; yc = y; } t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, data->rrv); sad = sad16(data->Cur, Reference, data->iEdgedWidth, 256*4096); sad += (data->lambda16 * t * sad)>>10; if (data->chroma && sad < *data->iMinSAD) sad += ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3], (yc >> 1) + roundtab_79[yc & 0x3], data); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; current->x = x; current->y = y; *dir = Direction; } } static void CheckCandidate16I(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int sad; // int xc, yc; const uint8_t * Reference; // VECTOR * current; if ( (x > data->max_dx) || ( x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; Reference = GetReference(x, y, data); // xc = x; yc = y; sad = sad16(data->Cur, Reference, data->iEdgedWidth, 256*4096); // sad += d_mv_bits(x, y, data->predMV, data->iFcode, 0, 0); /* if (data->chroma) sad += ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3], (yc >> 1) + roundtab_79[yc & 0x3], data); */ if (sad < data->iMinSAD[0]) { data->iMinSAD[0] = sad; data->currentMV[0].x = x; data->currentMV[0].y = y; *dir = Direction; } } static void CheckCandidate32I(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { /* maximum speed - for P/B/I decision */ int32_t sad; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; sad = sad32v_c(data->Cur, data->RefP[0] + (x>>1) + (y>>1)*((int)data->iEdgedWidth), data->iEdgedWidth, data->temp+1); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV[0].x = x; data->currentMV[0].y = y; *dir = Direction; } if (data->temp[1] < data->iMinSAD[1]) { data->iMinSAD[1] = data->temp[1]; data->currentMV[1].x = x; data->currentMV[1].y = y; } if (data->temp[2] < data->iMinSAD[2]) { data->iMinSAD[2] = data->temp[2]; data->currentMV[2].x = x; data->currentMV[2].y = y; } if (data->temp[3] < data->iMinSAD[3]) { data->iMinSAD[3] = data->temp[3]; data->currentMV[3].x = x; data->currentMV[3].y = y; } if (data->temp[4] < data->iMinSAD[4]) { data->iMinSAD[4] = data->temp[4]; data->currentMV[4].x = x; data->currentMV[4].y = y; } } static void CheckCandidateInt(const int xf, const int yf, const int Direction, int * const dir, const SearchData * const data) { int32_t sad, xb, yb, xcf, ycf, xcb, ycb; uint32_t t; const uint8_t *ReferenceF, *ReferenceB; VECTOR *current; if ((xf > data->max_dx) || (xf < data->min_dx) || (yf > data->max_dy) || (yf < data->min_dy)) return; if (!data->qpel_precision) { ReferenceF = GetReference(xf, yf, data); xb = data->currentMV[1].x; yb = data->currentMV[1].y; ReferenceB = GetReferenceB(xb, yb, 1, data); current = data->currentMV; xcf = xf; ycf = yf; xcb = xb; ycb = yb; } else { ReferenceF = Interpolate16x16qpel(xf, yf, 0, data); xb = data->currentQMV[1].x; yb = data->currentQMV[1].y; current = data->currentQMV; ReferenceB = Interpolate16x16qpel(xb, yb, 1, data); xcf = xf/2; ycf = yf/2; xcb = xb/2; ycb = yb/2; } t = d_mv_bits(xf, yf, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0) + d_mv_bits(xb, yb, data->bpredMV, data->iFcode, data->qpel^data->qpel_precision, 0); sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth); sad += (data->lambda16 * t * sad)>>10; if (data->chroma && sad < *data->iMinSAD) sad += ChromaSAD2((xcf >> 1) + roundtab_79[xcf & 0x3], (ycf >> 1) + roundtab_79[ycf & 0x3], (xcb >> 1) + roundtab_79[xcb & 0x3], (ycb >> 1) + roundtab_79[ycb & 0x3], data); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; current->x = xf; current->y = yf; *dir = Direction; } } static void CheckCandidateDirect(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int32_t sad = 0, xcf = 0, ycf = 0, xcb = 0, ycb = 0; uint32_t k; const uint8_t *ReferenceF; const uint8_t *ReferenceB; VECTOR mvs, b_mvs; if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return; for (k = 0; k < 4; k++) { mvs.x = data->directmvF[k].x + x; b_mvs.x = ((x == 0) ? data->directmvB[k].x : mvs.x - data->referencemv[k].x); mvs.y = data->directmvF[k].y + y; b_mvs.y = ((y == 0) ? data->directmvB[k].y : mvs.y - data->referencemv[k].y); if ((mvs.x > data->max_dx) || (mvs.x < data->min_dx) || (mvs.y > data->max_dy) || (mvs.y < data->min_dy) || (b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx) || (b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) ) return; if (data->qpel) { xcf += mvs.x/2; ycf += mvs.y/2; xcb += b_mvs.x/2; ycb += b_mvs.y/2; } else { xcf += mvs.x; ycf += mvs.y; xcb += b_mvs.x; ycb += b_mvs.y; mvs.x *= 2; mvs.y *= 2; /* we move to qpel precision anyway */ b_mvs.x *= 2; b_mvs.y *= 2; } ReferenceF = Interpolate8x8qpel(mvs.x, mvs.y, k, 0, data); ReferenceB = Interpolate8x8qpel(b_mvs.x, b_mvs.y, k, 1, data); sad += sad8bi(data->Cur + 8*(k&1) + 8*(k>>1)*(data->iEdgedWidth), ReferenceF, ReferenceB, data->iEdgedWidth); if (sad > *(data->iMinSAD)) return; } sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10; if (data->chroma && sad < *data->iMinSAD) sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf], (ycf >> 3) + roundtab_76[ycf & 0xf], (xcb >> 3) + roundtab_76[xcb & 0xf], (ycb >> 3) + roundtab_76[ycb & 0xf], data); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV->x = x; data->currentMV->y = y; *dir = Direction; } } static void CheckCandidateDirectno4v(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int32_t sad, xcf, ycf, xcb, ycb; const uint8_t *ReferenceF; const uint8_t *ReferenceB; VECTOR mvs, b_mvs; if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return; mvs.x = data->directmvF[0].x + x; b_mvs.x = ((x == 0) ? data->directmvB[0].x : mvs.x - data->referencemv[0].x); mvs.y = data->directmvF[0].y + y; b_mvs.y = ((y == 0) ? data->directmvB[0].y : mvs.y - data->referencemv[0].y); if ( (mvs.x > data->max_dx) || (mvs.x < data->min_dx) || (mvs.y > data->max_dy) || (mvs.y < data->min_dy) || (b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx) || (b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) ) return; if (data->qpel) { xcf = 4*(mvs.x/2); ycf = 4*(mvs.y/2); xcb = 4*(b_mvs.x/2); ycb = 4*(b_mvs.y/2); ReferenceF = Interpolate16x16qpel(mvs.x, mvs.y, 0, data); ReferenceB = Interpolate16x16qpel(b_mvs.x, b_mvs.y, 1, data); } else { xcf = 4*mvs.x; ycf = 4*mvs.y; xcb = 4*b_mvs.x; ycb = 4*b_mvs.y; ReferenceF = GetReference(mvs.x, mvs.y, data); ReferenceB = GetReferenceB(b_mvs.x, b_mvs.y, 1, data); } sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth); sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10; if (data->chroma && sad < *data->iMinSAD) sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf], (ycf >> 3) + roundtab_76[ycf & 0xf], (xcb >> 3) + roundtab_76[xcb & 0xf], (ycb >> 3) + roundtab_76[ycb & 0xf], data); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV->x = x; data->currentMV->y = y; *dir = Direction; } } static void CheckCandidateRD16(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int16_t *in = data->dctSpace, *coeff = data->dctSpace + 64; int32_t rd = 0; VECTOR * current; const uint8_t * ptr; int i, cbp = 0, t, xc, yc; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; if (!data->qpel_precision) { ptr = GetReference(x, y, data); current = data->currentMV; xc = x; yc = y; } else { /* x and y are in 1/4 precision */ ptr = Interpolate16x16qpel(x, y, 0, data); current = data->currentQMV; xc = x/2; yc = y/2; } for(i = 0; i < 4; i++) { int s = 8*((i&1) + (i>>1)*data->iEdgedWidth); transfer_8to16subro(in, data->Cur + s, ptr + s, data->iEdgedWidth); rd += data->temp[i] = Block_CalcBits(coeff, in, data->dctSpace + 128, data->iQuant, data->quant_type, &cbp, i); } rd += t = BITS_MULT*d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0); if (data->temp[0] + t < data->iMinSAD[1]) { data->iMinSAD[1] = data->temp[0] + t; current[1].x = x; current[1].y = y; data->cbp[1] = (data->cbp[1]&~32) | cbp&32; } if (data->temp[1] < data->iMinSAD[2]) { data->iMinSAD[2] = data->temp[1]; current[2].x = x; current[2].y = y; data->cbp[1] = (data->cbp[1]&~16) | cbp&16; } if (data->temp[2] < data->iMinSAD[3]) { data->iMinSAD[3] = data->temp[2]; current[3].x = x; current[3].y = y; data->cbp[1] = (data->cbp[1]&~8) | cbp&8; } if (data->temp[3] < data->iMinSAD[4]) { data->iMinSAD[4] = data->temp[3]; current[4].x = x; current[4].y = y; data->cbp[1] = (data->cbp[1]&~4) | cbp&4; } rd += BITS_MULT*xvid_cbpy_tab[15-(cbp>>2)].len; if (rd >= data->iMinSAD[0]) return; /* chroma */ xc = (xc >> 1) + roundtab_79[xc & 0x3]; yc = (yc >> 1) + roundtab_79[yc & 0x3]; /* chroma U */ ptr = interpolate8x8_switch2(data->RefQ, data->RefP[4], 0, 0, xc, yc, data->iEdgedWidth/2, data->rounding); transfer_8to16subro(in, data->CurU, ptr, data->iEdgedWidth/2); rd += Block_CalcBits(coeff, in, data->dctSpace + 128, data->iQuant, data->quant_type, &cbp, 4); if (rd >= data->iMinSAD[0]) return; /* chroma V */ ptr = interpolate8x8_switch2(data->RefQ, data->RefP[5], 0, 0, xc, yc, data->iEdgedWidth/2, data->rounding); transfer_8to16subro(in, data->CurV, ptr, data->iEdgedWidth/2); rd += Block_CalcBits(coeff, in, data->dctSpace + 128, data->iQuant, data->quant_type, &cbp, 5); rd += BITS_MULT*mcbpc_inter_tab[(MODE_INTER & 7) | ((cbp & 3) << 3)].len; if (rd < data->iMinSAD[0]) { data->iMinSAD[0] = rd; current[0].x = x; current[0].y = y; *dir = Direction; *data->cbp = cbp; } } static void CheckCandidateRD8(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int16_t *in = data->dctSpace, *coeff = data->dctSpace + 64; int32_t rd; VECTOR * current; const uint8_t * ptr; int cbp = 0; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; if (!data->qpel_precision) { ptr = GetReference(x, y, data); current = data->currentMV; } else { /* x and y are in 1/4 precision */ ptr = Interpolate8x8qpel(x, y, 0, 0, data); current = data->currentQMV; } transfer_8to16subro(in, data->Cur, ptr, data->iEdgedWidth); rd = Block_CalcBits(coeff, in, data->dctSpace + 128, data->iQuant, data->quant_type, &cbp, 5); rd += BITS_MULT*d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0); if (rd < data->iMinSAD[0]) { *data->cbp = cbp; data->iMinSAD[0] = rd; current[0].x = x; current[0].y = y; *dir = Direction; } } /* CHECK_CANDIATE FUNCTIONS END */ /* MAINSEARCH FUNCTIONS START */ static void AdvDiamondSearch(int x, int y, const SearchData * const data, int bDirection) { /* directions: 1 - left (x-1); 2 - right (x+1), 4 - up (y-1); 8 - down (y+1) */ int iDirection; for(;;) { /* forever */ iDirection = 0; if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1); if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2); if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4); if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8); /* now we're doing diagonal checks near our candidate */ if (iDirection) { /* if anything found */ bDirection = iDirection; iDirection = 0; x = data->currentMV->x; y = data->currentMV->y; if (bDirection & 3) { /* our candidate is left or right */ CHECK_CANDIDATE(x, y + iDiamondSize, 8); CHECK_CANDIDATE(x, y - iDiamondSize, 4); } else { /* what remains here is up or down */ CHECK_CANDIDATE(x + iDiamondSize, y, 2); CHECK_CANDIDATE(x - iDiamondSize, y, 1); } if (iDirection) { bDirection += iDirection; x = data->currentMV->x; y = data->currentMV->y; } } else { /* about to quit, eh? not so fast.... */ switch (bDirection) { case 2: CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); break; case 1: CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); break; case 2 + 4: CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); break; case 4: CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); break; case 8: CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); break; case 1 + 4: CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); break; case 2 + 8: CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); break; case 1 + 8: CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); break; default: /* 1+2+4+8 == we didn't find anything at all */ CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); break; } if (!iDirection) break; /* ok, the end. really */ bDirection = iDirection; x = data->currentMV->x; y = data->currentMV->y; } } } static void SquareSearch(int x, int y, const SearchData * const data, int bDirection) { int iDirection; do { iDirection = 0; if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1+16+64); if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2+32+128); if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4+16+32); if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8+64+128); if (bDirection & 16) CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1+4+16+32+64); if (bDirection & 32) CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2+4+16+32+128); if (bDirection & 64) CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1+8+16+64+128); if (bDirection & 128) CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2+8+32+64+128); bDirection = iDirection; x = data->currentMV->x; y = data->currentMV->y; } while (iDirection); } static void DiamondSearch(int x, int y, const SearchData * const data, int bDirection) { /* directions: 1 - left (x-1); 2 - right (x+1), 4 - up (y-1); 8 - down (y+1) */ int iDirection; do { iDirection = 0; if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1); if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2); if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4); if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8); /* now we're doing diagonal checks near our candidate */ if (iDirection) { /* checking if anything found */ bDirection = iDirection; iDirection = 0; x = data->currentMV->x; y = data->currentMV->y; if (bDirection & 3) { /* our candidate is left or right */ CHECK_CANDIDATE(x, y + iDiamondSize, 8); CHECK_CANDIDATE(x, y - iDiamondSize, 4); } else { /* what remains here is up or down */ CHECK_CANDIDATE(x + iDiamondSize, y, 2); CHECK_CANDIDATE(x - iDiamondSize, y, 1); } bDirection += iDirection; x = data->currentMV->x; y = data->currentMV->y; } } while (iDirection); } /* MAINSEARCH FUNCTIONS END */ static void SubpelRefine(const SearchData * const data) { /* Do a half-pel or q-pel refinement */ const VECTOR centerMV = data->qpel_precision ? *data->currentQMV : *data->currentMV; int iDirection; /* only needed because macro expects it */ CHECK_CANDIDATE(centerMV.x, centerMV.y - 1, 0); CHECK_CANDIDATE(centerMV.x + 1, centerMV.y - 1, 0); CHECK_CANDIDATE(centerMV.x + 1, centerMV.y, 0); CHECK_CANDIDATE(centerMV.x + 1, centerMV.y + 1, 0); CHECK_CANDIDATE(centerMV.x, centerMV.y + 1, 0); CHECK_CANDIDATE(centerMV.x - 1, centerMV.y + 1, 0); CHECK_CANDIDATE(centerMV.x - 1, centerMV.y, 0); CHECK_CANDIDATE(centerMV.x - 1, centerMV.y - 1, 0); } static __inline int SkipDecisionP(const IMAGE * current, const IMAGE * reference, const int x, const int y, const uint32_t stride, const uint32_t iQuant, int rrv) { int offset = (x + y*stride)*8; if(!rrv) { uint32_t sadC = sad8(current->u + offset, reference->u + offset, stride); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0; sadC += sad8(current->v + offset, reference->v + offset, stride); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0; return 1; } else { uint32_t sadC = sad16(current->u + 2*offset, reference->u + 2*offset, stride, 256*4096); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0; sadC += sad16(current->v + 2*offset, reference->v + 2*offset, stride, 256*4096); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0; return 1; } } static __inline void ZeroMacroblockP(MACROBLOCK *pMB, const int32_t sad) { pMB->mode = MODE_INTER; pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = zeroMV; pMB->qmvs[0] = pMB->qmvs[1] = pMB->qmvs[2] = pMB->qmvs[3] = zeroMV; pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = sad; } static __inline void ModeDecision(SearchData * const Data, MACROBLOCK * const pMB, const MACROBLOCK * const pMBs, const int x, const int y, const MBParam * const pParam, const uint32_t MotionFlags, const uint32_t VopFlags, const uint32_t VolFlags, const IMAGE * const pCurrent, const IMAGE * const pRef, const IMAGE * const vGMC, const int coding_type) { int mode = MODE_INTER; int mcsel = 0; int inter4v = (VopFlags & XVID_VOP_INTER4V) && (pMB->dquant == 0); const uint32_t iQuant = pMB->quant; const int skip_possible = (coding_type == P_VOP) && (pMB->dquant == 0); pMB->mcsel = 0; if (!(VopFlags & XVID_VOP_MODEDECISION_RD)) { /* normal, fast, SAD-based mode decision */ int sad; int InterBias = MV16_INTER_BIAS; if (inter4v == 0 || Data->iMinSAD[0] < Data->iMinSAD[1] + Data->iMinSAD[2] + Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant) { mode = MODE_INTER; sad = Data->iMinSAD[0]; } else { mode = MODE_INTER4V; sad = Data->iMinSAD[1] + Data->iMinSAD[2] + Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant; Data->iMinSAD[0] = sad; } /* final skip decision, a.k.a. "the vector you found, really that good?" */ if (skip_possible && (pMB->sad16 < (int)iQuant * MAX_SAD00_FOR_SKIP)) if ( (100*sad)/(pMB->sad16+1) > FINAL_SKIP_THRESH) if (Data->chroma || SkipDecisionP(pCurrent, pRef, x, y, Data->iEdgedWidth/2, iQuant, Data->rrv)) { mode = MODE_NOT_CODED; sad = 0; } /* mcsel */ if (coding_type == S_VOP) { int32_t iSAD = sad16(Data->Cur, vGMC->y + 16*y*Data->iEdgedWidth + 16*x, Data->iEdgedWidth, 65536); if (Data->chroma) { iSAD += sad8(Data->CurU, vGMC->u + 8*y*(Data->iEdgedWidth/2) + 8*x, Data->iEdgedWidth/2); iSAD += sad8(Data->CurV, vGMC->v + 8*y*(Data->iEdgedWidth/2) + 8*x, Data->iEdgedWidth/2); } if (iSAD <= sad) { /* mode decision GMC */ mode = MODE_INTER; mcsel = 1; sad = iSAD; } } /* intra decision */ if (iQuant > 8) InterBias += 100 * (iQuant - 8); /* to make high quants work */ if (y != 0) if ((pMB - pParam->mb_width)->mode == MODE_INTRA ) InterBias -= 80; if (x != 0) if ((pMB - 1)->mode == MODE_INTRA ) InterBias -= 80; if (Data->chroma) InterBias += 50; /* dev8(chroma) ??? <-- yes, we need dev8 (no big difference though) */ if (Data->rrv) InterBias *= 4; if (InterBias < sad) { int32_t deviation; if (!Data->rrv) deviation = dev16(Data->Cur, Data->iEdgedWidth); else deviation = dev16(Data->Cur, Data->iEdgedWidth) + /* dev32() */ dev16(Data->Cur+16, Data->iEdgedWidth) + dev16(Data->Cur + 16*Data->iEdgedWidth, Data->iEdgedWidth) + dev16(Data->Cur+16+16*Data->iEdgedWidth, Data->iEdgedWidth); if (deviation < (sad - InterBias)) mode = MODE_INTRA; } pMB->cbp = 63; pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = sad; } else { /* Rate-Distortion */ int min_rd, intra_rd, i, cbp, c[2] = {0, 0}; VECTOR backup[5], *v; Data->iQuant = iQuant; Data->cbp = c; v = Data->qpel ? Data->currentQMV : Data->currentMV; for (i = 0; i < 5; i++) { Data->iMinSAD[i] = 256*4096; backup[i] = v[i]; } min_rd = findRDinter(Data, pMBs, x, y, pParam, MotionFlags); cbp = *Data->cbp; if (coding_type == S_VOP) { int gmc_rd; *Data->iMinSAD = min_rd += BITS_MULT*1; /* mcsel */ gmc_rd = findRDgmc(Data, vGMC, x, y); if (gmc_rd < min_rd) { mcsel = 1; *Data->iMinSAD = min_rd = gmc_rd; mode = MODE_INTER; cbp = *Data->cbp; } } if (inter4v) { int v4_rd; v4_rd = findRDinter4v(Data, pMB, pMBs, x, y, pParam, MotionFlags, backup); if (v4_rd < min_rd) { Data->iMinSAD[0] = min_rd = v4_rd; mode = MODE_INTER4V; cbp = *Data->cbp; } } intra_rd = findRDintra(Data); if (intra_rd < min_rd) { *Data->iMinSAD = min_rd = intra_rd; mode = MODE_INTRA; } pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = 0; pMB->cbp = cbp; } if (Data->rrv) { Data->currentMV[0].x = RRV_MV_SCALEDOWN(Data->currentMV[0].x); Data->currentMV[0].y = RRV_MV_SCALEDOWN(Data->currentMV[0].y); } if (mode == MODE_INTER && mcsel == 0) { pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = Data->currentMV[0]; if(Data->qpel) { pMB->qmvs[0] = pMB->qmvs[1] = pMB->qmvs[2] = pMB->qmvs[3] = Data->currentQMV[0]; pMB->pmvs[0].x = Data->currentQMV[0].x - Data->predMV.x; pMB->pmvs[0].y = Data->currentQMV[0].y - Data->predMV.y; } else { pMB->pmvs[0].x = Data->currentMV[0].x - Data->predMV.x; pMB->pmvs[0].y = Data->currentMV[0].y - Data->predMV.y; } } else if (mode == MODE_INTER ) { // but mcsel == 1 pMB->mcsel = 1; if (Data->qpel) { pMB->qmvs[0] = pMB->qmvs[1] = pMB->qmvs[2] = pMB->qmvs[3] = pMB->amv; pMB->mvs[0].x = pMB->mvs[1].x = pMB->mvs[2].x = pMB->mvs[3].x = pMB->amv.x/2; pMB->mvs[0].y = pMB->mvs[1].y = pMB->mvs[2].y = pMB->mvs[3].y = pMB->amv.y/2; } else pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = pMB->amv; } else if (mode == MODE_INTER4V) ; /* anything here? */ else /* INTRA, NOT_CODED */ ZeroMacroblockP(pMB, 0); pMB->mode = mode; } bool MotionEstimation(MBParam * const pParam, FRAMEINFO * const current, FRAMEINFO * const reference, const IMAGE * const pRefH, const IMAGE * const pRefV, const IMAGE * const pRefHV, const IMAGE * const pGMC, const uint32_t iLimit) { MACROBLOCK *const pMBs = current->mbs; const IMAGE *const pCurrent = ¤t->image; const IMAGE *const pRef = &reference->image; uint32_t mb_width = pParam->mb_width; uint32_t mb_height = pParam->mb_height; const uint32_t iEdgedWidth = pParam->edged_width; const uint32_t MotionFlags = MakeGoodMotionFlags(current->motion_flags, current->vop_flags, current->vol_flags); uint32_t x, y; uint32_t iIntra = 0; int32_t sad00; int skip_thresh = INITIAL_SKIP_THRESH * \ (current->vop_flags & XVID_VOP_REDUCED ? 4:1) * \ (current->vop_flags & XVID_VOP_MODEDECISION_RD ? 2:1); /* some pre-initialized thingies for SearchP */ int32_t temp[8]; VECTOR currentMV[5]; VECTOR currentQMV[5]; int32_t iMinSAD[5]; DECLARE_ALIGNED_MATRIX(dct_space, 3, 64, int16_t, CACHE_LINE); SearchData Data; memset(&Data, 0, sizeof(SearchData)); Data.iEdgedWidth = iEdgedWidth; Data.currentMV = currentMV; Data.currentQMV = currentQMV; Data.iMinSAD = iMinSAD; Data.temp = temp; Data.iFcode = current->fcode; Data.rounding = pParam->m_rounding_type; Data.qpel = (current->vol_flags & XVID_VOL_QUARTERPEL ? 1:0); Data.chroma = MotionFlags & XVID_ME_CHROMA_PVOP; Data.rrv = (current->vop_flags & XVID_VOP_REDUCED) ? 1:0; Data.dctSpace = dct_space; Data.quant_type = !(pParam->vol_flags & XVID_VOL_MPEGQUANT); if ((current->vop_flags & XVID_VOP_REDUCED)) { mb_width = (pParam->width + 31) / 32; mb_height = (pParam->height + 31) / 32; Data.qpel = 0; } Data.RefQ = pRefV->u; /* a good place, also used in MC (for similar purpose) */ if (sadInit) (*sadInit) (); for (y = 0; y < mb_height; y++) { for (x = 0; x < mb_width; x++) { MACROBLOCK *pMB = &pMBs[x + y * pParam->mb_width]; if (!Data.rrv) pMB->sad16 = sad16v(pCurrent->y + (x + y * iEdgedWidth) * 16, pRef->y + (x + y * iEdgedWidth) * 16, pParam->edged_width, pMB->sad8 ); else pMB->sad16 = sad32v_c(pCurrent->y + (x + y * iEdgedWidth) * 32, pRef->y + (x + y * iEdgedWidth) * 32, pParam->edged_width, pMB->sad8 ); if (Data.chroma) { Data.temp[7] = sad8(pCurrent->u + x*8 + y*(iEdgedWidth/2)*8, pRef->u + x*8 + y*(iEdgedWidth/2)*8, iEdgedWidth/2) + sad8(pCurrent->v + (x + y*(iEdgedWidth/2))*8, pRef->v + (x + y*(iEdgedWidth/2))*8, iEdgedWidth/2); pMB->sad16 += Data.temp[7]; } sad00 = pMB->sad16; /* initial skip decision */ /* no early skip for GMC (global vector = skip vector is unknown!) */ if (current->coding_type != S_VOP) { /* no fast SKIP for S(GMC)-VOPs */ if (pMB->dquant == 0 && sad00 < pMB->quant * skip_thresh) if (Data.chroma || SkipDecisionP(pCurrent, pRef, x, y, iEdgedWidth/2, pMB->quant, Data.rrv)) { ZeroMacroblockP(pMB, sad00); pMB->mode = MODE_NOT_CODED; continue; } } if ((current->vop_flags & XVID_VOP_CARTOON) && (sad00 < pMB->quant * 4 * skip_thresh)) { /* favorize (0,0) vector for cartoons */ ZeroMacroblockP(pMB, sad00); continue; } SearchP(pRef, pRefH->y, pRefV->y, pRefHV->y, pCurrent, x, y, MotionFlags, current->vop_flags, current->vol_flags, &Data, pParam, pMBs, reference->mbs, pMB); ModeDecision(&Data, pMB, pMBs, x, y, pParam, MotionFlags, current->vop_flags, current->vol_flags, pCurrent, pRef, pGMC, current->coding_type); if (pMB->mode == MODE_INTRA) if (++iIntra > iLimit) return 1; } } return 0; } static __inline int make_mask(const VECTOR * const pmv, const int i) { int mask = 255, j; for (j = 0; j < i; j++) { if (MVequal(pmv[i], pmv[j])) return 0; /* same vector has been checked already */ if (pmv[i].x == pmv[j].x) { if (pmv[i].y == pmv[j].y + iDiamondSize) mask &= ~4; else if (pmv[i].y == pmv[j].y - iDiamondSize) mask &= ~8; } else if (pmv[i].y == pmv[j].y) { if (pmv[i].x == pmv[j].x + iDiamondSize) mask &= ~1; else if (pmv[i].x == pmv[j].x - iDiamondSize) mask &= ~2; } } return mask; } static __inline void PreparePredictionsP(VECTOR * const pmv, int x, int y, int iWcount, int iHcount, const MACROBLOCK * const prevMB, int rrv) { /* this function depends on get_pmvdata which means that it sucks. It should get the predictions by itself */ if (rrv) { iWcount /= 2; iHcount /= 2; } if ( (y != 0) && (x < (iWcount-1)) ) { /* [5] top-right neighbour */ pmv[5].x = EVEN(pmv[3].x); pmv[5].y = EVEN(pmv[3].y); } else pmv[5].x = pmv[5].y = 0; if (x != 0) { pmv[3].x = EVEN(pmv[1].x); pmv[3].y = EVEN(pmv[1].y); }/* pmv[3] is left neighbour */ else pmv[3].x = pmv[3].y = 0; if (y != 0) { pmv[4].x = EVEN(pmv[2].x); pmv[4].y = EVEN(pmv[2].y); }/* [4] top neighbour */ else pmv[4].x = pmv[4].y = 0; /* [1] median prediction */ pmv[1].x = EVEN(pmv[0].x); pmv[1].y = EVEN(pmv[0].y); pmv[0].x = pmv[0].y = 0; /* [0] is zero; not used in the loop (checked before) but needed here for make_mask */ pmv[2].x = EVEN(prevMB->mvs[0].x); /* [2] is last frame */ pmv[2].y = EVEN(prevMB->mvs[0].y); if ((x < iWcount-1) && (y < iHcount-1)) { pmv[6].x = EVEN((prevMB+1+iWcount)->mvs[0].x); /* [6] right-down neighbour in last frame */ pmv[6].y = EVEN((prevMB+1+iWcount)->mvs[0].y); } else pmv[6].x = pmv[6].y = 0; if (rrv) { int i; for (i = 0; i < 7; i++) { pmv[i].x = RRV_MV_SCALEUP(pmv[i].x); pmv[i].y = RRV_MV_SCALEUP(pmv[i].y); } } } static void SearchP(const IMAGE * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const uint32_t VopFlags, const uint32_t VolFlags, SearchData * const Data, const MBParam * const pParam, const MACROBLOCK * const pMBs, const MACROBLOCK * const prevMBs, MACROBLOCK * const pMB) { int i, iDirection = 255, mask, threshA; VECTOR pmv[7]; int inter4v = (VopFlags & XVID_VOP_INTER4V) && (pMB->dquant == 0); get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv); get_pmvdata2(pMBs, pParam->mb_width, 0, x, y, 0, pmv, Data->temp); Data->temp[5] = Data->temp[6] = 0; /* chroma-sad cache */ i = Data->rrv ? 2 : 1; Data->Cur = pCur->y + (x + y * Data->iEdgedWidth) * 16*i; Data->CurV = pCur->v + (x + y * (Data->iEdgedWidth/2)) * 8*i; Data->CurU = pCur->u + (x + y * (Data->iEdgedWidth/2)) * 8*i; Data->RefP[0] = pRef->y + (x + Data->iEdgedWidth*y) * 16*i; Data->RefP[2] = pRefH + (x + Data->iEdgedWidth*y) * 16*i; Data->RefP[1] = pRefV + (x + Data->iEdgedWidth*y) * 16*i; Data->RefP[3] = pRefHV + (x + Data->iEdgedWidth*y) * 16*i; Data->RefP[4] = pRef->u + (x + y * (Data->iEdgedWidth/2)) * 8*i; Data->RefP[5] = pRef->v + (x + y * (Data->iEdgedWidth/2)) * 8*i; Data->lambda16 = lambda_vec16[pMB->quant]; Data->lambda8 = lambda_vec8[pMB->quant]; Data->qpel_precision = 0; memset(Data->currentMV, 0, 5*sizeof(VECTOR)); if (Data->qpel) Data->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, 0); else Data->predMV = pmv[0]; i = d_mv_bits(0, 0, Data->predMV, Data->iFcode, 0, 0); Data->iMinSAD[0] = pMB->sad16 + ((Data->lambda16 * i * pMB->sad16)>>10); Data->iMinSAD[1] = pMB->sad8[0] + ((Data->lambda8 * i * (pMB->sad8[0]+NEIGH_8X8_BIAS)) >> 10); Data->iMinSAD[2] = pMB->sad8[1]; Data->iMinSAD[3] = pMB->sad8[2]; Data->iMinSAD[4] = pMB->sad8[3]; if ((!(VopFlags & XVID_VOP_MODEDECISION_RD)) && (x | y)) { threshA = Data->temp[0]; /* that's where we keep this SAD atm */ if (threshA < 512) threshA = 512; else if (threshA > 1024) threshA = 1024; } else threshA = 512; PreparePredictionsP(pmv, x, y, pParam->mb_width, pParam->mb_height, prevMBs + x + y * pParam->mb_width, Data->rrv); if (!Data->rrv) { if (inter4v | Data->chroma) CheckCandidate = CheckCandidate16; else CheckCandidate = CheckCandidate16no4v; /* for extra speed */ } else CheckCandidate = CheckCandidate32; /* main loop. checking all predictions (but first, which is 0,0 and has been checked in MotionEstimation())*/ for (i = 1; i < 7; i++) { if (!(mask = make_mask(pmv, i)) ) continue; CheckCandidate(pmv[i].x, pmv[i].y, mask, &iDirection, Data); if (Data->iMinSAD[0] <= threshA) break; } if ((Data->iMinSAD[0] <= threshA) || (MVequal(Data->currentMV[0], (prevMBs+x+y*pParam->mb_width)->mvs[0]) && (Data->iMinSAD[0] < (prevMBs+x+y*pParam->mb_width)->sad16))) inter4v = 0; else { MainSearchFunc * MainSearchPtr; if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, iDirection); /* extended search, diamond starting in 0,0 and in prediction. note that this search is/might be done in halfpel positions, which makes it more different than the diamond above */ if (MotionFlags & XVID_ME_EXTSEARCH16) { int32_t bSAD; VECTOR startMV = Data->predMV, backupMV = Data->currentMV[0]; if (Data->rrv) { startMV.x = RRV_MV_SCALEUP(startMV.x); startMV.y = RRV_MV_SCALEUP(startMV.y); } if (!(MVequal(startMV, backupMV))) { bSAD = Data->iMinSAD[0]; Data->iMinSAD[0] = MV_MAX_ERROR; CheckCandidate(startMV.x, startMV.y, 255, &iDirection, Data); MainSearchPtr(startMV.x, startMV.y, Data, 255); if (bSAD < Data->iMinSAD[0]) { Data->currentMV[0] = backupMV; Data->iMinSAD[0] = bSAD; } } backupMV = Data->currentMV[0]; startMV.x = startMV.y = 1; if (!(MVequal(startMV, backupMV))) { bSAD = Data->iMinSAD[0]; Data->iMinSAD[0] = MV_MAX_ERROR; CheckCandidate(startMV.x, startMV.y, 255, &iDirection, Data); MainSearchPtr(startMV.x, startMV.y, Data, 255); if (bSAD < Data->iMinSAD[0]) { Data->currentMV[0] = backupMV; Data->iMinSAD[0] = bSAD; } } } } if (MotionFlags & XVID_ME_HALFPELREFINE16) SubpelRefine(Data); for(i = 0; i < 5; i++) { Data->currentQMV[i].x = 2 * Data->currentMV[i].x; /* initialize qpel vectors */ Data->currentQMV[i].y = 2 * Data->currentMV[i].y; } if (Data->qpel) { get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode, 1, 0); Data->qpel_precision = 1; if (MotionFlags & XVID_ME_QUARTERPELREFINE16) SubpelRefine(Data); } if (Data->iMinSAD[0] < (int32_t)pMB->quant * 30) inter4v = 0; if (inter4v) { SearchData Data8; memcpy(&Data8, Data, sizeof(SearchData)); /* quick copy of common data */ Search8(Data, 2*x, 2*y, MotionFlags, pParam, pMB, pMBs, 0, &Data8); Search8(Data, 2*x + 1, 2*y, MotionFlags, pParam, pMB, pMBs, 1, &Data8); Search8(Data, 2*x, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 2, &Data8); Search8(Data, 2*x + 1, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 3, &Data8); if ((Data->chroma) && (!(VopFlags & XVID_VOP_MODEDECISION_RD))) { /* chroma is only used for comparsion to INTER. if the comparsion will be done in BITS domain, it will not be used */ int sumx = 0, sumy = 0; if (Data->qpel) for (i = 1; i < 5; i++) { sumx += Data->currentQMV[i].x/2; sumy += Data->currentQMV[i].y/2; } else for (i = 1; i < 5; i++) { sumx += Data->currentMV[i].x; sumy += Data->currentMV[i].y; } Data->iMinSAD[1] += ChromaSAD( (sumx >> 3) + roundtab_76[sumx & 0xf], (sumy >> 3) + roundtab_76[sumy & 0xf], Data); } } else Data->iMinSAD[1] = 4096*256; } static void Search8(const SearchData * const OldData, const int x, const int y, const uint32_t MotionFlags, const MBParam * const pParam, MACROBLOCK * const pMB, const MACROBLOCK * const pMBs, const int block, SearchData * const Data) { int i = 0; Data->iMinSAD = OldData->iMinSAD + 1 + block; Data->currentMV = OldData->currentMV + 1 + block; Data->currentQMV = OldData->currentQMV + 1 + block; if(Data->qpel) { Data->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x/2, y/2, block); if (block != 0) i = d_mv_bits( Data->currentQMV->x, Data->currentQMV->y, Data->predMV, Data->iFcode, 0, 0); } else { Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x/2, y/2, block); if (block != 0) i = d_mv_bits( Data->currentMV->x, Data->currentMV->y, Data->predMV, Data->iFcode, 0, Data->rrv); } *(Data->iMinSAD) += (Data->lambda8 * i * (*Data->iMinSAD + NEIGH_8X8_BIAS))>>10; if (MotionFlags & (XVID_ME_EXTSEARCH8|XVID_ME_HALFPELREFINE8|XVID_ME_QUARTERPELREFINE8)) { if (Data->rrv) i = 16; else i = 8; Data->RefP[0] = OldData->RefP[0] + i * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->RefP[1] = OldData->RefP[1] + i * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->RefP[2] = OldData->RefP[2] + i * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->RefP[3] = OldData->RefP[3] + i * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->Cur = OldData->Cur + i * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->qpel_precision = 0; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 8, pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv); if (!Data->rrv) CheckCandidate = CheckCandidate8; else CheckCandidate = CheckCandidate16no4v; if (MotionFlags & XVID_ME_EXTSEARCH8 && (!(MotionFlags & XVID_ME_EXTSEARCH_RD))) { int32_t temp_sad = *(Data->iMinSAD); /* store current MinSAD */ MainSearchFunc *MainSearchPtr; if (MotionFlags & XVID_ME_USESQUARES8) MainSearchPtr = SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND8) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, 255); if(*(Data->iMinSAD) < temp_sad) { Data->currentQMV->x = 2 * Data->currentMV->x; /* update our qpel vector */ Data->currentQMV->y = 2 * Data->currentMV->y; } } if (MotionFlags & XVID_ME_HALFPELREFINE8) { int32_t temp_sad = *(Data->iMinSAD); /* store current MinSAD */ SubpelRefine(Data); /* perform halfpel refine of current best vector */ if(*(Data->iMinSAD) < temp_sad) { /* we have found a better match */ Data->currentQMV->x = 2 * Data->currentMV->x; /* update our qpel vector */ Data->currentQMV->y = 2 * Data->currentMV->y; } } if (Data->qpel && MotionFlags & XVID_ME_QUARTERPELREFINE8) { Data->qpel_precision = 1; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 8, pParam->width, pParam->height, Data->iFcode, 1, 0); SubpelRefine(Data); } } if (Data->rrv) { Data->currentMV->x = RRV_MV_SCALEDOWN(Data->currentMV->x); Data->currentMV->y = RRV_MV_SCALEDOWN(Data->currentMV->y); } if(Data->qpel) { pMB->pmvs[block].x = Data->currentQMV->x - Data->predMV.x; pMB->pmvs[block].y = Data->currentQMV->y - Data->predMV.y; pMB->qmvs[block] = *Data->currentQMV; } else { pMB->pmvs[block].x = Data->currentMV->x - Data->predMV.x; pMB->pmvs[block].y = Data->currentMV->y - Data->predMV.y; } pMB->mvs[block] = *Data->currentMV; pMB->sad8[block] = 4 * *Data->iMinSAD; } /* motion estimation for B-frames */ static __inline VECTOR ChoosePred(const MACROBLOCK * const pMB, const uint32_t mode) { /* the stupidiest function ever */ return (mode == MODE_FORWARD ? pMB->mvs[0] : pMB->b_mvs[0]); } static void __inline PreparePredictionsBF(VECTOR * const pmv, const int x, const int y, const uint32_t iWcount, const MACROBLOCK * const pMB, const uint32_t mode_curr) { /* [0] is prediction */ pmv[0].x = EVEN(pmv[0].x); pmv[0].y = EVEN(pmv[0].y); pmv[1].x = pmv[1].y = 0; /* [1] is zero */ pmv[2] = ChoosePred(pMB, mode_curr); pmv[2].x = EVEN(pmv[2].x); pmv[2].y = EVEN(pmv[2].y); if ((y != 0)&&(x != (int)(iWcount+1))) { /* [3] top-right neighbour */ pmv[3] = ChoosePred(pMB+1-iWcount, mode_curr); pmv[3].x = EVEN(pmv[3].x); pmv[3].y = EVEN(pmv[3].y); } else pmv[3].x = pmv[3].y = 0; if (y != 0) { pmv[4] = ChoosePred(pMB-iWcount, mode_curr); pmv[4].x = EVEN(pmv[4].x); pmv[4].y = EVEN(pmv[4].y); } else pmv[4].x = pmv[4].y = 0; if (x != 0) { pmv[5] = ChoosePred(pMB-1, mode_curr); pmv[5].x = EVEN(pmv[5].x); pmv[5].y = EVEN(pmv[5].y); } else pmv[5].x = pmv[5].y = 0; if (x != 0 && y != 0) { pmv[6] = ChoosePred(pMB-1-iWcount, mode_curr); pmv[6].x = EVEN(pmv[6].x); pmv[6].y = EVEN(pmv[6].y); } else pmv[6].x = pmv[6].y = 0; } /* search backward or forward */ static void SearchBF( const IMAGE * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const uint32_t iFcode, const MBParam * const pParam, MACROBLOCK * const pMB, const VECTOR * const predMV, int32_t * const best_sad, const int32_t mode_current, SearchData * const Data) { int i, iDirection = 255, mask; VECTOR pmv[7]; MainSearchFunc *MainSearchPtr; *Data->iMinSAD = MV_MAX_ERROR; Data->iFcode = iFcode; Data->qpel_precision = 0; Data->temp[5] = Data->temp[6] = Data->temp[7] = 256*4096; /* reset chroma-sad cache */ Data->RefP[0] = pRef->y + (x + Data->iEdgedWidth*y) * 16; Data->RefP[2] = pRefH + (x + Data->iEdgedWidth*y) * 16; Data->RefP[1] = pRefV + (x + Data->iEdgedWidth*y) * 16; Data->RefP[3] = pRefHV + (x + Data->iEdgedWidth*y) * 16; Data->RefP[4] = pRef->u + (x + y * (Data->iEdgedWidth/2)) * 8; Data->RefP[5] = pRef->v + (x + y * (Data->iEdgedWidth/2)) * 8; Data->predMV = *predMV; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, iFcode - Data->qpel, 0, 0); pmv[0] = Data->predMV; if (Data->qpel) { pmv[0].x /= 2; pmv[0].y /= 2; } PreparePredictionsBF(pmv, x, y, pParam->mb_width, pMB, mode_current); Data->currentMV->x = Data->currentMV->y = 0; CheckCandidate = CheckCandidate16no4v; /* main loop. checking all predictions */ for (i = 0; i < 7; i++) { if (!(mask = make_mask(pmv, i)) ) continue; CheckCandidate16no4v(pmv[i].x, pmv[i].y, mask, &iDirection, Data); } if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, iDirection); SubpelRefine(Data); if (Data->qpel && *Data->iMinSAD < *best_sad + 300) { Data->currentQMV->x = 2*Data->currentMV->x; Data->currentQMV->y = 2*Data->currentMV->y; Data->qpel_precision = 1; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, iFcode, 1, 0); SubpelRefine(Data); } /* three bits are needed to code backward mode. four for forward */ if (mode_current == MODE_FORWARD) *Data->iMinSAD += 4 * Data->lambda16; else *Data->iMinSAD += 3 * Data->lambda16; if (*Data->iMinSAD < *best_sad) { *best_sad = *Data->iMinSAD; pMB->mode = mode_current; if (Data->qpel) { pMB->pmvs[0].x = Data->currentQMV->x - predMV->x; pMB->pmvs[0].y = Data->currentQMV->y - predMV->y; if (mode_current == MODE_FORWARD) pMB->qmvs[0] = *Data->currentQMV; else pMB->b_qmvs[0] = *Data->currentQMV; } else { pMB->pmvs[0].x = Data->currentMV->x - predMV->x; pMB->pmvs[0].y = Data->currentMV->y - predMV->y; } if (mode_current == MODE_FORWARD) pMB->mvs[0] = *Data->currentMV; else pMB->b_mvs[0] = *Data->currentMV; } if (mode_current == MODE_FORWARD) *(Data->currentMV+2) = *Data->currentMV; else *(Data->currentMV+1) = *Data->currentMV; /* we store currmv for interpolate search */ } static void SkipDecisionB(const IMAGE * const pCur, const IMAGE * const f_Ref, const IMAGE * const b_Ref, MACROBLOCK * const pMB, const uint32_t x, const uint32_t y, const SearchData * const Data) { int dx = 0, dy = 0, b_dx = 0, b_dy = 0; int32_t sum; const int div = 1 + Data->qpel; int k; const uint32_t stride = Data->iEdgedWidth/2; /* this is not full chroma compensation, only it's fullpel approximation. should work though */ for (k = 0; k < 4; k++) { dy += Data->directmvF[k].y / div; dx += Data->directmvF[k].x / div; b_dy += Data->directmvB[k].y / div; b_dx += Data->directmvB[k].x / div; } dy = (dy >> 3) + roundtab_76[dy & 0xf]; dx = (dx >> 3) + roundtab_76[dx & 0xf]; b_dy = (b_dy >> 3) + roundtab_76[b_dy & 0xf]; b_dx = (b_dx >> 3) + roundtab_76[b_dx & 0xf]; sum = sad8bi(pCur->u + 8 * x + 8 * y * stride, f_Ref->u + (y*8 + dy/2) * stride + x*8 + dx/2, b_Ref->u + (y*8 + b_dy/2) * stride + x*8 + b_dx/2, stride); if (sum >= 2 * MAX_CHROMA_SAD_FOR_SKIP * pMB->quant) return; /* no skip */ sum += sad8bi(pCur->v + 8*x + 8 * y * stride, f_Ref->v + (y*8 + dy/2) * stride + x*8 + dx/2, b_Ref->v + (y*8 + b_dy/2) * stride + x*8 + b_dx/2, stride); if (sum < 2 * MAX_CHROMA_SAD_FOR_SKIP * pMB->quant) { pMB->mode = MODE_DIRECT_NONE_MV; /* skipped */ for (k = 0; k < 4; k++) { pMB->qmvs[k] = pMB->mvs[k]; pMB->b_qmvs[k] = pMB->b_mvs[k]; } } } static __inline uint32_t SearchDirect(const IMAGE * const f_Ref, const uint8_t * const f_RefH, const uint8_t * const f_RefV, const uint8_t * const f_RefHV, const IMAGE * const b_Ref, const uint8_t * const b_RefH, const uint8_t * const b_RefV, const uint8_t * const b_RefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const int32_t TRB, const int32_t TRD, const MBParam * const pParam, MACROBLOCK * const pMB, const MACROBLOCK * const b_mb, int32_t * const best_sad, SearchData * const Data) { int32_t skip_sad; int k = (x + Data->iEdgedWidth*y) * 16; MainSearchFunc *MainSearchPtr; *Data->iMinSAD = 256*4096; Data->RefP[0] = f_Ref->y + k; Data->RefP[2] = f_RefH + k; Data->RefP[1] = f_RefV + k; Data->RefP[3] = f_RefHV + k; Data->b_RefP[0] = b_Ref->y + k; Data->b_RefP[2] = b_RefH + k; Data->b_RefP[1] = b_RefV + k; Data->b_RefP[3] = b_RefHV + k; Data->RefP[4] = f_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8; Data->RefP[5] = f_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8; Data->b_RefP[4] = b_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8; Data->b_RefP[5] = b_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8; k = Data->qpel ? 4 : 2; Data->max_dx = k * (pParam->width - x * 16); Data->max_dy = k * (pParam->height - y * 16); Data->min_dx = -k * (16 + x * 16); Data->min_dy = -k * (16 + y * 16); Data->referencemv = Data->qpel ? b_mb->qmvs : b_mb->mvs; Data->qpel_precision = 0; for (k = 0; k < 4; k++) { pMB->mvs[k].x = Data->directmvF[k].x = ((TRB * Data->referencemv[k].x) / TRD); pMB->b_mvs[k].x = Data->directmvB[k].x = ((TRB - TRD) * Data->referencemv[k].x) / TRD; pMB->mvs[k].y = Data->directmvF[k].y = ((TRB * Data->referencemv[k].y) / TRD); pMB->b_mvs[k].y = Data->directmvB[k].y = ((TRB - TRD) * Data->referencemv[k].y) / TRD; if ( (pMB->b_mvs[k].x > Data->max_dx) | (pMB->b_mvs[k].x < Data->min_dx) | (pMB->b_mvs[k].y > Data->max_dy) | (pMB->b_mvs[k].y < Data->min_dy) ) { *best_sad = 256*4096; /* in that case, we won't use direct mode */ pMB->mode = MODE_DIRECT; /* just to make sure it doesn't say "MODE_DIRECT_NONE_MV" */ pMB->b_mvs[0].x = pMB->b_mvs[0].y = 0; return 256*4096; } if (b_mb->mode != MODE_INTER4V) { pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = pMB->mvs[0]; pMB->b_mvs[1] = pMB->b_mvs[2] = pMB->b_mvs[3] = pMB->b_mvs[0]; Data->directmvF[1] = Data->directmvF[2] = Data->directmvF[3] = Data->directmvF[0]; Data->directmvB[1] = Data->directmvB[2] = Data->directmvB[3] = Data->directmvB[0]; break; } } CheckCandidate = b_mb->mode == MODE_INTER4V ? CheckCandidateDirect : CheckCandidateDirectno4v; CheckCandidate(0, 0, 255, &k, Data); /* initial (fast) skip decision */ if (*Data->iMinSAD < pMB->quant * INITIAL_SKIP_THRESH * (Data->chroma?3:2)) { /* possible skip */ if (Data->chroma) { pMB->mode = MODE_DIRECT_NONE_MV; return *Data->iMinSAD; /* skip. */ } else { SkipDecisionB(pCur, f_Ref, b_Ref, pMB, x, y, Data); if (pMB->mode == MODE_DIRECT_NONE_MV) return *Data->iMinSAD; /* skip. */ } } *Data->iMinSAD += Data->lambda16; skip_sad = *Data->iMinSAD; /* * DIRECT MODE DELTA VECTOR SEARCH. * This has to be made more effective, but at the moment I'm happy it's running at all */ if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; MainSearchPtr(0, 0, Data, 255); SubpelRefine(Data); *best_sad = *Data->iMinSAD; if (Data->qpel || b_mb->mode == MODE_INTER4V) pMB->mode = MODE_DIRECT; else pMB->mode = MODE_DIRECT_NO4V; /* for faster compensation */ pMB->pmvs[3] = *Data->currentMV; for (k = 0; k < 4; k++) { pMB->mvs[k].x = Data->directmvF[k].x + Data->currentMV->x; pMB->b_mvs[k].x = ( (Data->currentMV->x == 0) ? Data->directmvB[k].x :pMB->mvs[k].x - Data->referencemv[k].x); pMB->mvs[k].y = (Data->directmvF[k].y + Data->currentMV->y); pMB->b_mvs[k].y = ((Data->currentMV->y == 0) ? Data->directmvB[k].y : pMB->mvs[k].y - Data->referencemv[k].y); if (Data->qpel) { pMB->qmvs[k].x = pMB->mvs[k].x; pMB->mvs[k].x /= 2; pMB->b_qmvs[k].x = pMB->b_mvs[k].x; pMB->b_mvs[k].x /= 2; pMB->qmvs[k].y = pMB->mvs[k].y; pMB->mvs[k].y /= 2; pMB->b_qmvs[k].y = pMB->b_mvs[k].y; pMB->b_mvs[k].y /= 2; } if (b_mb->mode != MODE_INTER4V) { pMB->mvs[3] = pMB->mvs[2] = pMB->mvs[1] = pMB->mvs[0]; pMB->b_mvs[3] = pMB->b_mvs[2] = pMB->b_mvs[1] = pMB->b_mvs[0]; pMB->qmvs[3] = pMB->qmvs[2] = pMB->qmvs[1] = pMB->qmvs[0]; pMB->b_qmvs[3] = pMB->b_qmvs[2] = pMB->b_qmvs[1] = pMB->b_qmvs[0]; break; } } return skip_sad; } static void SearchInterpolate(const IMAGE * const f_Ref, const uint8_t * const f_RefH, const uint8_t * const f_RefV, const uint8_t * const f_RefHV, const IMAGE * const b_Ref, const uint8_t * const b_RefH, const uint8_t * const b_RefV, const uint8_t * const b_RefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t fcode, const uint32_t bcode, const uint32_t MotionFlags, const MBParam * const pParam, const VECTOR * const f_predMV, const VECTOR * const b_predMV, MACROBLOCK * const pMB, int32_t * const best_sad, SearchData * const fData) { int iDirection, i, j; SearchData bData; fData->qpel_precision = 0; memcpy(&bData, fData, sizeof(SearchData)); /* quick copy of common data */ *fData->iMinSAD = 4096*256; bData.currentMV++; bData.currentQMV++; fData->iFcode = bData.bFcode = fcode; fData->bFcode = bData.iFcode = bcode; i = (x + y * fData->iEdgedWidth) * 16; bData.b_RefP[0] = fData->RefP[0] = f_Ref->y + i; bData.b_RefP[2] = fData->RefP[2] = f_RefH + i; bData.b_RefP[1] = fData->RefP[1] = f_RefV + i; bData.b_RefP[3] = fData->RefP[3] = f_RefHV + i; bData.RefP[0] = fData->b_RefP[0] = b_Ref->y + i; bData.RefP[2] = fData->b_RefP[2] = b_RefH + i; bData.RefP[1] = fData->b_RefP[1] = b_RefV + i; bData.RefP[3] = fData->b_RefP[3] = b_RefHV + i; bData.b_RefP[4] = fData->RefP[4] = f_Ref->u + (x + (fData->iEdgedWidth/2) * y) * 8; bData.b_RefP[5] = fData->RefP[5] = f_Ref->v + (x + (fData->iEdgedWidth/2) * y) * 8; bData.RefP[4] = fData->b_RefP[4] = b_Ref->u + (x + (fData->iEdgedWidth/2) * y) * 8; bData.RefP[5] = fData->b_RefP[5] = b_Ref->v + (x + (fData->iEdgedWidth/2) * y) * 8; bData.bpredMV = fData->predMV = *f_predMV; fData->bpredMV = bData.predMV = *b_predMV; fData->currentMV[0] = fData->currentMV[2]; get_range(&fData->min_dx, &fData->max_dx, &fData->min_dy, &fData->max_dy, x, y, 16, pParam->width, pParam->height, fcode - fData->qpel, 0, 0); get_range(&bData.min_dx, &bData.max_dx, &bData.min_dy, &bData.max_dy, x, y, 16, pParam->width, pParam->height, bcode - fData->qpel, 0, 0); if (fData->currentMV[0].x > fData->max_dx) fData->currentMV[0].x = fData->max_dx; if (fData->currentMV[0].x < fData->min_dx) fData->currentMV[0].x = fData->min_dx; if (fData->currentMV[0].y > fData->max_dy) fData->currentMV[0].y = fData->max_dy; if (fData->currentMV[0].y < fData->min_dy) fData->currentMV[0].y = fData->min_dy; if (fData->currentMV[1].x > bData.max_dx) fData->currentMV[1].x = bData.max_dx; if (fData->currentMV[1].x < bData.min_dx) fData->currentMV[1].x = bData.min_dx; if (fData->currentMV[1].y > bData.max_dy) fData->currentMV[1].y = bData.max_dy; if (fData->currentMV[1].y < bData.min_dy) fData->currentMV[1].y = bData.min_dy; CheckCandidateInt(fData->currentMV[0].x, fData->currentMV[0].y, 255, &iDirection, fData); /* diamond */ do { iDirection = 255; /* forward MV moves */ i = fData->currentMV[0].x; j = fData->currentMV[0].y; CheckCandidateInt(i + 1, j, 0, &iDirection, fData); CheckCandidateInt(i, j + 1, 0, &iDirection, fData); CheckCandidateInt(i - 1, j, 0, &iDirection, fData); CheckCandidateInt(i, j - 1, 0, &iDirection, fData); /* backward MV moves */ i = fData->currentMV[1].x; j = fData->currentMV[1].y; fData->currentMV[2] = fData->currentMV[0]; CheckCandidateInt(i + 1, j, 0, &iDirection, &bData); CheckCandidateInt(i, j + 1, 0, &iDirection, &bData); CheckCandidateInt(i - 1, j, 0, &iDirection, &bData); CheckCandidateInt(i, j - 1, 0, &iDirection, &bData); } while (!(iDirection)); /* qpel refinement */ if (fData->qpel) { if (*fData->iMinSAD > *best_sad + 500) return; CheckCandidate = CheckCandidateInt; fData->qpel_precision = bData.qpel_precision = 1; get_range(&fData->min_dx, &fData->max_dx, &fData->min_dy, &fData->max_dy, x, y, 16, pParam->width, pParam->height, fcode, 1, 0); get_range(&bData.min_dx, &bData.max_dx, &bData.min_dy, &bData.max_dy, x, y, 16, pParam->width, pParam->height, bcode, 1, 0); fData->currentQMV[2].x = fData->currentQMV[0].x = 2 * fData->currentMV[0].x; fData->currentQMV[2].y = fData->currentQMV[0].y = 2 * fData->currentMV[0].y; fData->currentQMV[1].x = 2 * fData->currentMV[1].x; fData->currentQMV[1].y = 2 * fData->currentMV[1].y; SubpelRefine(fData); if (*fData->iMinSAD > *best_sad + 300) return; fData->currentQMV[2] = fData->currentQMV[0]; SubpelRefine(&bData); } *fData->iMinSAD += (2+3) * fData->lambda16; /* two bits are needed to code interpolate mode. */ if (*fData->iMinSAD < *best_sad) { *best_sad = *fData->iMinSAD; pMB->mvs[0] = fData->currentMV[0]; pMB->b_mvs[0] = fData->currentMV[1]; pMB->mode = MODE_INTERPOLATE; if (fData->qpel) { pMB->qmvs[0] = fData->currentQMV[0]; pMB->b_qmvs[0] = fData->currentQMV[1]; pMB->pmvs[1].x = pMB->qmvs[0].x - f_predMV->x; pMB->pmvs[1].y = pMB->qmvs[0].y - f_predMV->y; pMB->pmvs[0].x = pMB->b_qmvs[0].x - b_predMV->x; pMB->pmvs[0].y = pMB->b_qmvs[0].y - b_predMV->y; } else { pMB->pmvs[1].x = pMB->mvs[0].x - f_predMV->x; pMB->pmvs[1].y = pMB->mvs[0].y - f_predMV->y; pMB->pmvs[0].x = pMB->b_mvs[0].x - b_predMV->x; pMB->pmvs[0].y = pMB->b_mvs[0].y - b_predMV->y; } } } void MotionEstimationBVOP(MBParam * const pParam, FRAMEINFO * const frame, const int32_t time_bp, const int32_t time_pp, /* forward (past) reference */ const MACROBLOCK * const f_mbs, const IMAGE * const f_ref, const IMAGE * const f_refH, const IMAGE * const f_refV, const IMAGE * const f_refHV, /* backward (future) reference */ const FRAMEINFO * const b_reference, const IMAGE * const b_ref, const IMAGE * const b_refH, const IMAGE * const b_refV, const IMAGE * const b_refHV) { uint32_t i, j; int32_t best_sad; uint32_t skip_sad; int f_count = 0, b_count = 0, i_count = 0, d_count = 0, n_count = 0; const MACROBLOCK * const b_mbs = b_reference->mbs; VECTOR f_predMV, b_predMV; /* there is no prediction for direct mode*/ const int32_t TRB = time_pp - time_bp; const int32_t TRD = time_pp; /* some pre-inintialized data for the rest of the search */ SearchData Data; int32_t iMinSAD; VECTOR currentMV[3]; VECTOR currentQMV[3]; int32_t temp[8]; memset(&Data, 0, sizeof(SearchData)); Data.iEdgedWidth = pParam->edged_width; Data.currentMV = currentMV; Data.currentQMV = currentQMV; Data.iMinSAD = &iMinSAD; Data.lambda16 = lambda_vec16[frame->quant]; Data.qpel = pParam->vol_flags & XVID_VOL_QUARTERPEL; Data.rounding = 0; Data.chroma = frame->motion_flags & XVID_ME_CHROMA_BVOP; Data.temp = temp; Data.RefQ = f_refV->u; /* a good place, also used in MC (for similar purpose) */ /* note: i==horizontal, j==vertical */ for (j = 0; j < pParam->mb_height; j++) { f_predMV = b_predMV = zeroMV; /* prediction is reset at left boundary */ for (i = 0; i < pParam->mb_width; i++) { MACROBLOCK * const pMB = frame->mbs + i + j * pParam->mb_width; const MACROBLOCK * const b_mb = b_mbs + i + j * pParam->mb_width; /* special case, if collocated block is SKIPed in P-VOP: encoding is forward (0,0), cpb=0 without further ado */ if (b_reference->coding_type != S_VOP) if (b_mb->mode == MODE_NOT_CODED) { pMB->mode = MODE_NOT_CODED; continue; } Data.Cur = frame->image.y + (j * Data.iEdgedWidth + i) * 16; Data.CurU = frame->image.u + (j * Data.iEdgedWidth/2 + i) * 8; Data.CurV = frame->image.v + (j * Data.iEdgedWidth/2 + i) * 8; pMB->quant = frame->quant; /* direct search comes first, because it (1) checks for SKIP-mode and (2) sets very good predictions for forward and backward search */ skip_sad = SearchDirect(f_ref, f_refH->y, f_refV->y, f_refHV->y, b_ref, b_refH->y, b_refV->y, b_refHV->y, &frame->image, i, j, frame->motion_flags, TRB, TRD, pParam, pMB, b_mb, &best_sad, &Data); if (pMB->mode == MODE_DIRECT_NONE_MV) { n_count++; continue; } /* forward search */ SearchBF(f_ref, f_refH->y, f_refV->y, f_refHV->y, &frame->image, i, j, frame->motion_flags, frame->fcode, pParam, pMB, &f_predMV, &best_sad, MODE_FORWARD, &Data); /* backward search */ SearchBF(b_ref, b_refH->y, b_refV->y, b_refHV->y, &frame->image, i, j, frame->motion_flags, frame->bcode, pParam, pMB, &b_predMV, &best_sad, MODE_BACKWARD, &Data); /* interpolate search comes last, because it uses data from forward and backward as prediction */ SearchInterpolate(f_ref, f_refH->y, f_refV->y, f_refHV->y, b_ref, b_refH->y, b_refV->y, b_refHV->y, &frame->image, i, j, frame->fcode, frame->bcode, frame->motion_flags, pParam, &f_predMV, &b_predMV, pMB, &best_sad, &Data); /* final skip decision */ if ( (skip_sad < frame->quant * MAX_SAD00_FOR_SKIP * 2) && ((100*best_sad)/(skip_sad+1) > FINAL_SKIP_THRESH) ) SkipDecisionB(&frame->image, f_ref, b_ref, pMB, i, j, &Data); switch (pMB->mode) { case MODE_FORWARD: f_count++; f_predMV = Data.qpel ? pMB->qmvs[0] : pMB->mvs[0]; break; case MODE_BACKWARD: b_count++; b_predMV = Data.qpel ? pMB->b_qmvs[0] : pMB->b_mvs[0]; break; case MODE_INTERPOLATE: i_count++; f_predMV = Data.qpel ? pMB->qmvs[0] : pMB->mvs[0]; b_predMV = Data.qpel ? pMB->b_qmvs[0] : pMB->b_mvs[0]; break; case MODE_DIRECT: case MODE_DIRECT_NO4V: d_count++; default: break; } } } } static __inline void MEanalyzeMB ( const uint8_t * const pRef, const uint8_t * const pCur, const int x, const int y, const MBParam * const pParam, MACROBLOCK * const pMBs, SearchData * const Data) { int i, mask; int quarterpel = (pParam->vol_flags & XVID_VOL_QUARTERPEL)? 1: 0; VECTOR pmv[3]; MACROBLOCK * const pMB = &pMBs[x + y * pParam->mb_width]; for (i = 0; i < 5; i++) Data->iMinSAD[i] = MV_MAX_ERROR; /* median is only used as prediction. it doesn't have to be real */ if (x == 1 && y == 1) Data->predMV.x = Data->predMV.y = 0; else if (x == 1) /* left macroblock does not have any vector now */ Data->predMV = (pMB - pParam->mb_width)->mvs[0]; /* top instead of median */ else if (y == 1) /* top macroblock doesn't have it's vector */ Data->predMV = (pMB - 1)->mvs[0]; /* left instead of median */ else Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, 0); /* else median */ get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode - quarterpel, 0, 0); Data->Cur = pCur + (x + y * pParam->edged_width) * 16; Data->RefP[0] = pRef + (x + y * pParam->edged_width) * 16; pmv[1].x = EVEN(pMB->mvs[0].x); pmv[1].y = EVEN(pMB->mvs[0].y); pmv[2].x = EVEN(Data->predMV.x); pmv[2].y = EVEN(Data->predMV.y); pmv[0].x = pmv[0].y = 0; CheckCandidate32I(0, 0, 255, &i, Data); if (*Data->iMinSAD > 4 * MAX_SAD00_FOR_SKIP) { if (!(mask = make_mask(pmv, 1))) CheckCandidate32I(pmv[1].x, pmv[1].y, mask, &i, Data); if (!(mask = make_mask(pmv, 2))) CheckCandidate32I(pmv[2].x, pmv[2].y, mask, &i, Data); if (*Data->iMinSAD > 4 * MAX_SAD00_FOR_SKIP) /* diamond only if needed */ DiamondSearch(Data->currentMV->x, Data->currentMV->y, Data, i); } for (i = 0; i < 4; i++) { MACROBLOCK * MB = &pMBs[x + (i&1) + (y+(i>>1)) * pParam->mb_width]; MB->mvs[0] = MB->mvs[1] = MB->mvs[2] = MB->mvs[3] = Data->currentMV[i]; MB->mode = MODE_INTER; MB->sad16 = Data->iMinSAD[i+1]; } } #define INTRA_THRESH 2200 #define INTER_THRESH 50 #define INTRA_THRESH2 95 int MEanalysis( const IMAGE * const pRef, const FRAMEINFO * const Current, const MBParam * const pParam, const int maxIntra, //maximum number if non-I frames const int intraCount, //number of non-I frames after last I frame; 0 if we force P/B frame const int bCount, // number of B frames in a row const int b_thresh) { uint32_t x, y, intra = 0; int sSAD = 0; MACROBLOCK * const pMBs = Current->mbs; const IMAGE * const pCurrent = &Current->image; int IntraThresh = INTRA_THRESH, InterThresh = INTER_THRESH + b_thresh; int blocks = 0; int complexity = 0; int32_t iMinSAD[5], temp[5]; VECTOR currentMV[5]; SearchData Data; Data.iEdgedWidth = pParam->edged_width; Data.currentMV = currentMV; Data.iMinSAD = iMinSAD; Data.iFcode = Current->fcode; Data.temp = temp; CheckCandidate = CheckCandidate32I; if (intraCount != 0) { if (intraCount < 10) // we're right after an I frame IntraThresh += 15* (intraCount - 10) * (intraCount - 10); else if ( 5*(maxIntra - intraCount) < maxIntra) // we're close to maximum. 2 sec when max is 10 sec IntraThresh -= (IntraThresh * (maxIntra - 8*(maxIntra - intraCount)))/maxIntra; } InterThresh -= 12 * bCount; if (InterThresh < 15 + b_thresh) InterThresh = 15 + b_thresh; if (sadInit) (*sadInit) (); for (y = 1; y < pParam->mb_height-1; y += 2) { for (x = 1; x < pParam->mb_width-1; x += 2) { int i; blocks += 10; if (bCount == 0) pMBs[x + y * pParam->mb_width].mvs[0] = zeroMV; else { //extrapolation of the vector found for last frame pMBs[x + y * pParam->mb_width].mvs[0].x = (pMBs[x + y * pParam->mb_width].mvs[0].x * (bCount+1) ) / bCount; pMBs[x + y * pParam->mb_width].mvs[0].y = (pMBs[x + y * pParam->mb_width].mvs[0].y * (bCount+1) ) / bCount; } MEanalyzeMB(pRef->y, pCurrent->y, x, y, pParam, pMBs, &Data); for (i = 0; i < 4; i++) { int dev; MACROBLOCK *pMB = &pMBs[x+(i&1) + (y+(i>>1)) * pParam->mb_width]; dev = dev16(pCurrent->y + (x + (i&1) + (y + (i>>1)) * pParam->edged_width) * 16, pParam->edged_width); complexity += MAX(dev, 300); if (dev + IntraThresh < pMB->sad16) { pMB->mode = MODE_INTRA; if (++intra > ((pParam->mb_height-2)*(pParam->mb_width-2))/2) return I_VOP; } if (pMB->mvs[0].x == 0 && pMB->mvs[0].y == 0) if (dev > 500 && pMB->sad16 < 1000) sSAD += 1000; sSAD += (dev < 3000) ? pMB->sad16 : pMB->sad16/2; /* blocks with big contrast differences usually have large SAD - while they look very good in b-frames */ } } } complexity >>= 7; sSAD /= complexity + 4*blocks; if (intraCount > 80 && sSAD > INTRA_THRESH2 ) return I_VOP; if (sSAD > InterThresh ) return P_VOP; emms(); return B_VOP; } /* functions which perform BITS-based search/bitcount */ static int findRDinter(SearchData * const Data, const MACROBLOCK * const pMBs, const int x, const int y, const MBParam * const pParam, const uint32_t MotionFlags) { int i, iDirection; int32_t bsad[5]; CheckCandidate = CheckCandidateRD16; if (Data->qpel) { for(i = 0; i < 5; i++) { Data->currentMV[i].x = Data->currentQMV[i].x/2; Data->currentMV[i].y = Data->currentQMV[i].y/2; } Data->qpel_precision = 1; CheckCandidateRD16(Data->currentQMV[0].x, Data->currentQMV[0].y, 255, &iDirection, Data); if (MotionFlags & (XVID_ME_HALFPELREFINE16_RD | XVID_ME_EXTSEARCH_RD)) { /* we have to prepare for halfpixel-precision search */ for(i = 0; i < 5; i++) bsad[i] = Data->iMinSAD[i]; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv); Data->qpel_precision = 0; if (Data->currentQMV->x & 1 || Data->currentQMV->y & 1) CheckCandidateRD16(Data->currentMV[0].x, Data->currentMV[0].y, 255, &iDirection, Data); } } else { /* not qpel */ CheckCandidateRD16(Data->currentMV[0].x, Data->currentMV[0].y, 255, &iDirection, Data); } if (MotionFlags&XVID_ME_EXTSEARCH_RD) SquareSearch(Data->currentMV->x, Data->currentMV->y, Data, iDirection); if (MotionFlags&XVID_ME_HALFPELREFINE16_RD) SubpelRefine(Data); if (Data->qpel) { if (MotionFlags&(XVID_ME_EXTSEARCH_RD | XVID_ME_HALFPELREFINE16_RD)) { /* there was halfpel-precision search */ for(i = 0; i < 5; i++) if (bsad[i] > Data->iMinSAD[i]) { Data->currentQMV[i].x = 2 * Data->currentMV[i].x; /* we have found a better match */ Data->currentQMV[i].y = 2 * Data->currentMV[i].y; } /* preparing for qpel-precision search */ Data->qpel_precision = 1; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode, 1, 0); } if (MotionFlags&XVID_ME_QUARTERPELREFINE16_RD) SubpelRefine(Data); } if (MotionFlags&XVID_ME_CHECKPREDICTION_RD) { /* let's check vector equal to prediction */ VECTOR * v = Data->qpel ? Data->currentQMV : Data->currentMV; if (!(Data->predMV.x == v->x && Data->predMV.y == v->y)) CheckCandidateRD16(Data->predMV.x, Data->predMV.y, 255, &iDirection, Data); } return Data->iMinSAD[0]; } static int findRDinter4v(const SearchData * const Data, MACROBLOCK * const pMB, const MACROBLOCK * const pMBs, const int x, const int y, const MBParam * const pParam, const uint32_t MotionFlags, const VECTOR * const backup) { int cbp = 0, bits = 0, t = 0, i, iDirection; SearchData Data2, *Data8 = &Data2; int sumx = 0, sumy = 0; int16_t *in = Data->dctSpace, *coeff = Data->dctSpace + 64; uint8_t * ptr; memcpy(Data8, Data, sizeof(SearchData)); CheckCandidate = CheckCandidateRD8; for (i = 0; i < 4; i++) { /* for all luma blocks */ Data8->iMinSAD = Data->iMinSAD + i + 1; Data8->currentMV = Data->currentMV + i + 1; Data8->currentQMV = Data->currentQMV + i + 1; Data8->Cur = Data->Cur + 8*((i&1) + (i>>1)*Data->iEdgedWidth); Data8->RefP[0] = Data->RefP[0] + 8*((i&1) + (i>>1)*Data->iEdgedWidth); Data8->RefP[2] = Data->RefP[2] + 8*((i&1) + (i>>1)*Data->iEdgedWidth); Data8->RefP[1] = Data->RefP[1] + 8*((i&1) + (i>>1)*Data->iEdgedWidth); Data8->RefP[3] = Data->RefP[3] + 8*((i&1) + (i>>1)*Data->iEdgedWidth); *Data8->cbp = (Data->cbp[1] & (1<<(5-i))) ? 1:0; // copy corresponding cbp bit if(Data->qpel) { Data8->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, i); if (i != 0) t = d_mv_bits( Data8->currentQMV->x, Data8->currentQMV->y, Data8->predMV, Data8->iFcode, 0, 0); } else { Data8->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, i); if (i != 0) t = d_mv_bits( Data8->currentMV->x, Data8->currentMV->y, Data8->predMV, Data8->iFcode, 0, 0); } get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8, pParam->width, pParam->height, Data8->iFcode, Data8->qpel, 0); *Data8->iMinSAD += BITS_MULT*t; Data8->qpel_precision = Data8->qpel; /* checking the vector which has been found by SAD-based 8x8 search (if it's different than the one found so far) */ { VECTOR *v = Data8->qpel ? Data8->currentQMV : Data8->currentMV; if (!MVequal (*v, backup[i+1]) ) CheckCandidateRD8(backup[i+1].x, backup[i+1].y, 255, &iDirection, Data8); } if (Data8->qpel) { if (MotionFlags&XVID_ME_HALFPELREFINE8_RD || (MotionFlags&XVID_ME_EXTSEARCH8 && MotionFlags&XVID_ME_EXTSEARCH_RD)) { /* halfpixel motion search follows */ int32_t s = *Data8->iMinSAD; Data8->currentMV->x = Data8->currentQMV->x/2; Data8->currentMV->y = Data8->currentQMV->y/2; Data8->qpel_precision = 0; get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8, pParam->width, pParam->height, Data8->iFcode - 1, 0, 0); if (Data8->currentQMV->x & 1 || Data8->currentQMV->y & 1) CheckCandidateRD8(Data8->currentMV->x, Data8->currentMV->y, 255, &iDirection, Data8); if (MotionFlags & XVID_ME_EXTSEARCH8 && MotionFlags & XVID_ME_EXTSEARCH_RD) SquareSearch(Data8->currentMV->x, Data8->currentMV->x, Data8, 255); if (MotionFlags & XVID_ME_HALFPELREFINE8_RD) SubpelRefine(Data8); if(s > *Data8->iMinSAD) { /* we have found a better match */ Data8->currentQMV->x = 2*Data8->currentMV->x; Data8->currentQMV->y = 2*Data8->currentMV->y; } Data8->qpel_precision = 1; get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8, pParam->width, pParam->height, Data8->iFcode, 1, 0); } if (MotionFlags & XVID_ME_QUARTERPELREFINE8_RD) SubpelRefine(Data8); } else { /* not qpel */ if (MotionFlags & XVID_ME_EXTSEARCH8 && MotionFlags & XVID_ME_EXTSEARCH_RD) /* extsearch */ SquareSearch(Data8->currentMV->x, Data8->currentMV->x, Data8, 255); if (MotionFlags & XVID_ME_HALFPELREFINE8_RD) SubpelRefine(Data8); /* halfpel refinement */ } /* checking vector equal to predicion */ if (i != 0 && MotionFlags & XVID_ME_CHECKPREDICTION_RD) { const VECTOR * v = Data->qpel ? Data8->currentQMV : Data8->currentMV; if (!MVequal(*v, Data8->predMV)) CheckCandidateRD8(Data8->predMV.x, Data8->predMV.y, 255, &iDirection, Data8); } bits += *Data8->iMinSAD; if (bits >= Data->iMinSAD[0]) return bits; /* no chances for INTER4V */ /* MB structures for INTER4V mode; we have to set them here, we don't have predictor anywhere else */ if(Data->qpel) { pMB->pmvs[i].x = Data8->currentQMV->x - Data8->predMV.x; pMB->pmvs[i].y = Data8->currentQMV->y - Data8->predMV.y; pMB->qmvs[i] = *Data8->currentQMV; sumx += Data8->currentQMV->x/2; sumy += Data8->currentQMV->y/2; } else { pMB->pmvs[i].x = Data8->currentMV->x - Data8->predMV.x; pMB->pmvs[i].y = Data8->currentMV->y - Data8->predMV.y; sumx += Data8->currentMV->x; sumy += Data8->currentMV->y; } pMB->mvs[i] = *Data8->currentMV; pMB->sad8[i] = 4 * *Data8->iMinSAD; if (Data8->cbp[0]) cbp |= 1 << (5 - i); } /* end - for all luma blocks */ bits += BITS_MULT*xvid_cbpy_tab[15-(cbp>>2)].len; /* let's check chroma */ sumx = (sumx >> 3) + roundtab_76[sumx & 0xf]; sumy = (sumy >> 3) + roundtab_76[sumy & 0xf]; /* chroma U */ ptr = interpolate8x8_switch2(Data->RefQ + 64, Data->RefP[4], 0, 0, sumx, sumy, Data->iEdgedWidth/2, Data->rounding); transfer_8to16subro(in, Data->CurU, ptr, Data->iEdgedWidth/2); bits += Block_CalcBits(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 4); if (bits >= *Data->iMinSAD) return bits; /* chroma V */ ptr = interpolate8x8_switch2(Data->RefQ + 64, Data->RefP[5], 0, 0, sumx, sumy, Data->iEdgedWidth/2, Data->rounding); transfer_8to16subro(in, Data->CurV, ptr, Data->iEdgedWidth/2); bits += Block_CalcBits(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 5); bits += BITS_MULT*mcbpc_inter_tab[(MODE_INTER4V & 7) | ((cbp & 3) << 3)].len; *Data->cbp = cbp; return bits; } static int findRDintra(const SearchData * const Data) { int bits = BITS_MULT*1; /* this one is ac/dc prediction flag bit */ int cbp = 0, i, dc = 0; int16_t *in = Data->dctSpace, * coeff = Data->dctSpace + 64; for(i = 0; i < 4; i++) { int s = 8*((i&1) + (i>>1)*Data->iEdgedWidth); transfer_8to16copy(in, Data->Cur + s, Data->iEdgedWidth); bits += Block_CalcBitsIntra(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, i, &dc); if (bits >= Data->iMinSAD[0]) return bits; } bits += BITS_MULT*xvid_cbpy_tab[cbp>>2].len; /*chroma U */ transfer_8to16copy(in, Data->CurU, Data->iEdgedWidth/2); bits += Block_CalcBitsIntra(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 4, &dc); if (bits >= Data->iMinSAD[0]) return bits; /* chroma V */ transfer_8to16copy(in, Data->CurV, Data->iEdgedWidth/2); bits += Block_CalcBitsIntra(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 5, &dc); bits += BITS_MULT*mcbpc_inter_tab[(MODE_INTRA & 7) | ((cbp & 3) << 3)].len; return bits; } static int findRDgmc(const SearchData * const Data, const IMAGE * const vGMC, const int x, const int y) { int bits = BITS_MULT*1; /* this one is mcsel */ int cbp = 0, i; int16_t *in = Data->dctSpace, * coeff = Data->dctSpace + 64; for(i = 0; i < 4; i++) { int s = 8*((i&1) + (i>>1)*Data->iEdgedWidth); transfer_8to16subro(in, Data->Cur + s, vGMC->y + s + 16*(x+y*Data->iEdgedWidth), Data->iEdgedWidth); bits += Block_CalcBits(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, i); if (bits >= Data->iMinSAD[0]) return bits; } bits += BITS_MULT*xvid_cbpy_tab[15-(cbp>>2)].len; /*chroma U */ transfer_8to16subro(in, Data->CurU, vGMC->u + 8*(x+y*(Data->iEdgedWidth/2)), Data->iEdgedWidth/2); bits += Block_CalcBits(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 4); if (bits >= Data->iMinSAD[0]) return bits; /* chroma V */ transfer_8to16subro(in, Data->CurV , vGMC->v + 8*(x+y*(Data->iEdgedWidth/2)), Data->iEdgedWidth/2); bits += Block_CalcBits(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 5); bits += BITS_MULT*mcbpc_inter_tab[(MODE_INTER & 7) | ((cbp & 3) << 3)].len; *Data->cbp = cbp; return bits; } static __inline void GMEanalyzeMB ( const uint8_t * const pCur, const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const int x, const int y, const MBParam * const pParam, MACROBLOCK * const pMBs, SearchData * const Data) { int i=0; MACROBLOCK * const pMB = &pMBs[x + y * pParam->mb_width]; Data->iMinSAD[0] = MV_MAX_ERROR; Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, 0); get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, 16, 0, 0); Data->Cur = pCur + 16*(x + y * pParam->edged_width); Data->RefP[0] = pRef + 16*(x + y * pParam->edged_width); Data->RefP[1] = pRefV + 16*(x + y * pParam->edged_width); Data->RefP[2] = pRefH + 16*(x + y * pParam->edged_width); Data->RefP[3] = pRefHV + 16*(x + y * pParam->edged_width); Data->currentMV[0].x = Data->currentMV[0].y = 0; CheckCandidate16I(0, 0, 255, &i, Data); if ( (Data->predMV.x !=0) || (Data->predMV.y != 0) ) CheckCandidate16I(Data->predMV.x, Data->predMV.y, 255, &i, Data); AdvDiamondSearch(Data->currentMV[0].x, Data->currentMV[0].y, Data, 255); SubpelRefine(Data); /* for QPel halfpel positions are worse than in halfpel mode :( */ /* if (Data->qpel) { Data->currentQMV->x = 2*Data->currentMV->x; Data->currentQMV->y = 2*Data->currentMV->y; Data->qpel_precision = 1; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, iFcode, 1, 0); SubpelRefine(Data); } */ pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = Data->currentMV[0]; pMB->sad16 = Data->iMinSAD[0]; pMB->mode = MODE_INTER; pMB->sad16 += 10*d_mv_bits(pMB->mvs[0].x, pMB->mvs[0].y, Data->predMV, Data->iFcode, 0, 0); return; } void GMEanalysis(const MBParam * const pParam, const FRAMEINFO * const current, const FRAMEINFO * const reference, const IMAGE * const pRefH, const IMAGE * const pRefV, const IMAGE * const pRefHV) { uint32_t x, y; MACROBLOCK * const pMBs = current->mbs; const IMAGE * const pCurrent = ¤t->image; const IMAGE * const pReference = &reference->image; int32_t iMinSAD[5], temp[5]; VECTOR currentMV[5]; SearchData Data; memset(&Data, 0, sizeof(SearchData)); Data.iEdgedWidth = pParam->edged_width; Data.rounding = pParam->m_rounding_type; Data.currentMV = ¤tMV[0]; Data.iMinSAD = &iMinSAD[0]; Data.iFcode = current->fcode; Data.temp = temp; CheckCandidate = CheckCandidate16I; if (sadInit) (*sadInit) (); for (y = 0; y < pParam->mb_height; y ++) { for (x = 0; x < pParam->mb_width; x ++) { GMEanalyzeMB(pCurrent->y, pReference->y, pRefH->y, pRefV->y, pRefHV->y, x, y, pParam, pMBs, &Data); } } return; } WARPPOINTS GlobalMotionEst(MACROBLOCK * const pMBs, const MBParam * const pParam, const FRAMEINFO * const current, const FRAMEINFO * const reference, const IMAGE * const pRefH, const IMAGE * const pRefV, const IMAGE * const pRefHV) { const int deltax=8; // upper bound for difference between a MV and it's neighbour MVs const int deltay=8; const unsigned int gradx=512; // lower bound for gradient in MB (ignore "flat" blocks) const unsigned int grady=512; double sol[4] = { 0., 0., 0., 0. }; WARPPOINTS gmc; uint32_t mx, my; int MBh = pParam->mb_height; int MBw = pParam->mb_width; const int minblocks = 9; //MBh*MBw/32+3; /* just some reasonable number 3% + 3 */ const int maxblocks = MBh*MBw/4; /* just some reasonable number 3% + 3 */ int num=0; int oldnum; gmc.duv[0].x = gmc.duv[0].y = gmc.duv[1].x = gmc.duv[1].y = gmc.duv[2].x = gmc.duv[2].y = 0; GMEanalysis(pParam,current, reference, pRefH, pRefV, pRefHV); /* block based ME isn't done, yet, so do a quick presearch */ // filter mask of all blocks for (my = 0; my < (uint32_t)MBh; my++) for (mx = 0; mx < (uint32_t)MBw; mx++) { const int mbnum = mx + my * MBw; pMBs[mbnum].mcsel = 0; } for (my = 1; my < (uint32_t)MBh-1; my++) /* ignore boundary blocks */ for (mx = 1; mx < (uint32_t)MBw-1; mx++) /* theirs MVs are often wrong */ { const int mbnum = mx + my * MBw; MACROBLOCK *const pMB = &pMBs[mbnum]; const VECTOR mv = pMB->mvs[0]; /* don't use object boundaries */ if ( (abs(mv.x - (pMB-1)->mvs[0].x) < deltax) && (abs(mv.y - (pMB-1)->mvs[0].y) < deltay) && (abs(mv.x - (pMB+1)->mvs[0].x) < deltax) && (abs(mv.y - (pMB+1)->mvs[0].y) < deltay) && (abs(mv.x - (pMB-MBw)->mvs[0].x) < deltax) && (abs(mv.y - (pMB-MBw)->mvs[0].y) < deltay) && (abs(mv.x - (pMB+MBw)->mvs[0].x) < deltax) && (abs(mv.y - (pMB+MBw)->mvs[0].y) < deltay) ) { const int iEdgedWidth = pParam->edged_width; const uint8_t *const pCur = current->image.y + 16*(my*iEdgedWidth + mx); if ( (sad16 ( pCur, pCur+1 , iEdgedWidth, 65536) >= gradx ) && (sad16 ( pCur, pCur+iEdgedWidth, iEdgedWidth, 65536) >= grady ) ) { pMB->mcsel = 1; num++; } /* only use "structured" blocks */ } } emms(); /* further filtering would be possible, but during iteration, remaining outliers usually are removed, too */ if (num>= minblocks) do { /* until convergence */ double DtimesF[4]; double a,b,c,n,invdenom; double meanx,meany; a = b = c = n = 0; DtimesF[0] = DtimesF[1] = DtimesF[2] = DtimesF[3] = 0.; for (my = 1; my < (uint32_t)MBh-1; my++) for (mx = 1; mx < (uint32_t)MBw-1; mx++) { const int mbnum = mx + my * MBw; const VECTOR mv = pMBs[mbnum].mvs[0]; if (!pMBs[mbnum].mcsel) continue; n++; a += 16*mx+8; b += 16*my+8; c += (16*mx+8)*(16*mx+8)+(16*my+8)*(16*my+8); DtimesF[0] += (double)mv.x; DtimesF[1] += (double)mv.x*(16*mx+8) + (double)mv.y*(16*my+8); DtimesF[2] += (double)mv.x*(16*my+8) - (double)mv.y*(16*mx+8); DtimesF[3] += (double)mv.y; } invdenom = a*a+b*b-c*n; /* Solve the system: sol = (D'*E*D)^{-1} D'*E*F */ /* D'*E*F has been calculated in the same loop as matrix */ sol[0] = -c*DtimesF[0] + a*DtimesF[1] + b*DtimesF[2]; sol[1] = a*DtimesF[0] - n*DtimesF[1] + b*DtimesF[3]; sol[2] = b*DtimesF[0] - n*DtimesF[2] - a*DtimesF[3]; sol[3] = b*DtimesF[1] - a*DtimesF[2] - c*DtimesF[3]; sol[0] /= invdenom; sol[1] /= invdenom; sol[2] /= invdenom; sol[3] /= invdenom; meanx = meany = 0.; oldnum = 0; for (my = 1; my < (uint32_t)MBh-1; my++) for (mx = 1; mx < (uint32_t)MBw-1; mx++) { const int mbnum = mx + my * MBw; const VECTOR mv = pMBs[mbnum].mvs[0]; if (!pMBs[mbnum].mcsel) continue; oldnum++; meanx += fabs(( sol[0] + (16*mx+8)*sol[1] + (16*my+8)*sol[2] ) - (double)mv.x ); meany += fabs(( sol[3] - (16*mx+8)*sol[2] + (16*my+8)*sol[1] ) - (double)mv.y ); } if (4*meanx > oldnum) /* better fit than 0.25 (=1/4pel) is useless */ meanx /= oldnum; else meanx = 0.25; if (4*meany > oldnum) meany /= oldnum; else meany = 0.25; num = 0; for (my = 0; my < (uint32_t)MBh; my++) for (mx = 0; mx < (uint32_t)MBw; mx++) { const int mbnum = mx + my * MBw; const VECTOR mv = pMBs[mbnum].mvs[0]; if (!pMBs[mbnum].mcsel) continue; if ( ( fabs(( sol[0] + (16*mx+8)*sol[1] + (16*my+8)*sol[2] ) - (double)mv.x ) > meanx ) || ( fabs(( sol[3] - (16*mx+8)*sol[2] + (16*my+8)*sol[1] ) - (double)mv.y ) > meany ) ) pMBs[mbnum].mcsel=0; else num++; } } while ( (oldnum != num) && (num>= minblocks) ); if (num < minblocks) { const int iEdgedWidth = pParam->edged_width; num = 0; /* fprintf(stderr,"Warning! Unreliable GME (%d/%d blocks), falling back to translation.\n",num,MBh*MBw); */ gmc.duv[0].x= gmc.duv[0].y= gmc.duv[1].x= gmc.duv[1].y= gmc.duv[2].x= gmc.duv[2].y=0; if (!(current->motion_flags & XVID_ME_GME_REFINE)) return gmc; for (my = 1; my < (uint32_t)MBh-1; my++) /* ignore boundary blocks */ for (mx = 1; mx < (uint32_t)MBw-1; mx++) /* theirs MVs are often wrong */ { const int mbnum = mx + my * MBw; MACROBLOCK *const pMB = &pMBs[mbnum]; const uint8_t *const pCur = current->image.y + 16*(my*iEdgedWidth + mx); if ( (sad16 ( pCur, pCur+1 , iEdgedWidth, 65536) >= gradx ) && (sad16 ( pCur, pCur+iEdgedWidth, iEdgedWidth, 65536) >= grady ) ) { pMB->mcsel = 1; gmc.duv[0].x += pMB->mvs[0].x; gmc.duv[0].y += pMB->mvs[0].y; num++; } } if (gmc.duv[0].x) gmc.duv[0].x /= num; if (gmc.duv[0].y) gmc.duv[0].y /= num; } else { gmc.duv[0].x=(int)(sol[0]+0.5); gmc.duv[0].y=(int)(sol[3]+0.5); gmc.duv[1].x=(int)(sol[1]*pParam->width+0.5); gmc.duv[1].y=(int)(-sol[2]*pParam->width+0.5); gmc.duv[2].x=-gmc.duv[1].y; /* two warp points only */ gmc.duv[2].y=gmc.duv[1].x; } if (num>maxblocks) { for (my = 1; my < (uint32_t)MBh-1; my++) for (mx = 1; mx < (uint32_t)MBw-1; mx++) { const int mbnum = mx + my * MBw; if (pMBs[mbnum-1].mcsel) pMBs[mbnum].mcsel=0; else if (pMBs[mbnum-MBw].mcsel) pMBs[mbnum].mcsel=0; } } return gmc; } int GlobalMotionEstRefine( WARPPOINTS *const startwp, MACROBLOCK * const pMBs, const MBParam * const pParam, const FRAMEINFO * const current, const FRAMEINFO * const reference, const IMAGE * const pCurr, const IMAGE * const pRef, const IMAGE * const pRefH, const IMAGE * const pRefV, const IMAGE * const pRefHV) { uint8_t* GMCblock = (uint8_t*)malloc(16*pParam->edged_width); WARPPOINTS bestwp=*startwp; WARPPOINTS centerwp,currwp; int gmcminSAD=0; int gmcSAD=0; int direction; // int mx,my; /* use many blocks... */ /* for (my = 0; my < (uint32_t)pParam->mb_height; my++) for (mx = 0; mx < (uint32_t)pParam->mb_width; mx++) { const int mbnum = mx + my * pParam->mb_width; pMBs[mbnum].mcsel=1; } */ /* or rather don't use too many blocks... */ /* for (my = 1; my < (uint32_t)MBh-1; my++) for (mx = 1; mx < (uint32_t)MBw-1; mx++) { const int mbnum = mx + my * MBw; if (MBmask[mbnum-1]) MBmask[mbnum-1]=0; else if (MBmask[mbnum-MBw]) MBmask[mbnum-1]=0; } */ gmcminSAD = globalSAD(&bestwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if ( (reference->coding_type == S_VOP) && ( (reference->warp.duv[1].x != bestwp.duv[1].x) || (reference->warp.duv[1].y != bestwp.duv[1].y) || (reference->warp.duv[0].x != bestwp.duv[0].x) || (reference->warp.duv[0].y != bestwp.duv[0].y) || (reference->warp.duv[2].x != bestwp.duv[2].x) || (reference->warp.duv[2].y != bestwp.duv[2].y) ) ) { gmcSAD = globalSAD(&reference->warp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = reference->warp; gmcminSAD = gmcSAD; } } do { direction = 0; centerwp = bestwp; currwp = centerwp; currwp.duv[0].x--; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 1; } else { currwp = centerwp; currwp.duv[0].x++; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 2; } } if (direction) continue; currwp = centerwp; currwp.duv[0].y--; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 4; } else { currwp = centerwp; currwp.duv[0].y++; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 8; } } if (direction) continue; currwp = centerwp; currwp.duv[1].x++; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 32; } currwp.duv[2].y++; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 1024; } currwp = centerwp; currwp.duv[1].x--; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 16; } else { currwp = centerwp; currwp.duv[1].x++; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 32; } } if (direction) continue; currwp = centerwp; currwp.duv[1].y--; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 64; } else { currwp = centerwp; currwp.duv[1].y++; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 128; } } if (direction) continue; currwp = centerwp; currwp.duv[2].x--; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 256; } else { currwp = centerwp; currwp.duv[2].x++; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 512; } } if (direction) continue; currwp = centerwp; currwp.duv[2].y--; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 1024; } else { currwp = centerwp; currwp.duv[2].y++; gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock); if (gmcSAD < gmcminSAD) { bestwp = currwp; gmcminSAD = gmcSAD; direction = 2048; } } } while (direction); free(GMCblock); *startwp = bestwp; return gmcminSAD; } int globalSAD(const WARPPOINTS *const wp, const MBParam * const pParam, const MACROBLOCK * const pMBs, const FRAMEINFO * const current, const IMAGE * const pRef, const IMAGE * const pCurr, uint8_t *const GMCblock) { NEW_GMC_DATA gmc_data; int iSAD, gmcSAD=0; int num=0; unsigned int mx, my; generate_GMCparameters( 3, 3, wp, pParam->width, pParam->height, &gmc_data); for (my = 0; my < (uint32_t)pParam->mb_height; my++) for (mx = 0; mx < (uint32_t)pParam->mb_width; mx++) { const int mbnum = mx + my * pParam->mb_width; const int iEdgedWidth = pParam->edged_width; if (!pMBs[mbnum].mcsel) continue; gmc_data.predict_16x16(&gmc_data, GMCblock, pRef->y, iEdgedWidth, iEdgedWidth, mx, my, pParam->m_rounding_type); iSAD = sad16 ( pCurr->y + 16*(my*iEdgedWidth + mx), GMCblock , iEdgedWidth, 65536); iSAD -= pMBs[mbnum].sad16; if (iSAD<0) gmcSAD += iSAD; num++; } return gmcSAD; }