[svn] / branches / dev-api-4 / xvidcore / src / motion / motion_est.c Repository:
ViewVC logotype

Diff of /branches/dev-api-4/xvidcore/src/motion/motion_est.c

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/xvidcore/src/motion/motion_est.c revision 3, Fri Mar 8 02:46:11 2002 UTC branches/dev-api-4/xvidcore/src/motion/motion_est.c revision 1115, Thu Aug 7 15:42:50 2003 UTC
# Line 1  Line 1 
1  /**************************************************************************  /*****************************************************************************
2   *   *
3   *  Modifications:   *  XVID MPEG-4 VIDEO CODEC
4     *  - Motion Estimation related code  -
5   *   *
6   *  08.02.2002 split up PMVfast into three routines: PMVFast, PMVFast_MainLoop   *  Copyright(C) 2002 Christoph Lampert <gruel@web.de>
7   *             PMVFast_Refine to support multiple searches with different start points   *               2002 Michael Militzer <michael@xvid.org>
8   *      07.01.2002 uv-block-based interpolation   *               2002-2003 Radoslaw Czyz <xvid@syskin.cjb.net>
  *  06.01.2002 INTER/INTRA-decision is now done before any SEARCH8 (speedup)  
  *                         changed INTER_BIAS to 150 (as suggested by suxen_drol)  
  *                         removed halfpel refinement step in PMVfastSearch8 + quality=5  
  *                         added new quality mode = 6 which performs halfpel refinement  
  *                         filesize difference between quality 5 and 6 is smaller than 1%  
  *             (Isibaar)  
  *  31.12.2001 PMVfastSearch16 and PMVfastSearch8 (gruel)  
  *      30.12.2001 get_range/MotionSearchX simplified; blue/green bug fix  
  *      22.12.2001 commented best_point==99 check  
  *      19.12.2001 modified get_range (purple bug fix)  
  *  15.12.2001 moved pmv displacement from mbprediction  
  *  02.12.2001 motion estimation/compensation split (Isibaar)  
  *      16.11.2001 rewrote/tweaked search algorithms; pross@cs.rmit.edu.au  
  *  10.11.2001 support for sad16/sad8 functions  
  *  28.08.2001 reactivated MODE_INTER4V for EXT_MODE  
  *  24.08.2001 removed MODE_INTER4V_Q, disabled MODE_INTER4V for EXT_MODE  
  *      22.08.2001 added MODE_INTER4V_Q  
  *  20.08.2001 added pragma to get rid of internal compiler error with VC6  
  *             idea by Cyril. Thanks.  
9   *   *
10   *  Michael Militzer <isibaar@videocoding.de>   *  This program is free software ; you can redistribute it and/or modify
11     *  it under the terms of the GNU General Public License as published by
12     *  the Free Software Foundation ; either version 2 of the License, or
13     *  (at your option) any later version.
14   *   *
15   **************************************************************************/   *  This program is distributed in the hope that it will be useful,
16     *  but WITHOUT ANY WARRANTY ; without even the implied warranty of
17     *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18     *  GNU General Public License for more details.
19     *
20     *  You should have received a copy of the GNU General Public License
21     *  along with this program ; if not, write to the Free Software
22     *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
23     *
24     * $Id: motion_est.c,v 1.58.2.27 2003-08-07 15:42:50 chl Exp $
25     *
26     ****************************************************************************/
27    
28  #include <assert.h>  #include <assert.h>
29  #include <stdio.h>  #include <stdio.h>
30    #include <stdlib.h>
31    #include <string.h>     /* memcpy */
32    #include <math.h>       /* lrint */
33    
34  #include "../encoder.h"  #include "../encoder.h"
35  #include "../utils/mbfunctions.h"  #include "../utils/mbfunctions.h"
36  #include "../prediction/mbprediction.h"  #include "../prediction/mbprediction.h"
37  #include "../global.h"  #include "../global.h"
38  #include "../utils/timer.h"  #include "../utils/timer.h"
39    #include "../image/interpolate8x8.h"
40    #include "motion_est.h"
41    #include "motion.h"
42  #include "sad.h"  #include "sad.h"
43    #include "gmc.h"
44    #include "../utils/emms.h"
45    #include "../dct/fdct.h"
46    
47    /*****************************************************************************
48     * Modified rounding tables -- declared in motion.h
49     * Original tables see ISO spec tables 7-6 -> 7-9
50     ****************************************************************************/
51    
52    const uint32_t roundtab[16] =
53    {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 };
54    
55    /* K = 4 */
56    const uint32_t roundtab_76[16] =
57    { 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1 };
58    
59    /* K = 2 */
60    const uint32_t roundtab_78[8] =
61    { 0, 0, 1, 1, 0, 0, 0, 1  };
62    
63    /* K = 1 */
64    const uint32_t roundtab_79[4] =
65    { 0, 1, 0, 0 };
66    
67    #define INITIAL_SKIP_THRESH     (10)
68    #define FINAL_SKIP_THRESH       (50)
69    #define MAX_SAD00_FOR_SKIP      (20)
70    #define MAX_CHROMA_SAD_FOR_SKIP (22)
71    
72    #define CHECK_CANDIDATE(X,Y,D) { \
73    CheckCandidate((X),(Y), (D), &iDirection, data ); }
74    
75    
76    /*****************************************************************************
77     * Code
78     ****************************************************************************/
79    
80    static __inline uint32_t
81    d_mv_bits(int x, int y, const VECTOR pred, const uint32_t iFcode, const int qpel, const int rrv)
82    {
83            int bits;
84            const int q = (1 << (iFcode - 1)) - 1;
85    
86            x <<= qpel;
87            y <<= qpel;
88            if (rrv) { x = RRV_MV_SCALEDOWN(x); y = RRV_MV_SCALEDOWN(y); }
89    
90            x -= pred.x;
91            bits = (x != 0 ? iFcode:0);
92            x = abs(x);
93            x += q;
94            x >>= (iFcode - 1);
95            bits += mvtab[x];
96    
97            y -= pred.y;
98            bits += (y != 0 ? iFcode:0);
99            y = abs(y);
100            y += q;
101            y >>= (iFcode - 1);
102            bits += mvtab[y];
103    
104            return bits;
105    }
106    
107    static int32_t ChromaSAD2(const int fx, const int fy, const int bx, const int by,
108                                                            const SearchData * const data)
109    {
110            int sad;
111            const uint32_t stride = data->iEdgedWidth/2;
112            uint8_t * f_refu = data->RefQ,
113                    * f_refv = data->RefQ + 8,
114                    * b_refu = data->RefQ + 16,
115                    * b_refv = data->RefQ + 24;
116            int offset = (fx>>1) + (fy>>1)*stride;
117    
118            switch (((fx & 1) << 1) | (fy & 1))     {
119                    case 0:
120                            f_refu = (uint8_t*)data->RefP[4] + offset;
121                            f_refv = (uint8_t*)data->RefP[5] + offset;
122                            break;
123                    case 1:
124                            interpolate8x8_halfpel_v(f_refu, data->RefP[4] + offset, stride, data->rounding);
125                            interpolate8x8_halfpel_v(f_refv, data->RefP[5] + offset, stride, data->rounding);
126                            break;
127                    case 2:
128                            interpolate8x8_halfpel_h(f_refu, data->RefP[4] + offset, stride, data->rounding);
129                            interpolate8x8_halfpel_h(f_refv, data->RefP[5] + offset, stride, data->rounding);
130                            break;
131                    default:
132                            interpolate8x8_halfpel_hv(f_refu, data->RefP[4] + offset, stride, data->rounding);
133                            interpolate8x8_halfpel_hv(f_refv, data->RefP[5] + offset, stride, data->rounding);
134                            break;
135            }
136    
137            offset = (bx>>1) + (by>>1)*stride;
138            switch (((bx & 1) << 1) | (by & 1))     {
139                    case 0:
140                            b_refu = (uint8_t*)data->b_RefP[4] + offset;
141                            b_refv = (uint8_t*)data->b_RefP[5] + offset;
142                            break;
143                    case 1:
144                            interpolate8x8_halfpel_v(b_refu, data->b_RefP[4] + offset, stride, data->rounding);
145                            interpolate8x8_halfpel_v(b_refv, data->b_RefP[5] + offset, stride, data->rounding);
146                            break;
147                    case 2:
148                            interpolate8x8_halfpel_h(b_refu, data->b_RefP[4] + offset, stride, data->rounding);
149                            interpolate8x8_halfpel_h(b_refv, data->b_RefP[5] + offset, stride, data->rounding);
150                            break;
151                    default:
152                            interpolate8x8_halfpel_hv(b_refu, data->b_RefP[4] + offset, stride, data->rounding);
153                            interpolate8x8_halfpel_hv(b_refv, data->b_RefP[5] + offset, stride, data->rounding);
154                            break;
155            }
156    
157            sad = sad8bi(data->CurU, b_refu, f_refu, stride);
158            sad += sad8bi(data->CurV, b_refv, f_refv, stride);
159    
160            return sad;
161    }
162    
163    static int32_t
164    ChromaSAD(const int dx, const int dy, const SearchData * const data)
165    {
166            int sad;
167            const uint32_t stride = data->iEdgedWidth/2;
168            int offset = (dx>>1) + (dy>>1)*stride;
169    
170            if (dx == data->temp[5] && dy == data->temp[6]) return data->temp[7]; /* it has been checked recently */
171            data->temp[5] = dx; data->temp[6] = dy; /* backup */
172    
173            switch (((dx & 1) << 1) | (dy & 1))     {
174                    case 0:
175                            sad = sad8(data->CurU, data->RefP[4] + offset, stride);
176                            sad += sad8(data->CurV, data->RefP[5] + offset, stride);
177                            break;
178                    case 1:
179                            sad = sad8bi(data->CurU, data->RefP[4] + offset, data->RefP[4] + offset + stride, stride);
180                            sad += sad8bi(data->CurV, data->RefP[5] + offset, data->RefP[5] + offset + stride, stride);
181                            break;
182                    case 2:
183                            sad = sad8bi(data->CurU, data->RefP[4] + offset, data->RefP[4] + offset + 1, stride);
184                            sad += sad8bi(data->CurV, data->RefP[5] + offset, data->RefP[5] + offset + 1, stride);
185                            break;
186                    default:
187                            interpolate8x8_halfpel_hv(data->RefQ, data->RefP[4] + offset, stride, data->rounding);
188                            sad = sad8(data->CurU, data->RefQ, stride);
189    
190  // very large value                          interpolate8x8_halfpel_hv(data->RefQ, data->RefP[5] + offset, stride, data->rounding);
191  #define MV_MAX_ERROR    (4096 * 256)                          sad += sad8(data->CurV, data->RefQ, stride);
192                            break;
193  // stop search if sdelta < THRESHOLD          }
194  #define MV16_THRESHOLD  192          data->temp[7] = sad; /* backup, part 2 */
195  #define MV8_THRESHOLD   56          return sad;
196    }
197    
198    static __inline const uint8_t *
199    GetReferenceB(const int x, const int y, const uint32_t dir, const SearchData * const data)
200    {
201            /* dir : 0 = forward, 1 = backward */
202            const uint8_t *const *const direction = ( dir == 0 ? data->RefP : data->b_RefP );
203            const int picture = ((x&1)<<1) | (y&1);
204            const int offset = (x>>1) + (y>>1)*data->iEdgedWidth;
205            return direction[picture] + offset;
206    }
207    
208    /* this is a simpler copy of GetReferenceB, but as it's __inline anyway, we can keep the two separate */
209    static __inline const uint8_t *
210    GetReference(const int x, const int y, const SearchData * const data)
211    {
212            const int picture = ((x&1)<<1) | (y&1);
213            const int offset = (x>>1) + (y>>1)*data->iEdgedWidth;
214            return data->RefP[picture] + offset;
215    }
216    
217    static uint8_t *
218    Interpolate8x8qpel(const int x, const int y, const uint32_t block, const uint32_t dir, const SearchData * const data)
219    {
220            /* create or find a qpel-precision reference picture; return pointer to it */
221            uint8_t * Reference = data->RefQ + 16*dir;
222            const uint32_t iEdgedWidth = data->iEdgedWidth;
223            const uint32_t rounding = data->rounding;
224            const int halfpel_x = x/2;
225            const int halfpel_y = y/2;
226            const uint8_t *ref1, *ref2, *ref3, *ref4;
227    
228            ref1 = GetReferenceB(halfpel_x, halfpel_y, dir, data);
229            ref1 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
230            switch( ((x&1)<<1) + (y&1) ) {
231            case 3: /* x and y in qpel resolution - the "corners" (top left/right and */
232                            /* bottom left/right) during qpel refinement */
233                    ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data);
234                    ref3 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data);
235                    ref4 = GetReferenceB(x - halfpel_x, y - halfpel_y, dir, data);
236                    ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
237                    ref3 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
238                    ref4 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
239                    interpolate8x8_avg4(Reference, ref1, ref2, ref3, ref4, iEdgedWidth, rounding);
240                    break;
241    
242            case 1: /* x halfpel, y qpel - top or bottom during qpel refinement */
243                    ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data);
244                    ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
245                    interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8);
246                    break;
247    
248            case 2: /* x qpel, y halfpel - left or right during qpel refinement */
249                    ref2 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data);
250                    ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
251                    interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8);
252                    break;
253    
254            default: /* pure halfpel position */
255                    return (uint8_t *) ref1;
256    
257            }
258            return Reference;
259    }
260    
261    static uint8_t *
262    Interpolate16x16qpel(const int x, const int y, const uint32_t dir, const SearchData * const data)
263    {
264            /* create or find a qpel-precision reference picture; return pointer to it */
265            uint8_t * Reference = data->RefQ + 16*dir;
266            const uint32_t iEdgedWidth = data->iEdgedWidth;
267            const uint32_t rounding = data->rounding;
268            const int halfpel_x = x/2;
269            const int halfpel_y = y/2;
270            const uint8_t *ref1, *ref2, *ref3, *ref4;
271    
272            ref1 = GetReferenceB(halfpel_x, halfpel_y, dir, data);
273            switch( ((x&1)<<1) + (y&1) ) {
274            case 3:
275                    /*
276                     * x and y in qpel resolution - the "corners" (top left/right and
277                     * bottom left/right) during qpel refinement
278                     */
279                    ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data);
280                    ref3 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data);
281                    ref4 = GetReferenceB(x - halfpel_x, y - halfpel_y, dir, data);
282                    interpolate8x8_avg4(Reference, ref1, ref2, ref3, ref4, iEdgedWidth, rounding);
283                    interpolate8x8_avg4(Reference+8, ref1+8, ref2+8, ref3+8, ref4+8, iEdgedWidth, rounding);
284                    interpolate8x8_avg4(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, ref3+8*iEdgedWidth, ref4+8*iEdgedWidth, iEdgedWidth, rounding);
285                    interpolate8x8_avg4(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, ref3+8*iEdgedWidth+8, ref4+8*iEdgedWidth+8, iEdgedWidth, rounding);
286                    break;
287    
288  /* sad16(0,0) bias; mpeg4 spec suggests nb/2+1 */          case 1: /* x halfpel, y qpel - top or bottom during qpel refinement */
289  /* nb  = vop pixels * 2^(bpp-8) */                  ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data);
290  #define MV16_00_BIAS    (128+1)                  interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8);
291                    interpolate8x8_avg2(Reference+8, ref1+8, ref2+8, iEdgedWidth, rounding, 8);
292                    interpolate8x8_avg2(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, iEdgedWidth, rounding, 8);
293                    interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding, 8);
294                    break;
295    
296  /* INTER bias for INTER/INTRA decision; mpeg4 spec suggests 2*nb */          case 2: /* x qpel, y halfpel - left or right during qpel refinement */
297  #define INTER_BIAS      512                  ref2 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data);
298                    interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8);
299                    interpolate8x8_avg2(Reference+8, ref1+8, ref2+8, iEdgedWidth, rounding, 8);
300                    interpolate8x8_avg2(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, iEdgedWidth, rounding, 8);
301                    interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding, 8);
302                    break;
303    
304  /* Parameters which control inter/inter4v decision */          default: /* pure halfpel position */
305  #define IMV16X16                        5                  return (uint8_t *) ref1;
306            }
307            return Reference;
308    }
309    
310  /* vector map (vlc delta size) smoother parameters */  /* CHECK_CANDIATE FUNCTIONS START */
 #define NEIGH_TEND_16X16        2  
 #define NEIGH_TEND_8X8          2  
311    
312    static void
313    CheckCandidate16(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
314    {
315            int xc, yc;
316            const uint8_t * Reference;
317            VECTOR * current;
318            int32_t sad; uint32_t t;
319    
320  // fast ((A)/2)*2          if ( (x > data->max_dx) || (x < data->min_dx)
321  #define EVEN(A)         (((A)<0?(A)+1:(A)) & ~1)                  || (y > data->max_dy) || (y < data->min_dy) ) return;
322    
323            if (!data->qpel_precision) {
324                    Reference = GetReference(x, y, data);
325                    current = data->currentMV;
326                    xc = x; yc = y;
327            } else { /* x and y are in 1/4 precision */
328                    Reference = Interpolate16x16qpel(x, y, 0, data);
329                    xc = x/2; yc = y/2; /* for chroma sad */
330                    current = data->currentQMV;
331            }
332    
333  #define MIN(X, Y) ((X)<(Y)?(X):(Y))          sad = sad16v(data->Cur, Reference, data->iEdgedWidth, data->temp + 1);
334  #define MAX(X, Y) ((X)>(Y)?(X):(Y))          t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);
 #define ABS(X) (((X)>0)?(X):-(X))  
 #define SIGN(X) (((X)>0)?1:-1)  
335    
336            sad += (data->lambda16 * t * sad)>>10;
337            data->temp[1] += (data->lambda8 * t * (data->temp[1] + NEIGH_8X8_BIAS))>>10;
338    
339  int32_t PMVfastSearch8(          if (data->chroma && sad < data->iMinSAD[0])
340                                          const uint8_t * const pRef,                  sad += ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3],
341                                          const uint8_t * const pRefH,                                                          (yc >> 1) + roundtab_79[yc & 0x3], data);
                                         const uint8_t * const pRefV,  
                                         const uint8_t * const pRefHV,  
                                         const IMAGE * const pCur,  
                                         const int x, const int y,  
                                         const int start_x, int start_y,  
                                         const uint32_t iQuality,  
                                         MBParam * const pParam,  
                                         MACROBLOCK * const pMBs,  
                                         VECTOR * const currMV,  
                                         VECTOR * const currPMV);  
342    
343  int32_t PMVfastSearch16(          if (sad < data->iMinSAD[0]) {
344                                          const uint8_t * const pRef,                  data->iMinSAD[0] = sad;
345                                          const uint8_t * const pRefH,                  current[0].x = x; current[0].y = y;
346                                          const uint8_t * const pRefV,                  *dir = Direction;
347                                          const uint8_t * const pRefHV,          }
                                         const IMAGE * const pCur,  
                                         const int x, const int y,  
                                         const uint32_t iQuality,  
                                         MBParam * const pParam,  
                                         MACROBLOCK * const pMBs,  
                                         VECTOR * const currMV,  
                                         VECTOR * const currPMV);  
348    
349            if (data->temp[1] < data->iMinSAD[1]) {
350                    data->iMinSAD[1] = data->temp[1]; current[1].x = x; current[1].y = y; }
351            if (data->temp[2] < data->iMinSAD[2]) {
352                    data->iMinSAD[2] = data->temp[2]; current[2].x = x; current[2].y = y; }
353            if (data->temp[3] < data->iMinSAD[3]) {
354                    data->iMinSAD[3] = data->temp[3]; current[3].x = x; current[3].y = y; }
355            if (data->temp[4] < data->iMinSAD[4]) {
356                    data->iMinSAD[4] = data->temp[4]; current[4].x = x; current[4].y = y; }
357    }
358    
359    static void
360    CheckCandidate8(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
361    {
362            int32_t sad; uint32_t t;
363            const uint8_t * Reference;
364            VECTOR * current;
365    
366  /* diamond search stuff          if ( (x > data->max_dx) || (x < data->min_dx)
367     keep the the sequence in circular order (so optimization works)                  || (y > data->max_dy) || (y < data->min_dy) ) return;
 */  
368    
369  typedef struct          if (!data->qpel_precision) {
370  {                  Reference = GetReference(x, y, data);
371          int32_t dx;                  current = data->currentMV;
372          int32_t dy;          } else { /* x and y are in 1/4 precision */
373                    Reference = Interpolate8x8qpel(x, y, 0, 0, data);
374                    current = data->currentQMV;
375  }  }
 DPOINT;  
376    
377            sad = sad8(data->Cur, Reference, data->iEdgedWidth);
378            t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);
379    
380  static const DPOINT diamond_small[4] =          sad += (data->lambda8 * t * (sad+NEIGH_8X8_BIAS))>>10;
 {  
         {0, 1}, {1, 0}, {0, -1}, {-1, 0}  
 };  
381    
382            if (sad < *(data->iMinSAD)) {
383                    *(data->iMinSAD) = sad;
384                    current->x = x; current->y = y;
385                    *dir = Direction;
386            }
387    }
388    
389  static const DPOINT diamond_large[8] =  static void
390    CheckCandidate32(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
391  {  {
392          {0, 2}, {1, 1}, {2, 0}, {1, -1}, {0, -2}, {-1, -1}, {-2, 0}, {-1, 1}          uint32_t t;
393  };          const uint8_t * Reference;
   
394    
395  // mv.length table          if ( (!(x&1) && x !=0) || (!(y&1) && y !=0) || /* non-zero even value */
396  static const uint32_t mvtab[33] = {                  (x > data->max_dx) || (x < data->min_dx)
397      1,  2,  3,  4,  6,  7,  7,  7,                  || (y > data->max_dy) || (y < data->min_dy) ) return;
     9,  9,  9,  10, 10, 10, 10, 10,  
     10, 10, 10, 10, 10, 10, 10, 10,  
     10, 11, 11, 11, 11, 11, 11, 12, 12  
 };  
398    
399            Reference = GetReference(x, y, data);
400            t = d_mv_bits(x, y, data->predMV, data->iFcode, 0, 1);
401    
402  static __inline uint32_t mv_bits(int32_t component, const uint32_t iFcode)          data->temp[0] = sad32v_c(data->Cur, Reference, data->iEdgedWidth, data->temp + 1);
 {  
     if (component == 0)  
                 return 1;  
403    
404      if (component < 0)          data->temp[0] += (data->lambda16 * t * data->temp[0]) >> 10;
405                  component = -component;          data->temp[1] += (data->lambda8 * t * (data->temp[1] + NEIGH_8X8_BIAS))>>10;
406    
407      if (iFcode == 1)          if (data->temp[0] < data->iMinSAD[0]) {
408      {                  data->iMinSAD[0] = data->temp[0];
409                  if (component > 32)                  data->currentMV[0].x = x; data->currentMV[0].y = y;
410                      component = 32;                  *dir = Direction; }
411    
412                  return mvtab[component] + 1;          if (data->temp[1] < data->iMinSAD[1]) {
413                    data->iMinSAD[1] = data->temp[1]; data->currentMV[1].x = x; data->currentMV[1].y = y; }
414            if (data->temp[2] < data->iMinSAD[2]) {
415                    data->iMinSAD[2] = data->temp[2]; data->currentMV[2].x = x; data->currentMV[2].y = y; }
416            if (data->temp[3] < data->iMinSAD[3]) {
417                    data->iMinSAD[3] = data->temp[3]; data->currentMV[3].x = x; data->currentMV[3].y = y; }
418            if (data->temp[4] < data->iMinSAD[4]) {
419                    data->iMinSAD[4] = data->temp[4]; data->currentMV[4].x = x; data->currentMV[4].y = y; }
420      }      }
421    
422      component += (1 << (iFcode - 1)) - 1;  static void
423      component >>= (iFcode - 1);  CheckCandidate16no4v(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
424    {
425            int32_t sad, xc, yc;
426            const uint8_t * Reference;
427            uint32_t t;
428            VECTOR * current;
429    
430            if ( (x > data->max_dx) || ( x < data->min_dx)
431                    || (y > data->max_dy) || (y < data->min_dy) ) return;
432    
433      if (component > 32)          if (data->rrv && (!(x&1) && x !=0) | (!(y&1) && y !=0) ) return; /* non-zero even value */
                 component = 32;  
434    
435      return mvtab[component] + 1 + iFcode - 1;          if (data->qpel_precision) { /* x and y are in 1/4 precision */
436                    Reference = Interpolate16x16qpel(x, y, 0, data);
437                    current = data->currentQMV;
438                    xc = x/2; yc = y/2;
439            } else {
440                    Reference = GetReference(x, y, data);
441                    current = data->currentMV;
442                    xc = x; yc = y;
443  }  }
444            t = d_mv_bits(x, y, data->predMV, data->iFcode,
445                                            data->qpel^data->qpel_precision, data->rrv);
446    
447            sad = sad16(data->Cur, Reference, data->iEdgedWidth, 256*4096);
448            sad += (data->lambda16 * t * sad)>>10;
449    
450  static __inline uint32_t calc_delta_16(const int32_t dx, const int32_t dy, const uint32_t iFcode)          if (data->chroma && sad < *data->iMinSAD)
451  {                  sad += ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3],
452          return NEIGH_TEND_16X16 * (mv_bits(dx, iFcode) + mv_bits(dy, iFcode));                                                          (yc >> 1) + roundtab_79[yc & 0x3], data);
 }  
453    
454  static __inline uint32_t calc_delta_8(const int32_t dx, const int32_t dy, const uint32_t iFcode)          if (sad < *(data->iMinSAD)) {
455                    *(data->iMinSAD) = sad;
456                    current->x = x; current->y = y;
457                    *dir = Direction;
458            }
459    }
460    
461    static void
462    CheckCandidate16I(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
463  {  {
464      return NEIGH_TEND_8X8 * (mv_bits(dx, iFcode) + mv_bits(dy, iFcode));          int sad;
465  }  //      int xc, yc;
466            const uint8_t * Reference;
467    //      VECTOR * current;
468    
469            if ( (x > data->max_dx) || ( x < data->min_dx)
470                    || (y > data->max_dy) || (y < data->min_dy) ) return;
471    
472            Reference = GetReference(x, y, data);
473    //      xc = x; yc = y;
474    
475            sad = sad16(data->Cur, Reference, data->iEdgedWidth, 256*4096);
476    //      sad += d_mv_bits(x, y, data->predMV, data->iFcode, 0, 0);
477    
478  /* calculate the min/max range (in halfpixels)  /*      if (data->chroma) sad += ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3],
479          relative to the _MACROBLOCK_ position                                                                                  (yc >> 1) + roundtab_79[yc & 0x3], data);
480  */  */
481    
482  static void __inline get_range(          if (sad < data->iMinSAD[0]) {
483                          int32_t * const min_dx, int32_t * const max_dx,                  data->iMinSAD[0] = sad;
484                          int32_t * const min_dy, int32_t * const max_dy,                  data->currentMV[0].x = x; data->currentMV[0].y = y;
485                          const uint32_t x, const uint32_t y,                  *dir = Direction;
486                          const uint32_t block_sz,                                        // block dimension, 8 or 16          }
                         const uint32_t width, const uint32_t height,  
                         const uint32_t fcode)  
 {  
         const int search_range = 32 << (fcode - 1);  
     const int high = search_range - 1;  
     const int low = -search_range;  
   
         // convert full-pixel measurements to half pixel  
         const int hp_width = 2 * width;  
         const int hp_height = 2 * height;  
         const int hp_edge = 2 * block_sz;  
         const int hp_x = 2 * (x) * block_sz;            // we need _right end_ of block, not x-coordinate  
         const int hp_y = 2 * (y) * block_sz;            // same for _bottom end_  
   
     *max_dx = MIN(high, hp_width - hp_x);  
     *max_dy = MIN(high, hp_height - hp_y);  
     *min_dx = MAX(low,  -(hp_edge + hp_x));  
     *min_dy = MAX(low,  -(hp_edge + hp_y));  
487  }  }
488    
489    static void
490    CheckCandidate32I(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
491    {
492            /* maximum speed - for P/B/I decision */
493            int32_t sad;
494    
495  /* getref: calculate reference image pointer          if ( (x > data->max_dx) || (x < data->min_dx)
496  the decision to use interpolation h/v/hv or the normal image is                  || (y > data->max_dy) || (y < data->min_dy) ) return;
 based on dx & dy.  
 */  
497    
498  static __inline const uint8_t * get_ref(          sad = sad32v_c(data->Cur, data->RefP[0] + (x>>1) + (y>>1)*((int)data->iEdgedWidth),
499                                  const uint8_t * const refn,                                          data->iEdgedWidth, data->temp+1);
500                                  const uint8_t * const refh,  
501                                  const uint8_t * const refv,          if (sad < *(data->iMinSAD)) {
502                                  const uint8_t * const refhv,                  *(data->iMinSAD) = sad;
503                                  const uint32_t x, const uint32_t y,                  data->currentMV[0].x = x; data->currentMV[0].y = y;
504                                  const uint32_t block,                                   // block dimension, 8 or 16                  *dir = Direction;
                                 const int32_t dx, const int32_t dy,  
                                 const uint32_t stride)  
 {  
         switch ( ((dx&1)<<1) + (dy&1) )         // ((dx%2)?2:0)+((dy%2)?1:0)  
     {  
         case 0 : return refn + (x*block+dx/2) + (y*block+dy/2)*stride;  
     case 1 : return refv + (x*block+dx/2) + (y*block+(dy-1)/2)*stride;  
         case 2 : return refh + (x*block+(dx-1)/2) + (y*block+dy/2)*stride;  
         default :  
         case 3 : return refhv + (x*block+(dx-1)/2) + (y*block+(dy-1)/2)*stride;  
505          }          }
506            if (data->temp[1] < data->iMinSAD[1]) {
507                    data->iMinSAD[1] = data->temp[1]; data->currentMV[1].x = x; data->currentMV[1].y = y; }
508            if (data->temp[2] < data->iMinSAD[2]) {
509                    data->iMinSAD[2] = data->temp[2]; data->currentMV[2].x = x; data->currentMV[2].y = y; }
510            if (data->temp[3] < data->iMinSAD[3]) {
511                    data->iMinSAD[3] = data->temp[3]; data->currentMV[3].x = x; data->currentMV[3].y = y; }
512            if (data->temp[4] < data->iMinSAD[4]) {
513                    data->iMinSAD[4] = data->temp[4]; data->currentMV[4].x = x; data->currentMV[4].y = y; }
514    
515  }  }
516    
517    static void
518    CheckCandidateInt(const int xf, const int yf, const int Direction, int * const dir, const SearchData * const data)
519    {
520            int32_t sad, xb, yb, xcf, ycf, xcb, ycb;
521            uint32_t t;
522            const uint8_t *ReferenceF, *ReferenceB;
523            VECTOR *current;
524    
525  /* This is somehow a copy of get_ref, but with MV instead of X,Y */          if ((xf > data->max_dx) || (xf < data->min_dx) ||
526                    (yf > data->max_dy) || (yf < data->min_dy))
527                    return;
528    
529  static __inline const uint8_t * get_ref_mv(          if (!data->qpel_precision) {
530                                  const uint8_t * const refn,                  ReferenceF = GetReference(xf, yf, data);
531                                  const uint8_t * const refh,                  xb = data->currentMV[1].x; yb = data->currentMV[1].y;
532                                  const uint8_t * const refv,                  ReferenceB = GetReferenceB(xb, yb, 1, data);
533                                  const uint8_t * const refhv,                  current = data->currentMV;
534                                  const uint32_t x, const uint32_t y,                  xcf = xf; ycf = yf;
535                                  const uint32_t block,                   // block dimension, 8 or 16                  xcb = xb; ycb = yb;
536                                  const VECTOR* mv,       // measured in half-pel!          } else {
537                                  const uint32_t stride)                  ReferenceF = Interpolate16x16qpel(xf, yf, 0, data);
538  {                  xb = data->currentQMV[1].x; yb = data->currentQMV[1].y;
539          switch ( (((mv->x)&1)<<1) + ((mv->y)&1) )                  current = data->currentQMV;
540      {                  ReferenceB = Interpolate16x16qpel(xb, yb, 1, data);
541          case 0 : return refn + (x*block+(mv->x)/2) + (y*block+(mv->y)/2)*stride;                  xcf = xf/2; ycf = yf/2;
542          case 1 : return refv + (x*block+(mv->x)/2) + (y*block+((mv->y)-1)/2)*stride;                  xcb = xb/2; ycb = yb/2;
         case 2 : return refh + (x*block+((mv->x)-1)/2) + (y*block+(mv->y)/2)*stride;  
         default :  
         case 3 : return refhv + (x*block+((mv->x)-1)/2) + (y*block+((mv->y)-1)/2)*stride;  
         }  
543  }  }
544    
545  #ifndef SEARCH16          t = d_mv_bits(xf, yf, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0)
546  #define SEARCH16        PMVfastSearch16                   + d_mv_bits(xb, yb, data->bpredMV, data->iFcode, data->qpel^data->qpel_precision, 0);
 #endif  
547    
548  #ifndef SEARCH8          sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth);
549  #define SEARCH8         PMVfastSearch8          sad += (data->lambda16 * t * sad)>>10;
 #endif  
550    
551  bool MotionEstimation(          if (data->chroma && sad < *data->iMinSAD)
552                          MACROBLOCK * const pMBs,                  sad += ChromaSAD2((xcf >> 1) + roundtab_79[xcf & 0x3],
553                          MBParam * const pParam,                                                          (ycf >> 1) + roundtab_79[ycf & 0x3],
554                      const IMAGE * const pRef,                                                          (xcb >> 1) + roundtab_79[xcb & 0x3],
555                          const IMAGE * const pRefH,                                                          (ycb >> 1) + roundtab_79[ycb & 0x3], data);
                     const IMAGE * const pRefV,  
                         const IMAGE * const pRefHV,  
                     IMAGE * const pCurrent,  
                         const uint32_t iLimit)  
556    
557  {          if (sad < *(data->iMinSAD)) {
558      const uint32_t iWcount = pParam->mb_width;                  *(data->iMinSAD) = sad;
559      const uint32_t iHcount = pParam->mb_height;                  current->x = xf; current->y = yf;
560                    *dir = Direction;
561            }
562    }
563    
564          uint32_t i, j, iIntra = 0;  static void
565    CheckCandidateDirect(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
566    {
567            int32_t sad = 0, xcf = 0, ycf = 0, xcb = 0, ycb = 0;
568            uint32_t k;
569            const uint8_t *ReferenceF;
570            const uint8_t *ReferenceB;
571            VECTOR mvs, b_mvs;
572    
573      VECTOR mv16;          if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return;
     VECTOR pmv16;  
574    
575      int32_t sad8 = 0;          for (k = 0; k < 4; k++) {
576      int32_t sad16;                  mvs.x = data->directmvF[k].x + x;
577      int32_t deviation;                  b_mvs.x = ((x == 0) ?
578                            data->directmvB[k].x
579                            : mvs.x - data->referencemv[k].x);
580    
581          // note: i==horizontal, j==vertical                  mvs.y = data->directmvF[k].y + y;
582      for (i = 0; i < iHcount; i++)                  b_mvs.y = ((y == 0) ?
583                  for (j = 0; j < iWcount; j++)                          data->directmvB[k].y
584                  {                          : mvs.y - data->referencemv[k].y);
                         MACROBLOCK *pMB = &pMBs[j + i * iWcount];  
585    
586                          sad16 = SEARCH16(pRef->y, pRefH->y, pRefV->y, pRefHV->y, pCurrent,                  if ((mvs.x > data->max_dx)   || (mvs.x < data->min_dx)   ||
587                                            j, i, pParam->motion_flags,                          (mvs.y > data->max_dy)   || (mvs.y < data->min_dy)   ||
588                                            pParam, pMBs, &mv16, &pmv16);                          (b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx) ||
589                          pMB->sad16=sad16;                          (b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) )
590                            return;
591    
592                    if (data->qpel) {
593                            xcf += mvs.x/2; ycf += mvs.y/2;
594                            xcb += b_mvs.x/2; ycb += b_mvs.y/2;
595                    } else {
596                            xcf += mvs.x; ycf += mvs.y;
597                            xcb += b_mvs.x; ycb += b_mvs.y;
598                            mvs.x *= 2; mvs.y *= 2; /* we move to qpel precision anyway */
599                            b_mvs.x *= 2; b_mvs.y *= 2;
600                    }
601    
602                  /* decide: MODE_INTER or MODE_INTRA                  ReferenceF = Interpolate8x8qpel(mvs.x, mvs.y, k, 0, data);
603                          if (dev_intra < sad_inter - 2 * nb) use_intra                  ReferenceB = Interpolate8x8qpel(b_mvs.x, b_mvs.y, k, 1, data);
                 */  
604    
605                  deviation = dev16(pCurrent->y + j*16 + i*16*pParam->edged_width, pParam->edged_width);                  sad += sad8bi(data->Cur + 8*(k&1) + 8*(k>>1)*(data->iEdgedWidth),
606                                                    ReferenceF, ReferenceB, data->iEdgedWidth);
607                    if (sad > *(data->iMinSAD)) return;
608            }
609    
610                  if (deviation < (sad16 - INTER_BIAS))          sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10;
                 {  
                         pMB->mode = MODE_INTRA;  
                         pMB->mvs[0].x = pMB->mvs[1].x = pMB->mvs[2].x = pMB->mvs[3].x = 0;  
                         pMB->mvs[0].y = pMB->mvs[1].y = pMB->mvs[2].y = pMB->mvs[3].y = 0;  
611    
612                          iIntra++;          if (data->chroma && sad < *data->iMinSAD)
613                          if(iIntra >= iLimit)                  sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf],
614                                  return 1;                                                          (ycf >> 3) + roundtab_76[ycf & 0xf],
615                                                            (xcb >> 3) + roundtab_76[xcb & 0xf],
616                                                            (ycb >> 3) + roundtab_76[ycb & 0xf], data);
617    
618                          continue;          if (sad < *(data->iMinSAD)) {
619                    *(data->iMinSAD) = sad;
620                    data->currentMV->x = x; data->currentMV->y = y;
621                    *dir = Direction;
622            }
623                  }                  }
624    
625                  if (pParam->global_flags & XVID_INTER4V)  static void
626    CheckCandidateDirectno4v(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
627                  {                  {
628                          pMB->sad8[0] = SEARCH8(pRef->y, pRefH->y, pRefV->y, pRefHV->y, pCurrent,          int32_t sad, xcf, ycf, xcb, ycb;
629                                          2 * j, 2 * i, mv16.x, mv16.y, pParam->motion_flags,          const uint8_t *ReferenceF;
630                                          pParam, pMBs, &pMB->mvs[0], &pMB->pmvs[0]);          const uint8_t *ReferenceB;
631            VECTOR mvs, b_mvs;
632    
633                          pMB->sad8[1] = SEARCH8(pRef->y, pRefH->y, pRefV->y, pRefHV->y, pCurrent,          if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return;
                                         2 * j + 1, 2 * i, mv16.x, mv16.y, pParam->motion_flags,  
                                         pParam, pMBs, &pMB->mvs[1], &pMB->pmvs[1]);  
634    
635                          pMB->sad8[2] = SEARCH8(pRef->y, pRefH->y, pRefV->y, pRefHV->y, pCurrent,          mvs.x = data->directmvF[0].x + x;
636                                          2 * j, 2 * i + 1, mv16.x, mv16.y, pParam->motion_flags,          b_mvs.x = ((x == 0) ?
637                                          pParam, pMBs, &pMB->mvs[2], &pMB->pmvs[2]);                  data->directmvB[0].x
638                    : mvs.x - data->referencemv[0].x);
639    
640                          pMB->sad8[3] = SEARCH8(pRef->y, pRefH->y, pRefV->y, pRefHV->y, pCurrent,          mvs.y = data->directmvF[0].y + y;
641                                          2 * j + 1, 2 * i + 1, mv16.x, mv16.y, pParam->motion_flags,          b_mvs.y = ((y == 0) ?
642                                          pParam, pMBs, &pMB->mvs[3], &pMB->pmvs[3]);                  data->directmvB[0].y
643                    : mvs.y - data->referencemv[0].y);
644    
645                          sad8 = pMB->sad8[0] + pMB->sad8[1] + pMB->sad8[2] + pMB->sad8[3];          if ( (mvs.x > data->max_dx) || (mvs.x < data->min_dx)
646                  }                  || (mvs.y > data->max_dy) || (mvs.y < data->min_dy)
647                    || (b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx)
648                    || (b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) ) return;
649    
650            if (data->qpel) {
651                    xcf = 4*(mvs.x/2); ycf = 4*(mvs.y/2);
652                    xcb = 4*(b_mvs.x/2); ycb = 4*(b_mvs.y/2);
653                    ReferenceF = Interpolate16x16qpel(mvs.x, mvs.y, 0, data);
654                    ReferenceB = Interpolate16x16qpel(b_mvs.x, b_mvs.y, 1, data);
655            } else {
656                    xcf = 4*mvs.x; ycf = 4*mvs.y;
657                    xcb = 4*b_mvs.x; ycb = 4*b_mvs.y;
658                    ReferenceF = GetReference(mvs.x, mvs.y, data);
659                    ReferenceB = GetReferenceB(b_mvs.x, b_mvs.y, 1, data);
660            }
661    
662                  /* decide: MODE_INTER or MODE_INTER4V          sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth);
663                          mpeg4:   if (sad8 < sad16 - nb/2+1) use_inter4v          sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10;
                 */  
664    
665                  if (pMB->dquant == NO_CHANGE) {          if (data->chroma && sad < *data->iMinSAD)
666                          if (((pParam->global_flags & XVID_INTER4V)==0) ||                  sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf],
667                                  (sad16 < (sad8 + (int32_t)(IMV16X16 * pParam->quant)))) {                                                          (ycf >> 3) + roundtab_76[ycf & 0xf],
668                                                            (xcb >> 3) + roundtab_76[xcb & 0xf],
669                                                            (ycb >> 3) + roundtab_76[ycb & 0xf], data);
670    
671                                  sad8 = sad16;          if (sad < *(data->iMinSAD)) {
672                                  pMB->mode = MODE_INTER;                  *(data->iMinSAD) = sad;
673                                  pMB->mvs[0].x = pMB->mvs[1].x = pMB->mvs[2].x = pMB->mvs[3].x = mv16.x;                  data->currentMV->x = x; data->currentMV->y = y;
674                                  pMB->mvs[0].y = pMB->mvs[1].y = pMB->mvs[2].y = pMB->mvs[3].y = mv16.y;                  *dir = Direction;
                                 pMB->pmvs[0].x = pmv16.x;  
                                 pMB->pmvs[0].y = pmv16.y;  
675                          }                          }
                         else  
                                 pMB->mode = MODE_INTER4V;  
676                  }                  }
677                  else  
678    
679    static void
680    CheckCandidateRD16(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
681                  {                  {
682                          sad8 = sad16;  
683                          pMB->mode = MODE_INTER;          int16_t *in = data->dctSpace, *coeff = data->dctSpace + 64;
684                          pMB->mvs[0].x = pMB->mvs[1].x = pMB->mvs[2].x = pMB->mvs[3].x = mv16.x;          int32_t rd = 0;
685                          pMB->mvs[0].y = pMB->mvs[1].y = pMB->mvs[2].y = pMB->mvs[3].y = mv16.y;          VECTOR * current;
686                          pMB->pmvs[0].x = pmv16.x;          const uint8_t * ptr;
687                          pMB->pmvs[0].y = pmv16.y;          int i, cbp = 0, t, xc, yc;
688                  }  
689            if ( (x > data->max_dx) || (x < data->min_dx)
690                    || (y > data->max_dy) || (y < data->min_dy) ) return;
691    
692            if (!data->qpel_precision) {
693                    ptr = GetReference(x, y, data);
694                    current = data->currentMV;
695                    xc = x; yc = y;
696            } else { /* x and y are in 1/4 precision */
697                    ptr = Interpolate16x16qpel(x, y, 0, data);
698                    current = data->currentQMV;
699                    xc = x/2; yc = y/2;
700          }          }
701    
702          return 0;          for(i = 0; i < 4; i++) {
703                    int s = 8*((i&1) + (i>>1)*data->iEdgedWidth);
704                    transfer_8to16subro(in, data->Cur + s, ptr + s, data->iEdgedWidth);
705                    rd += data->temp[i] = Block_CalcBits(coeff, in, data->dctSpace + 128, data->iQuant, data->quant_type, &cbp, i);
706  }  }
707    
708  #define MVzero(A) ( ((A).x)==(0) && ((A).y)==(0) )          rd += t = BITS_MULT*d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);
709    
710  #define MVequal(A,B) ( ((A).x)==((B).x) && ((A).y)==((B).y) )          if (data->temp[0] + t < data->iMinSAD[1]) {
711                    data->iMinSAD[1] = data->temp[0] + t; current[1].x = x; current[1].y = y; data->cbp[1] = (data->cbp[1]&~32) | (cbp&32); }
712            if (data->temp[1] < data->iMinSAD[2]) {
713                    data->iMinSAD[2] = data->temp[1]; current[2].x = x; current[2].y = y; data->cbp[1] = (data->cbp[1]&~16) | (cbp&16); }
714            if (data->temp[2] < data->iMinSAD[3]) {
715                    data->iMinSAD[3] = data->temp[2]; current[3].x = x; current[3].y = y; data->cbp[1] = (data->cbp[1]&~8) | (cbp&8); }
716            if (data->temp[3] < data->iMinSAD[4]) {
717                    data->iMinSAD[4] = data->temp[3]; current[4].x = x; current[4].y = y; data->cbp[1] = (data->cbp[1]&~4) | (cbp&4); }
718    
719            rd += BITS_MULT*xvid_cbpy_tab[15-(cbp>>2)].len;
720    
721  #define CHECK_MV16_ZERO {\          if (rd >= data->iMinSAD[0]) return;
   if ( (0 <= max_dx) && (0 >= min_dx) \  
     && (0 <= max_dy) && (0 >= min_dy) ) \  
   { \  
     iSAD = sad16( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 16, 0, 0 , iEdgedWidth), iEdgedWidth, MV_MAX_ERROR); \  
     iSAD += calc_delta_16(-pmv[0].x, -pmv[0].y, (uint8_t)iFcode) * iQuant;\  
     if (iSAD <= iQuant * 96)    \  
         iSAD -= MV16_00_BIAS; \  
     if (iSAD < iMinSAD) \  
     {  iMinSAD=iSAD; currMV->x=0; currMV->y=0; }  }     \  
 }  
   
   
 #define CHECK_MV16_CANDIDATE(X,Y) { \  
   if ( ((X) <= max_dx) && ((X) >= min_dx) \  
     && ((Y) <= max_dy) && ((Y) >= min_dy) ) \  
   { \  
     iSAD = sad16( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 16, X, Y, iEdgedWidth),iEdgedWidth, iMinSAD); \  
     iSAD += calc_delta_16((X) - pmv[0].x, (Y) - pmv[0].y, (uint8_t)iFcode) * iQuant;\  
     if (iSAD < iMinSAD) \  
     {  iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); } } \  
 }  
   
 #define CHECK_MV16_CANDIDATE_DIR(X,Y,D) { \  
   if ( ((X) <= max_dx) && ((X) >= min_dx) \  
     && ((Y) <= max_dy) && ((Y) >= min_dy) ) \  
   { \  
     iSAD = sad16( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 16, X, Y, iEdgedWidth),iEdgedWidth, iMinSAD); \  
     iSAD += calc_delta_16((X) - pmv[0].x, (Y) - pmv[0].y, (uint8_t)iFcode) * iQuant;\  
     if (iSAD < iMinSAD) \  
     {  iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); iDirection=(D); } } \  
 }  
   
 #define CHECK_MV16_CANDIDATE_FOUND(X,Y,D) { \  
   if ( ((X) <= max_dx) && ((X) >= min_dx) \  
     && ((Y) <= max_dy) && ((Y) >= min_dy) ) \  
   { \  
     iSAD = sad16( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 16, X, Y, iEdgedWidth),iEdgedWidth, iMinSAD); \  
     iSAD += calc_delta_16((X) - pmv[0].x, (Y) - pmv[0].y, (uint8_t)iFcode) * iQuant;\  
     if (iSAD < iMinSAD) \  
     {  iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); iDirection=(D); iFound=0; } } \  
 }  
   
   
 #define CHECK_MV8_ZERO {\  
   iSAD = sad8( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 8, 0, 0 , iEdgedWidth), iEdgedWidth); \  
   iSAD += calc_delta_8(-pmv[0].x, -pmv[0].y, (uint8_t)iFcode) * iQuant;\  
   if (iSAD < iMinSAD) \  
   { iMinSAD=iSAD; currMV->x=0; currMV->y=0; } \  
 }  
   
   
 #define CHECK_MV8_CANDIDATE(X,Y) { \  
   if ( ((X) <= max_dx) && ((X) >= min_dx) \  
     && ((Y) <= max_dy) && ((Y) >= min_dy) ) \  
   { \  
     iSAD = sad8( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 8, (X), (Y), iEdgedWidth),iEdgedWidth); \  
     iSAD += calc_delta_8((X)-pmv[0].x, (Y)-pmv[0].y, (uint8_t)iFcode) * iQuant;\  
     if (iSAD < iMinSAD) \  
     {  iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); } } \  
 }  
   
 #define CHECK_MV8_CANDIDATE_DIR(X,Y,D) { \  
   if ( ((X) <= max_dx) && ((X) >= min_dx) \  
     && ((Y) <= max_dy) && ((Y) >= min_dy) ) \  
   { \  
     iSAD = sad8( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 8, (X), (Y), iEdgedWidth),iEdgedWidth); \  
     iSAD += calc_delta_8((X)-pmv[0].x, (Y)-pmv[0].y, (uint8_t)iFcode) * iQuant;\  
     if (iSAD < iMinSAD) \  
     {  iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); iDirection=(D); } } \  
 }  
   
 #define CHECK_MV8_CANDIDATE_FOUND(X,Y,D) { \  
   if ( ((X) <= max_dx) && ((X) >= min_dx) \  
     && ((Y) <= max_dy) && ((Y) >= min_dy) ) \  
   { \  
     iSAD = sad8( cur, get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 8, (X), (Y), iEdgedWidth),iEdgedWidth); \  
     iSAD += calc_delta_8((X)-pmv[0].x, (Y)-pmv[0].y, (uint8_t)iFcode) * iQuant;\  
     if (iSAD < iMinSAD) \  
     {  iMinSAD=iSAD; currMV->x=(X); currMV->y=(Y); iDirection=(D); iFound=0; } } \  
 }  
722    
723  /* too slow and not fully functional at the moment */          /* chroma */
724  /*          xc = (xc >> 1) + roundtab_79[xc & 0x3];
725  int32_t ZeroSearch16(          yc = (yc >> 1) + roundtab_79[yc & 0x3];
                                         const uint8_t * const pRef,  
                                         const uint8_t * const pRefH,  
                                         const uint8_t * const pRefV,  
                                         const uint8_t * const pRefHV,  
                                         const IMAGE * const pCur,  
                                         const int x, const int y,  
                                         const uint32_t MotionFlags,  
                                         MBParam * const pParam,  
                                         MACROBLOCK * const pMBs,  
                                         VECTOR * const currMV,  
                                         VECTOR * const currPMV)  
 {  
         const int32_t iEdgedWidth = pParam->edged_width;  
         const int32_t iQuant = pParam->quant;  
         const uint8_t * cur = pCur->y + x*16 + y*16*iEdgedWidth;  
         int32_t iSAD;  
         int32_t pred_x,pred_y;  
   
         get_pmv(pMBs, x, y, pParam->mb_width, 0, &pred_x, &pred_y);  
   
         iSAD = sad16( cur,  
                 get_ref(pRef, pRefH, pRefV, pRefHV, x, y, 16, 0,0, iEdgedWidth),  
                 iEdgedWidth, MV_MAX_ERROR);  
         if (iSAD <= iQuant * 96)  
                 iSAD -= MV16_00_BIAS;  
   
         currMV->x = 0;  
         currMV->y = 0;  
         currPMV->x = -pred_x;  
         currPMV->y = -pred_y;  
726    
727          return iSAD;          /* chroma U */
728            ptr = interpolate8x8_switch2(data->RefQ, data->RefP[4], 0, 0, xc, yc, data->iEdgedWidth/2, data->rounding);
729            transfer_8to16subro(in, data->CurU, ptr, data->iEdgedWidth/2);
730            rd += Block_CalcBits(coeff, in, data->dctSpace + 128, data->iQuant, data->quant_type, &cbp, 4);
731            if (rd >= data->iMinSAD[0]) return;
732    
733  }          /* chroma V */
734  */          ptr = interpolate8x8_switch2(data->RefQ, data->RefP[5], 0, 0, xc, yc, data->iEdgedWidth/2, data->rounding);
735            transfer_8to16subro(in, data->CurV, ptr, data->iEdgedWidth/2);
736            rd += Block_CalcBits(coeff, in, data->dctSpace + 128, data->iQuant, data->quant_type, &cbp, 5);
737    
738  int32_t PMVfastSearch16_MainSearch(          rd += BITS_MULT*mcbpc_inter_tab[(MODE_INTER & 7) | ((cbp & 3) << 3)].len;
739                                          const uint8_t * const pRef,  
740                                          const uint8_t * const pRefH,          if (rd < data->iMinSAD[0]) {
741                                          const uint8_t * const pRefV,                  data->iMinSAD[0] = rd;
742                                          const uint8_t * const pRefHV,                  current[0].x = x; current[0].y = y;
743                                          const uint8_t * const cur,                  *dir = Direction;
744                                          const int x, const int y,                  *data->cbp = cbp;
                                         int32_t startx, int32_t starty,  
                                         int32_t iMinSAD,  
                                         VECTOR * const currMV,  
                                         const VECTOR * const pmv,  
                                         const int32_t min_dx, const int32_t max_dx,  
                                         const int32_t min_dy, const int32_t max_dy,  
                                         const int32_t iEdgedWidth,  
                                         const int32_t iDiamondSize,  
                                         const int32_t iFcode,  
                                         const int32_t iQuant,  
                                         int iFound)  
 {  
 /* Do a diamond search around given starting point, return SAD of best */  
   
         int32_t iDirection=0;  
         int32_t iSAD;  
         VECTOR backupMV;  
         backupMV.x = startx;  
         backupMV.y = starty;  
   
 /* It's one search with full Diamond pattern, and only 3 of 4 for all following diamonds */  
   
         CHECK_MV16_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y,1);  
         CHECK_MV16_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y,2);  
         CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y-iDiamondSize,3);  
         CHECK_MV16_CANDIDATE_DIR(backupMV.x,backupMV.y+iDiamondSize,4);  
   
         if (iDirection)  
                 while (!iFound)  
                 {  
                         iFound = 1;  
                         backupMV=*currMV;  
   
                         if ( iDirection != 2)  
                                 CHECK_MV16_CANDIDATE_FOUND(backupMV.x-iDiamondSize,backupMV.y,1);  
                         if ( iDirection != 1)  
                                 CHECK_MV16_CANDIDATE_FOUND(backupMV.x+iDiamondSize,backupMV.y,2);  
                         if ( iDirection != 4)  
                                 CHECK_MV16_CANDIDATE_FOUND(backupMV.x,backupMV.y-iDiamondSize,3);  
                         if ( iDirection != 3)  
                                 CHECK_MV16_CANDIDATE_FOUND(backupMV.x,backupMV.y+iDiamondSize,4);  
745                  }                  }
         else  
                 {  
                         currMV->x = startx;  
                         currMV->y = starty;  
746                  }                  }
747          return iMinSAD;  
748    static void
749    CheckCandidateRD8(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
750    {
751    
752            int16_t *in = data->dctSpace, *coeff = data->dctSpace + 64;
753            int32_t rd;
754            VECTOR * current;
755            const uint8_t * ptr;
756            int cbp = 0;
757    
758            if ( (x > data->max_dx) || (x < data->min_dx)
759                    || (y > data->max_dy) || (y < data->min_dy) ) return;
760    
761            if (!data->qpel_precision) {
762                    ptr = GetReference(x, y, data);
763                    current = data->currentMV;
764            } else { /* x and y are in 1/4 precision */
765                    ptr = Interpolate8x8qpel(x, y, 0, 0, data);
766                    current = data->currentQMV;
767  }  }
768    
769  int32_t PMVfastSearch16_Refine(          transfer_8to16subro(in, data->Cur, ptr, data->iEdgedWidth);
770                                          const uint8_t * const pRef,          rd = Block_CalcBits(coeff, in, data->dctSpace + 128, data->iQuant, data->quant_type, &cbp, 5);
771                                          const uint8_t * const pRefH,          rd += BITS_MULT*d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);
                                         const uint8_t * const pRefV,  
                                         const uint8_t * const pRefHV,  
                                         const uint8_t * const cur,  
                                         const int x, const int y,  
                                         VECTOR * const currMV,  
                                         int32_t iMinSAD,  
                                         const VECTOR * const pmv,  
                                         const int32_t min_dx, const int32_t max_dx,  
                                         const int32_t min_dy, const int32_t max_dy,  
                                         const int32_t iFcode,  
                                         const int32_t iQuant,  
                                         const int32_t iEdgedWidth)  
 {  
 /* Do a half-pel refinement (or rather a "smallest possible amount" refinement) */  
   
         int32_t iSAD;  
         VECTOR backupMV = *currMV;  
   
         CHECK_MV16_CANDIDATE(backupMV.x-1,backupMV.y-1);  
         CHECK_MV16_CANDIDATE(backupMV.x  ,backupMV.y-1);  
         CHECK_MV16_CANDIDATE(backupMV.x+1,backupMV.y-1);  
         CHECK_MV16_CANDIDATE(backupMV.x-1,backupMV.y);  
         CHECK_MV16_CANDIDATE(backupMV.x+1,backupMV.y);  
         CHECK_MV16_CANDIDATE(backupMV.x-1,backupMV.y+1);  
         CHECK_MV16_CANDIDATE(backupMV.x  ,backupMV.y+1);  
         CHECK_MV16_CANDIDATE(backupMV.x+1,backupMV.y+1);  
772    
773          return iMinSAD;          if (rd < data->iMinSAD[0]) {
774                    *data->cbp = cbp;
775                    data->iMinSAD[0] = rd;
776                    current[0].x = x; current[0].y = y;
777                    *dir = Direction;
778            }
779  }  }
780    
781  #define PMV_HALFPEL16 (PMV_HALFPELDIAMOND16|PMV_HALFPELREFINE16)  /* CHECK_CANDIATE FUNCTIONS END */
782    
783  int32_t PMVfastSearch16(  /* MAINSEARCH FUNCTIONS START */
784                                          const uint8_t * const pRef,  
785                                          const uint8_t * const pRefH,  static void
786                                          const uint8_t * const pRefV,  AdvDiamondSearch(int x, int y, const SearchData * const data, int bDirection)
                                         const uint8_t * const pRefHV,  
                                         const IMAGE * const pCur,  
                                         const int x, const int y,  
                                         const uint32_t MotionFlags,  
                                         MBParam * const pParam,  
                                         MACROBLOCK * const pMBs,  
                                         VECTOR * const currMV,  
                                         VECTOR * const currPMV)  
787  {  {
         const uint32_t iWcount = pParam->mb_width;  
         const int32_t iFcode = pParam->fixed_code;  
         const int32_t iQuant = pParam->quant;  
         const int32_t iWidth = pParam->width;  
         const int32_t iHeight = pParam->height;  
         const int32_t iEdgedWidth = pParam->edged_width;  
788    
789          const uint8_t * cur = pCur->y + x*16 + y*16*iEdgedWidth;  /* directions: 1 - left (x-1); 2 - right (x+1), 4 - up (y-1); 8 - down (y+1) */
790    
791          int32_t iDiamondSize;          int iDirection;
792    
793          int32_t min_dx;          for(;;) { /* forever */
794          int32_t max_dx;                  iDirection = 0;
795          int32_t min_dy;                  if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1);
796          int32_t max_dy;                  if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2);
797                    if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4);
798                    if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8);
799    
800          int32_t iFound;                  /* now we're doing diagonal checks near our candidate */
801    
802          VECTOR newMV;                  if (iDirection) {               /* if anything found */
803          VECTOR backupMV;        /* just for PMVFAST */                          bDirection = iDirection;
804                            iDirection = 0;
805                            x = data->currentMV->x; y = data->currentMV->y;
806                            if (bDirection & 3) {   /* our candidate is left or right */
807                                    CHECK_CANDIDATE(x, y + iDiamondSize, 8);
808                                    CHECK_CANDIDATE(x, y - iDiamondSize, 4);
809                            } else {                        /* what remains here is up or down */
810                                    CHECK_CANDIDATE(x + iDiamondSize, y, 2);
811                                    CHECK_CANDIDATE(x - iDiamondSize, y, 1);
812                            }
813    
814          VECTOR pmv[4];                          if (iDirection) {
815          int32_t psad[4];                                  bDirection += iDirection;
816                                    x = data->currentMV->x; y = data->currentMV->y;
817                            }
818                    } else {                                /* about to quit, eh? not so fast.... */
819                            switch (bDirection) {
820                            case 2:
821                                    CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4);
822                                    CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8);
823                                    break;
824                            case 1:
825                                    CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4);
826                                    CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8);
827                                    break;
828                            case 2 + 4:
829                                    CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4);
830                                    CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4);
831                                    CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8);
832                                    break;
833                            case 4:
834                                    CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4);
835                                    CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4);
836                                    break;
837                            case 8:
838                                    CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8);
839                                    CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8);
840                                    break;
841                            case 1 + 4:
842                                    CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8);
843                                    CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4);
844                                    CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4);
845                                    break;
846                            case 2 + 8:
847                                    CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4);
848                                    CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8);
849                                    CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8);
850                                    break;
851                            case 1 + 8:
852                                    CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4);
853                                    CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8);
854                                    CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8);
855                                    break;
856                            default:                /* 1+2+4+8 == we didn't find anything at all */
857                                    CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4);
858                                    CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8);
859                                    CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4);
860                                    CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8);
861                                    break;
862                            }
863                            if (!iDirection) break;         /* ok, the end. really */
864                            bDirection = iDirection;
865                            x = data->currentMV->x; y = data->currentMV->y;
866                    }
867            }
868    }
869    
870          MACROBLOCK * const pMB = pMBs + x + y * iWcount;  static void
871    SquareSearch(int x, int y, const SearchData * const data, int bDirection)
872    {
873            int iDirection;
874    
875          static int32_t threshA,threshB;          do {
876          int32_t bPredEq;                  iDirection = 0;
877          int32_t iMinSAD,iSAD;                  if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1+16+64);
878                    if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2+32+128);
879                    if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4+16+32);
880                    if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8+64+128);
881                    if (bDirection & 16) CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1+4+16+32+64);
882                    if (bDirection & 32) CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2+4+16+32+128);
883                    if (bDirection & 64) CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1+8+16+64+128);
884                    if (bDirection & 128) CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2+8+32+64+128);
885    
886  /* Get maximum range */                  bDirection = iDirection;
887          get_range(&min_dx, &max_dx, &min_dy, &max_dy,                  x = data->currentMV->x; y = data->currentMV->y;
888                          x, y, 16, iWidth, iHeight, iFcode);          } while (iDirection);
889    }
890    
891  /* we work with abs. MVs, not relative to prediction, so get_range is called relative to 0,0 */  static void
892    DiamondSearch(int x, int y, const SearchData * const data, int bDirection)
893    {
894    
895          if (!(MotionFlags & PMV_HALFPEL16 ))  /* directions: 1 - left (x-1); 2 - right (x+1), 4 - up (y-1); 8 - down (y+1) */
         { min_dx = EVEN(min_dx);  
           max_dx = EVEN(max_dx);  
           min_dy = EVEN(min_dy);  
           max_dy = EVEN(max_dy);  
         }               /* because we might use something like IF (dx>max_dx) THEN dx=max_dx; */  
896    
897            int iDirection;
898    
899          bPredEq  = get_pmvdata(pMBs, x, y, iWcount, 0, pmv, psad);          do {
900                    iDirection = 0;
901                    if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1);
902                    if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2);
903                    if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4);
904                    if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8);
905    
906          if ((x==0) && (y==0) )                  /* now we're doing diagonal checks near our candidate */
         {  
                 threshA =  512;  
                 threshB = 1024;  
907    
908                    if (iDirection) {               /* checking if anything found */
909                            bDirection = iDirection;
910                            iDirection = 0;
911                            x = data->currentMV->x; y = data->currentMV->y;
912                            if (bDirection & 3) {   /* our candidate is left or right */
913                                    CHECK_CANDIDATE(x, y + iDiamondSize, 8);
914                                    CHECK_CANDIDATE(x, y - iDiamondSize, 4);
915                            } else {                        /* what remains here is up or down */
916                                    CHECK_CANDIDATE(x + iDiamondSize, y, 2);
917                                    CHECK_CANDIDATE(x - iDiamondSize, y, 1);
918                            }
919                            bDirection += iDirection;
920                            x = data->currentMV->x; y = data->currentMV->y;
921          }          }
922          else          }
923          {          while (iDirection);
                 threshA = psad[0];  
                 threshB = threshA+256;  
                 if (threshA< 512) threshA =  512;  
                 if (threshA>1024) threshA = 1024;  
                 if (threshB>1792) threshB = 1792;  
924          }          }
925    
926          iFound=0;  /* MAINSEARCH FUNCTIONS END */
927    
928  /* Step 2: Calculate Distance= |MedianMVX| + |MedianMVY| where MedianMV is the motion  static void
929          vector of the median.  SubpelRefine(const SearchData * const data)
930          If PredEq=1 and MVpredicted = Previous Frame MV, set Found=2  {
931  */  /* Do a half-pel or q-pel refinement */
932            const VECTOR centerMV = data->qpel_precision ? *data->currentQMV : *data->currentMV;
933            int iDirection; /* only needed because macro expects it */
934    
935            CHECK_CANDIDATE(centerMV.x, centerMV.y - 1, 0);
936            CHECK_CANDIDATE(centerMV.x + 1, centerMV.y - 1, 0);
937            CHECK_CANDIDATE(centerMV.x + 1, centerMV.y, 0);
938            CHECK_CANDIDATE(centerMV.x + 1, centerMV.y + 1, 0);
939            CHECK_CANDIDATE(centerMV.x, centerMV.y + 1, 0);
940            CHECK_CANDIDATE(centerMV.x - 1, centerMV.y + 1, 0);
941            CHECK_CANDIDATE(centerMV.x - 1, centerMV.y, 0);
942            CHECK_CANDIDATE(centerMV.x - 1, centerMV.y - 1, 0);
943    }
944    
945          if ((bPredEq) && (MVequal(pmv[0],pMB->mvs[0]) ) )  static __inline int
946                  iFound=2;  SkipDecisionP(const IMAGE * current, const IMAGE * reference,
947                                                            const int x, const int y,
948                                                            const uint32_t stride, const uint32_t iQuant, int rrv)
949    
950  /* Step 3: If Distance>0 or thresb<1536 or PredEq=1 Select small Diamond Search.  {
951          Otherwise select large Diamond Search.          int offset = (x + y*stride)*8;
952  */          if(!rrv) {
953                    uint32_t sadC = sad8(current->u + offset,
954                                                    reference->u + offset, stride);
955                    if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0;
956                    sadC += sad8(current->v + offset,
957                                                    reference->v + offset, stride);
958                    if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0;
959                    return 1;
960    
961          if ( (pmv[0].x != 0) || (pmv[0].y != 0) || (threshB<1536) || (bPredEq) )          } else {
962                  iDiamondSize=1; // halfpel!                  uint32_t sadC = sad16(current->u + 2*offset,
963          else                                                  reference->u + 2*offset, stride, 256*4096);
964                  iDiamondSize=2; // halfpel!                  if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0;
965                    sadC += sad16(current->v + 2*offset,
966                                                    reference->v + 2*offset, stride, 256*4096);
967                    if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0;
968                    return 1;
969            }
970    }
971    
972          if (!(MotionFlags & PMV_HALFPELDIAMOND16) )  static __inline void
973                  iDiamondSize*=2;  ZeroMacroblockP(MACROBLOCK *pMB, const int32_t sad)
974    {
975            pMB->mode = MODE_INTER;
976            pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = zeroMV;
977            pMB->qmvs[0] = pMB->qmvs[1] = pMB->qmvs[2] = pMB->qmvs[3] = zeroMV;
978            pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = sad;
979    }
980    
981  /* Step 4: Calculate SAD around the Median prediction.  static __inline void
982          MinSAD=SAD  ModeDecision(SearchData * const Data,
983          If Motion Vector equal to Previous frame motion vector                          MACROBLOCK * const pMB,
984                  and MinSAD<PrevFrmSAD goto Step 10.                          const MACROBLOCK * const pMBs,
985          If SAD<=256 goto Step 10.                          const int x, const int y,
986  */                          const MBParam * const pParam,
987                            const uint32_t MotionFlags,
988                            const uint32_t VopFlags,
989                            const uint32_t VolFlags,
990                            const IMAGE * const pCurrent,
991                            const IMAGE * const pRef,
992                            const IMAGE * const vGMC,
993                            const int coding_type)
994    {
995            int mode = MODE_INTER;
996            int mcsel = 0;
997            int inter4v = (VopFlags & XVID_VOP_INTER4V) && (pMB->dquant == 0);
998            const uint32_t iQuant = pMB->quant;
999    
1000            const int skip_possible = (coding_type == P_VOP) && (pMB->dquant == 0);
1001    
1002  // Prepare for main loop          pMB->mcsel = 0;
1003    
1004          *currMV=pmv[0];         /* current best := prediction */          if (!(VopFlags & XVID_VOP_MODEDECISION_RD)) { /* normal, fast, SAD-based mode decision */
1005          if (!(MotionFlags & PMV_HALFPEL16 ))                  int sad;
1006          {       /* This should NOT be necessary! */                  int InterBias = MV16_INTER_BIAS;
1007                  currMV->x = EVEN(currMV->x);                  if (inter4v == 0 || Data->iMinSAD[0] < Data->iMinSAD[1] + Data->iMinSAD[2] +
1008                  currMV->y = EVEN(currMV->y);                          Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant) {
1009                            mode = MODE_INTER;
1010                            sad = Data->iMinSAD[0];
1011                    } else {
1012                            mode = MODE_INTER4V;
1013                            sad = Data->iMinSAD[1] + Data->iMinSAD[2] +
1014                                                    Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant;
1015                            Data->iMinSAD[0] = sad;
1016          }          }
1017    
1018          if (currMV->x > max_dx)                  /* final skip decision, a.k.a. "the vector you found, really that good?" */
1019                  {                  if (skip_possible && (pMB->sad16 < (int)iQuant * MAX_SAD00_FOR_SKIP))
1020                          currMV->x=max_dx;                          if ( (100*sad)/(pMB->sad16+1) > FINAL_SKIP_THRESH)
1021                                    if (Data->chroma || SkipDecisionP(pCurrent, pRef, x, y, Data->iEdgedWidth/2, iQuant, Data->rrv)) {
1022                                            mode = MODE_NOT_CODED;
1023                                            sad = 0;
1024                  }                  }
1025          if (currMV->x < min_dx)  
1026                  {                  /* mcsel */
1027                          currMV->x=min_dx;                  if (coding_type == S_VOP) {
1028    
1029                            int32_t iSAD = sad16(Data->Cur,
1030                                    vGMC->y + 16*y*Data->iEdgedWidth + 16*x, Data->iEdgedWidth, 65536);
1031    
1032                            if (Data->chroma) {
1033                                    iSAD += sad8(Data->CurU, vGMC->u + 8*y*(Data->iEdgedWidth/2) + 8*x, Data->iEdgedWidth/2);
1034                                    iSAD += sad8(Data->CurV, vGMC->v + 8*y*(Data->iEdgedWidth/2) + 8*x, Data->iEdgedWidth/2);
1035                  }                  }
1036          if (currMV->y > max_dy)  
1037                  {                          if (iSAD <= sad) {              /* mode decision GMC */
1038                          currMV->y=max_dy;                                  mode = MODE_INTER;
1039                                    mcsel = 1;
1040                                    sad = iSAD;
1041                  }                  }
1042          if (currMV->y < min_dy)  
                 {  
                         currMV->y=min_dy;  
1043                  }                  }
1044    
1045          iMinSAD = sad16( cur,                  /* intra decision */
                 get_ref_mv(pRef, pRefH, pRefV, pRefHV, x, y, 16, currMV, iEdgedWidth),  
                 iEdgedWidth, MV_MAX_ERROR);  
         iMinSAD += calc_delta_16(currMV->x-pmv[0].x, currMV->y-pmv[0].y, (uint8_t)iFcode) * iQuant;  
1046    
1047          if ( (iMinSAD < 256 ) || ( (MVequal(*currMV,pMB->mvs[0])) && (iMinSAD < pMB->sad16) ) )                  if (iQuant > 8) InterBias += 100 * (iQuant - 8); /* to make high quants work */
1048                  {                  if (y != 0)
1049                            if ((pMB - pParam->mb_width)->mode == MODE_INTRA ) InterBias -= 80;
1050                    if (x != 0)
1051                            if ((pMB - 1)->mode == MODE_INTRA ) InterBias -= 80;
1052    
1053                    if (Data->chroma) InterBias += 50; /* dev8(chroma) ??? <-- yes, we need dev8 (no big difference though) */
1054                    if (Data->rrv) InterBias *= 4;
1055    
1056                    if (InterBias < sad) {
1057                            int32_t deviation;
1058                            if (!Data->rrv)
1059                                    deviation = dev16(Data->Cur, Data->iEdgedWidth);
1060                            else
1061                                    deviation = dev16(Data->Cur, Data->iEdgedWidth) + /* dev32() */
1062                                                            dev16(Data->Cur+16, Data->iEdgedWidth) +
1063                                                            dev16(Data->Cur + 16*Data->iEdgedWidth, Data->iEdgedWidth) +
1064                                                            dev16(Data->Cur+16+16*Data->iEdgedWidth, Data->iEdgedWidth);
1065    
1066                          if (MotionFlags & PMV_QUICKSTOP16)                          if (deviation < (sad - InterBias)) mode = MODE_INTRA;
                                 goto step10b;  
                         if (MotionFlags & PMV_EARLYSTOP16)  
                                 goto step10;  
1067                  }                  }
1068    
1069  /*                  pMB->cbp = 63;
1070  Step 5: Calculate SAD for motion vectors taken from left block, top, top-right, and Previous frame block.                  pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = sad;
1071          Also calculate (0,0) but do not subtract offset.  
1072          Let MinSAD be the smallest SAD up to this point.          } else { /* Rate-Distortion */
         If MV is (0,0) subtract offset. ******** WHAT'S THIS 'OFFSET' ??? ***********  
 */  
1073    
1074  // (0,0) is always possible                  int min_rd, intra_rd, i, cbp, c[2] = {0, 0};
1075                    VECTOR backup[5], *v;
1076                    Data->iQuant = iQuant;
1077                    Data->cbp = c;
1078    
1079          CHECK_MV16_ZERO;                  v = Data->qpel ? Data->currentQMV : Data->currentMV;
1080                    for (i = 0; i < 5; i++) {
1081                            Data->iMinSAD[i] = 256*4096;
1082                            backup[i] = v[i];
1083                    }
1084    
1085  // previous frame MV is always possible                  min_rd = findRDinter(Data, pMBs, x, y, pParam, MotionFlags);
1086          CHECK_MV16_CANDIDATE(pMB->mvs[0].x,pMB->mvs[0].y);                  cbp = *Data->cbp;
1087    
1088  // left neighbour, if allowed                  if (coding_type == S_VOP) {
1089          if (x != 0)                          int gmc_rd;
1090          {                          *Data->iMinSAD = min_rd += BITS_MULT*1; /* mcsel */
1091                  if (!(MotionFlags & PMV_HALFPEL16 ))                          gmc_rd = findRDgmc(Data, vGMC, x, y);
1092                  {       pmv[1].x = EVEN(pmv[1].x);                          if (gmc_rd < min_rd) {
1093                          pmv[1].y = EVEN(pmv[1].y);                                  mcsel = 1;
1094                                    *Data->iMinSAD = min_rd = gmc_rd;
1095                                    mode = MODE_INTER;
1096                                    cbp = *Data->cbp;
1097                  }                  }
                 CHECK_MV16_CANDIDATE(pmv[1].x,pmv[1].y);  
1098          }          }
1099    
1100  // top neighbour, if allowed                  if (inter4v) {
1101          if (y != 0)                          int v4_rd;
1102          {                          v4_rd = findRDinter4v(Data, pMB, pMBs, x, y, pParam, MotionFlags, backup);
1103                  if (!(MotionFlags & PMV_HALFPEL16 ))                          if (v4_rd < min_rd) {
1104                  {       pmv[2].x = EVEN(pmv[2].x);                                  Data->iMinSAD[0] = min_rd = v4_rd;
1105                          pmv[2].y = EVEN(pmv[2].y);                                  mode = MODE_INTER4V;
1106                                    cbp = *Data->cbp;
1107                            }
1108                  }                  }
                 CHECK_MV16_CANDIDATE(pmv[2].x,pmv[2].y);  
1109    
1110  // top right neighbour, if allowed                  intra_rd = findRDintra(Data);
1111                  if (x != (iWcount-1))                  if (intra_rd < min_rd) {
1112                  {                          *Data->iMinSAD = min_rd = intra_rd;
1113                          if (!(MotionFlags & PMV_HALFPEL16 ))                          mode = MODE_INTRA;
                         {       pmv[3].x = EVEN(pmv[3].x);  
                                 pmv[3].y = EVEN(pmv[3].y);  
1114                          }                          }
1115                          CHECK_MV16_CANDIDATE(pmv[3].x,pmv[3].y);  
1116                    pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = 0;
1117                    pMB->cbp = cbp;
1118                  }                  }
1119    
1120            if (Data->rrv) {
1121                            Data->currentMV[0].x = RRV_MV_SCALEDOWN(Data->currentMV[0].x);
1122                            Data->currentMV[0].y = RRV_MV_SCALEDOWN(Data->currentMV[0].y);
1123          }          }
1124    
1125  /* Step 6: If MinSAD <= thresa goto Step 10.          if (mode == MODE_INTER && mcsel == 0) {
1126     If Motion Vector equal to Previous frame motion vector and MinSAD<PrevFrmSAD goto Step 10.                  pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = Data->currentMV[0];
 */  
1127    
1128          if ( (iMinSAD <= threshA) || ( MVequal(*currMV,pMB->mvs[0]) && (iMinSAD < pMB->sad16) ) )                  if(Data->qpel) {
1129                  {                          pMB->qmvs[0] = pMB->qmvs[1]
1130                          if (MotionFlags & PMV_QUICKSTOP16)                                  = pMB->qmvs[2] = pMB->qmvs[3] = Data->currentQMV[0];
1131                                  goto step10b;                          pMB->pmvs[0].x = Data->currentQMV[0].x - Data->predMV.x;
1132                          if (MotionFlags & PMV_EARLYSTOP16)                          pMB->pmvs[0].y = Data->currentQMV[0].y - Data->predMV.y;
1133                                  goto step10;                  } else {
1134                            pMB->pmvs[0].x = Data->currentMV[0].x - Data->predMV.x;
1135                            pMB->pmvs[0].y = Data->currentMV[0].y - Data->predMV.y;
1136                  }                  }
1137    
1138            } else if (mode == MODE_INTER ) { // but mcsel == 1
1139    
1140  /************ (Diamond Search)  **************/                  pMB->mcsel = 1;
1141  /*                  if (Data->qpel) {
1142  Step 7: Perform Diamond search, with either the small or large diamond.                          pMB->qmvs[0] = pMB->qmvs[1] = pMB->qmvs[2] = pMB->qmvs[3] = pMB->amv;
1143          If Found=2 only examine one Diamond pattern, and afterwards goto step 10                          pMB->mvs[0].x = pMB->mvs[1].x = pMB->mvs[2].x = pMB->mvs[3].x = pMB->amv.x/2;
1144  Step 8: If small diamond, iterate small diamond search pattern until motion vector lies in the center of the diamond.                          pMB->mvs[0].y = pMB->mvs[1].y = pMB->mvs[2].y = pMB->mvs[3].y = pMB->amv.y/2;
1145          If center then goto step 10.                  } else
1146  Step 9: If large diamond, iterate large diamond search pattern until motion vector lies in the center.                          pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = pMB->amv;
         Refine by using small diamond and goto step 10.  
 */  
1147    
1148          backupMV = *currMV; /* save best prediction, actually only for EXTSEARCH */          } else
1149                    if (mode == MODE_INTER4V) ; /* anything here? */
1150            else    /* INTRA, NOT_CODED */
1151                    ZeroMacroblockP(pMB, 0);
1152    
1153  /* default: use best prediction as starting point for one call of PMVfast_MainSearch */          pMB->mode = mode;
1154          iSAD = PMVfastSearch16_MainSearch(pRef, pRefH, pRefV, pRefHV, cur,  }
                 x, y,  
                 currMV->x, currMV->y, iMinSAD, &newMV,  
                 pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, iFound);  
1155    
1156          if (iSAD < iMinSAD)  bool
1157    MotionEstimation(MBParam * const pParam,
1158                                     FRAMEINFO * const current,
1159                                     FRAMEINFO * const reference,
1160                                     const IMAGE * const pRefH,
1161                                     const IMAGE * const pRefV,
1162                                     const IMAGE * const pRefHV,
1163                                    const IMAGE * const pGMC,
1164                                     const uint32_t iLimit)
1165          {          {
1166                  *currMV = newMV;          MACROBLOCK *const pMBs = current->mbs;
1167                  iMinSAD = iSAD;          const IMAGE *const pCurrent = &current->image;
1168            const IMAGE *const pRef = &reference->image;
1169    
1170            uint32_t mb_width = pParam->mb_width;
1171            uint32_t mb_height = pParam->mb_height;
1172            const uint32_t iEdgedWidth = pParam->edged_width;
1173            const uint32_t MotionFlags = MakeGoodMotionFlags(current->motion_flags, current->vop_flags, current->vol_flags);
1174    
1175            uint32_t x, y;
1176            uint32_t iIntra = 0;
1177            int32_t sad00;
1178            int skip_thresh = INITIAL_SKIP_THRESH * \
1179                    (current->vop_flags & XVID_VOP_REDUCED ? 4:1) * \
1180                    (current->vop_flags & XVID_VOP_MODEDECISION_RD ? 2:1);
1181    
1182            /* some pre-initialized thingies for SearchP */
1183            int32_t temp[8];
1184            VECTOR currentMV[5];
1185            VECTOR currentQMV[5];
1186            int32_t iMinSAD[5];
1187            DECLARE_ALIGNED_MATRIX(dct_space, 3, 64, int16_t, CACHE_LINE);
1188            SearchData Data;
1189            memset(&Data, 0, sizeof(SearchData));
1190            Data.iEdgedWidth = iEdgedWidth;
1191            Data.currentMV = currentMV;
1192            Data.currentQMV = currentQMV;
1193            Data.iMinSAD = iMinSAD;
1194            Data.temp = temp;
1195            Data.iFcode = current->fcode;
1196            Data.rounding = pParam->m_rounding_type;
1197            Data.qpel = (current->vol_flags & XVID_VOL_QUARTERPEL ? 1:0);
1198            Data.chroma = MotionFlags & XVID_ME_CHROMA_PVOP;
1199            Data.rrv = (current->vop_flags & XVID_VOP_REDUCED) ? 1:0;
1200            Data.dctSpace = dct_space;
1201            Data.quant_type = !(pParam->vol_flags & XVID_VOL_MPEGQUANT);
1202    
1203            if ((current->vop_flags & XVID_VOP_REDUCED)) {
1204                    mb_width = (pParam->width + 31) / 32;
1205                    mb_height = (pParam->height + 31) / 32;
1206                    Data.qpel = 0;
1207            }
1208    
1209            Data.RefQ = pRefV->u; /* a good place, also used in MC (for similar purpose) */
1210            if (sadInit) (*sadInit) ();
1211    
1212            for (y = 0; y < mb_height; y++) {
1213                    for (x = 0; x < mb_width; x++)  {
1214                            MACROBLOCK *pMB = &pMBs[x + y * pParam->mb_width];
1215    
1216                            if (!Data.rrv) pMB->sad16 =
1217                                    sad16v(pCurrent->y + (x + y * iEdgedWidth) * 16,
1218                                                            pRef->y + (x + y * iEdgedWidth) * 16,
1219                                                            pParam->edged_width, pMB->sad8 );
1220    
1221                            else pMB->sad16 =
1222                                    sad32v_c(pCurrent->y + (x + y * iEdgedWidth) * 32,
1223                                                            pRef->y + (x + y * iEdgedWidth) * 32,
1224                                                            pParam->edged_width, pMB->sad8 );
1225    
1226                            if (Data.chroma) {
1227                                    Data.temp[7] = sad8(pCurrent->u + x*8 + y*(iEdgedWidth/2)*8,
1228                                                                            pRef->u + x*8 + y*(iEdgedWidth/2)*8, iEdgedWidth/2)
1229                                                                    + sad8(pCurrent->v + (x + y*(iEdgedWidth/2))*8,
1230                                                                            pRef->v + (x + y*(iEdgedWidth/2))*8, iEdgedWidth/2);
1231                                    pMB->sad16 += Data.temp[7];
1232                            }
1233    
1234                            sad00 = pMB->sad16;
1235    
1236                            /* initial skip decision */
1237                            /* no early skip for GMC (global vector = skip vector is unknown!)  */
1238                            if (current->coding_type != S_VOP)      { /* no fast SKIP for S(GMC)-VOPs */
1239                                    if (pMB->dquant == 0 && sad00 < pMB->quant * skip_thresh)
1240                                            if (Data.chroma || SkipDecisionP(pCurrent, pRef, x, y, iEdgedWidth/2, pMB->quant, Data.rrv)) {
1241                                                    ZeroMacroblockP(pMB, sad00);
1242                                                    pMB->mode = MODE_NOT_CODED;
1243                                                    continue;
1244                                            }
1245          }          }
1246    
1247          if (MotionFlags & PMV_EXTSEARCH16)                          if ((current->vop_flags & XVID_VOP_CARTOON) &&
1248          {                                  (sad00 < pMB->quant * 4 * skip_thresh)) { /* favorize (0,0) vector for cartoons */
1249  /* extended: search (up to) two more times: orignal prediction and (0,0) */                                  ZeroMacroblockP(pMB, sad00);
1250                                    continue;
1251                            }
1252    
1253                  if (!(MVequal(pmv[0],backupMV)) )                          SearchP(pRef, pRefH->y, pRefV->y, pRefHV->y, pCurrent, x,
1254                  {       iSAD = PMVfastSearch16_MainSearch(pRef, pRefH, pRefV, pRefHV, cur,                                          y, MotionFlags, current->vop_flags, current->vol_flags,
1255                                  x, y,                                          &Data, pParam, pMBs, reference->mbs, pMB);
1256                          pmv[0].x, pmv[0].y, iMinSAD, &newMV,  
1257                          pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, iFound);                          ModeDecision(&Data, pMB, pMBs, x, y, pParam,
1258                                                     MotionFlags, current->vop_flags, current->vol_flags,
1259                                                     pCurrent, pRef, pGMC, current->coding_type);
1260    
1261                          if (iSAD < iMinSAD)                          if (pMB->mode == MODE_INTRA)
1262                          {                                  if (++iIntra > iLimit) return 1;
                                 *currMV = newMV;  
                                 iMinSAD = iSAD;  
1263                          }                          }
1264                  }                  }
1265    
1266                  if ( (!(MVzero(pmv[0]))) && (!(MVzero(backupMV))) )          return 0;
1267                  {       iSAD = PMVfastSearch16_MainSearch(pRef, pRefH, pRefV, pRefHV, cur,  }
                                 x, y,  
                         0, 0, iMinSAD, &newMV,  
                         pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, iFound);  
1268    
1269                          if (iSAD < iMinSAD)  
1270    static __inline int
1271    make_mask(const VECTOR * const pmv, const int i)
1272                          {                          {
1273                                  *currMV = newMV;          int mask = 255, j;
1274                                  iMinSAD = iSAD;          for (j = 0; j < i; j++) {
1275                    if (MVequal(pmv[i], pmv[j])) return 0; /* same vector has been checked already */
1276                    if (pmv[i].x == pmv[j].x) {
1277                            if (pmv[i].y == pmv[j].y + iDiamondSize) mask &= ~4;
1278                            else if (pmv[i].y == pmv[j].y - iDiamondSize) mask &= ~8;
1279                    } else
1280                            if (pmv[i].y == pmv[j].y) {
1281                                    if (pmv[i].x == pmv[j].x + iDiamondSize) mask &= ~1;
1282                                    else if (pmv[i].x == pmv[j].x - iDiamondSize) mask &= ~2;
1283                          }                          }
1284                  }                  }
1285            return mask;
1286          }          }
1287    
1288  /*  static __inline void
1289          Step 10:  The motion vector is chosen according to the block corresponding to MinSAD.  PreparePredictionsP(VECTOR * const pmv, int x, int y, int iWcount,
1290  */                          int iHcount, const MACROBLOCK * const prevMB, int rrv)
1291    {
1292            /* this function depends on get_pmvdata which means that it sucks. It should get the predictions by itself */
1293            if (rrv) { iWcount /= 2; iHcount /= 2; }
1294    
1295  step10:          if ( (y != 0) && (x < (iWcount-1)) ) {          /* [5] top-right neighbour */
1296          if (MotionFlags & PMV_HALFPELREFINE16)          // perform final half-pel step                  pmv[5].x = EVEN(pmv[3].x);
1297                  iMinSAD = PMVfastSearch16_Refine( pRef, pRefH, pRefV, pRefHV, cur,                  pmv[5].y = EVEN(pmv[3].y);
1298                                  x, y,          } else pmv[5].x = pmv[5].y = 0;
                                 currMV, iMinSAD,  
                                 pmv, min_dx, max_dx, min_dy, max_dy, iFcode, iQuant, iEdgedWidth);  
1299    
1300  step10b:          if (x != 0) { pmv[3].x = EVEN(pmv[1].x); pmv[3].y = EVEN(pmv[1].y); }/* pmv[3] is left neighbour */
1301          currPMV->x = currMV->x - pmv[0].x;          else pmv[3].x = pmv[3].y = 0;
         currPMV->y = currMV->y - pmv[0].y;  
         return iMinSAD;  
 }  
1302    
1303            if (y != 0) { pmv[4].x = EVEN(pmv[2].x); pmv[4].y = EVEN(pmv[2].y); }/* [4] top neighbour */
1304            else pmv[4].x = pmv[4].y = 0;
1305    
1306            /* [1] median prediction */
1307            pmv[1].x = EVEN(pmv[0].x); pmv[1].y = EVEN(pmv[0].y);
1308    
1309            pmv[0].x = pmv[0].y = 0; /* [0] is zero; not used in the loop (checked before) but needed here for make_mask */
1310    
1311            pmv[2].x = EVEN(prevMB->mvs[0].x); /* [2] is last frame */
1312            pmv[2].y = EVEN(prevMB->mvs[0].y);
1313    
1314            if ((x < iWcount-1) && (y < iHcount-1)) {
1315                    pmv[6].x = EVEN((prevMB+1+iWcount)->mvs[0].x); /* [6] right-down neighbour in last frame */
1316                    pmv[6].y = EVEN((prevMB+1+iWcount)->mvs[0].y);
1317            } else pmv[6].x = pmv[6].y = 0;
1318    
1319  int32_t PMVfastSearch8_MainSearch(          if (rrv) {
1320                                          const uint8_t * const pRef,                  int i;
1321                                          const uint8_t * const pRefH,                  for (i = 0; i < 7; i++) {
1322                                          const uint8_t * const pRefV,                          pmv[i].x = RRV_MV_SCALEUP(pmv[i].x);
1323                                          const uint8_t * const pRefHV,                          pmv[i].y = RRV_MV_SCALEUP(pmv[i].y);
                                         const uint8_t * const cur,  
                                         const int x, const int y,  
                                         int32_t startx, int32_t starty,  
                                         int32_t iMinSAD,  
                                         VECTOR * const currMV,  
                                         const VECTOR * const pmv,  
                                         const int32_t min_dx, const int32_t max_dx,  
                                         const int32_t min_dy, const int32_t max_dy,  
                                         const int32_t iEdgedWidth,  
                                         const int32_t iDiamondSize,  
                                         const int32_t iFcode,  
                                         const int32_t iQuant,  
                                         int iFound)  
 {  
 /* Do a diamond search around given starting point, return SAD of best */  
   
         int32_t iDirection=0;  
         int32_t iSAD;  
         VECTOR backupMV;  
         backupMV.x = startx;  
         backupMV.y = starty;  
   
 /* It's one search with full Diamond pattern, and only 3 of 4 for all following diamonds */  
   
         CHECK_MV8_CANDIDATE_DIR(backupMV.x-iDiamondSize,backupMV.y,1);  
         CHECK_MV8_CANDIDATE_DIR(backupMV.x+iDiamondSize,backupMV.y,2);  
         CHECK_MV8_CANDIDATE_DIR(backupMV.x,backupMV.y-iDiamondSize,3);  
         CHECK_MV8_CANDIDATE_DIR(backupMV.x,backupMV.y+iDiamondSize,4);  
   
         if (iDirection)  
                 while (!iFound)  
                 {  
                         iFound = 1;  
                         backupMV=*currMV;       // since iDirection!=0, this is well defined!  
   
                         if ( iDirection != 2)  
                                 CHECK_MV8_CANDIDATE_FOUND(backupMV.x-iDiamondSize,backupMV.y,1);  
                         if ( iDirection != 1)  
                                 CHECK_MV8_CANDIDATE_FOUND(backupMV.x+iDiamondSize,backupMV.y,2);  
                         if ( iDirection != 4)  
                                 CHECK_MV8_CANDIDATE_FOUND(backupMV.x,backupMV.y-iDiamondSize,3);  
                         if ( iDirection != 3)  
                                 CHECK_MV8_CANDIDATE_FOUND(backupMV.x,backupMV.y+iDiamondSize,4);  
1324                  }                  }
         else  
                 {  
                         currMV->x = startx;  
                         currMV->y = starty;  
1325                  }                  }
         return iMinSAD;  
1326  }  }
1327    
1328  int32_t PMVfastSearch8_Refine(  static void
1329                                          const uint8_t * const pRef,  SearchP(const IMAGE * const pRef,
1330                                          const uint8_t * const pRefH,                                          const uint8_t * const pRefH,
1331                                          const uint8_t * const pRefV,                                          const uint8_t * const pRefV,
1332                                          const uint8_t * const pRefHV,                                          const uint8_t * const pRefHV,
1333                                          const uint8_t * const cur,                  const IMAGE * const pCur,
1334                                          const int x, const int y,                  const int x,
1335                                          VECTOR * const currMV,                  const int y,
1336                                          int32_t iMinSAD,                  const uint32_t MotionFlags,
1337                                          const VECTOR * const pmv,                  const uint32_t VopFlags,
1338                                          const int32_t min_dx, const int32_t max_dx,                  const uint32_t VolFlags,
1339                                          const int32_t min_dy, const int32_t max_dy,                  SearchData * const Data,
1340                                          const int32_t iFcode,                  const MBParam * const pParam,
1341                                          const int32_t iQuant,                  const MACROBLOCK * const pMBs,
1342                                          const int32_t iEdgedWidth)                  const MACROBLOCK * const prevMBs,
1343  {                  MACROBLOCK * const pMB)
1344  /* Do a half-pel refinement (or rather a "smallest possible amount" refinement) */  {
1345    
1346            int i, iDirection = 255, mask, threshA;
1347            VECTOR pmv[7];
1348            int inter4v = (VopFlags & XVID_VOP_INTER4V) && (pMB->dquant == 0);
1349    
1350            get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
1351                                                    pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv);
1352    
1353            get_pmvdata2(pMBs, pParam->mb_width, 0, x, y, 0, pmv, Data->temp);
1354    
1355            Data->temp[5] = Data->temp[6] = 0; /* chroma-sad cache */
1356            i = Data->rrv ? 2 : 1;
1357            Data->Cur = pCur->y + (x + y * Data->iEdgedWidth) * 16*i;
1358            Data->CurV = pCur->v + (x + y * (Data->iEdgedWidth/2)) * 8*i;
1359            Data->CurU = pCur->u + (x + y * (Data->iEdgedWidth/2)) * 8*i;
1360    
1361            Data->RefP[0] = pRef->y + (x + Data->iEdgedWidth*y) * 16*i;
1362            Data->RefP[2] = pRefH + (x + Data->iEdgedWidth*y) * 16*i;
1363            Data->RefP[1] = pRefV + (x + Data->iEdgedWidth*y) * 16*i;
1364            Data->RefP[3] = pRefHV + (x + Data->iEdgedWidth*y) * 16*i;
1365            Data->RefP[4] = pRef->u + (x + y * (Data->iEdgedWidth/2)) * 8*i;
1366            Data->RefP[5] = pRef->v + (x + y * (Data->iEdgedWidth/2)) * 8*i;
1367    
1368            Data->lambda16 = lambda_vec16[pMB->quant];
1369            Data->lambda8 = lambda_vec8[pMB->quant];
1370            Data->qpel_precision = 0;
1371    
1372            memset(Data->currentMV, 0, 5*sizeof(VECTOR));
1373    
1374            if (Data->qpel) Data->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, 0);
1375            else Data->predMV = pmv[0];
1376    
1377            i = d_mv_bits(0, 0, Data->predMV, Data->iFcode, 0, 0);
1378            Data->iMinSAD[0] = pMB->sad16 + ((Data->lambda16 * i * pMB->sad16)>>10);
1379            Data->iMinSAD[1] = pMB->sad8[0] + ((Data->lambda8 * i * (pMB->sad8[0]+NEIGH_8X8_BIAS)) >> 10);
1380            Data->iMinSAD[2] = pMB->sad8[1];
1381            Data->iMinSAD[3] = pMB->sad8[2];
1382            Data->iMinSAD[4] = pMB->sad8[3];
1383    
1384          int32_t iSAD;          if ((!(VopFlags & XVID_VOP_MODEDECISION_RD)) && (x | y)) {
1385          VECTOR backupMV = *currMV;                  threshA = Data->temp[0]; /* that's where we keep this SAD atm */
1386                    if (threshA < 512) threshA = 512;
1387                    else if (threshA > 1024) threshA = 1024;
1388            } else
1389                    threshA = 512;
1390    
1391          CHECK_MV8_CANDIDATE(backupMV.x-1,backupMV.y-1);          PreparePredictionsP(pmv, x, y, pParam->mb_width, pParam->mb_height,
1392          CHECK_MV8_CANDIDATE(backupMV.x  ,backupMV.y-1);                                          prevMBs + x + y * pParam->mb_width, Data->rrv);
         CHECK_MV8_CANDIDATE(backupMV.x+1,backupMV.y-1);  
         CHECK_MV8_CANDIDATE(backupMV.x-1,backupMV.y);  
         CHECK_MV8_CANDIDATE(backupMV.x+1,backupMV.y);  
         CHECK_MV8_CANDIDATE(backupMV.x-1,backupMV.y+1);  
         CHECK_MV8_CANDIDATE(backupMV.x  ,backupMV.y+1);  
         CHECK_MV8_CANDIDATE(backupMV.x+1,backupMV.y+1);  
1393    
1394          return iMinSAD;          if (!Data->rrv) {
1395  }                  if (inter4v | Data->chroma) CheckCandidate = CheckCandidate16;
1396                            else CheckCandidate = CheckCandidate16no4v; /* for extra speed */
1397            } else CheckCandidate = CheckCandidate32;
1398    
1399    /* main loop. checking all predictions (but first, which is 0,0 and has been checked in MotionEstimation())*/
1400    
1401  #define PMV_HALFPEL8 (PMV_HALFPELDIAMOND8|PMV_HALFPELREFINE8)          for (i = 1; i < 7; i++) {
1402                    if (!(mask = make_mask(pmv, i)) ) continue;
1403                    CheckCandidate(pmv[i].x, pmv[i].y, mask, &iDirection, Data);
1404                    if (Data->iMinSAD[0] <= threshA) break;
1405            }
1406    
1407  int32_t PMVfastSearch8(          if ((Data->iMinSAD[0] <= threshA) ||
1408                                          const uint8_t * const pRef,                          (MVequal(Data->currentMV[0], (prevMBs+x+y*pParam->mb_width)->mvs[0]) &&
1409                                          const uint8_t * const pRefH,                          (Data->iMinSAD[0] < (prevMBs+x+y*pParam->mb_width)->sad16)))
1410                                          const uint8_t * const pRefV,                  inter4v = 0;
1411                                          const uint8_t * const pRefHV,          else {
                                         const IMAGE * const pCur,  
                                         const int x, const int y,  
                                         const int start_x, int start_y,  
                                         const uint32_t MotionFlags,  
                                         MBParam * const pParam,  
                                         MACROBLOCK * const pMBs,  
                                         VECTOR * const currMV,  
                                         VECTOR * const currPMV)  
 {  
         const uint32_t iWcount = pParam->mb_width;  
1412    
1413          const int32_t iFcode = pParam->fixed_code;                  MainSearchFunc * MainSearchPtr;
1414          const int32_t iQuant = pParam->quant;                  if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = SquareSearch;
1415          const int32_t iWidth = pParam->width;                  else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch;
1416          const int32_t iHeight = pParam->height;                          else MainSearchPtr = DiamondSearch;
         const int32_t iEdgedWidth = pParam->edged_width;  
1417    
1418          const uint8_t * cur = pCur->y + x*8 + y*8*iEdgedWidth;                  MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, iDirection);
1419    
1420          int32_t iDiamondSize;  /* extended search, diamond starting in 0,0 and in prediction.
1421            note that this search is/might be done in halfpel positions,
1422            which makes it more different than the diamond above */
1423    
1424          int32_t min_dx;                  if (MotionFlags & XVID_ME_EXTSEARCH16) {
1425          int32_t max_dx;                          int32_t bSAD;
1426          int32_t min_dy;                          VECTOR startMV = Data->predMV, backupMV = Data->currentMV[0];
1427          int32_t max_dy;                          if (Data->rrv) {
1428                                    startMV.x = RRV_MV_SCALEUP(startMV.x);
1429                                    startMV.y = RRV_MV_SCALEUP(startMV.y);
1430                            }
1431                            if (!(MVequal(startMV, backupMV))) {
1432                                    bSAD = Data->iMinSAD[0]; Data->iMinSAD[0] = MV_MAX_ERROR;
1433    
1434          VECTOR pmv[4];                                  CheckCandidate(startMV.x, startMV.y, 255, &iDirection, Data);
1435          int32_t psad[4];                                  MainSearchPtr(startMV.x, startMV.y, Data, 255);
1436          VECTOR newMV;                                  if (bSAD < Data->iMinSAD[0]) {
1437          VECTOR backupMV;                                          Data->currentMV[0] = backupMV;
1438                                            Data->iMinSAD[0] = bSAD; }
1439                            }
1440    
1441          MACROBLOCK * const pMB = pMBs + (x>>1) + (y>>1) * iWcount;                          backupMV = Data->currentMV[0];
1442                            startMV.x = startMV.y = 1;
1443                            if (!(MVequal(startMV, backupMV))) {
1444                                    bSAD = Data->iMinSAD[0]; Data->iMinSAD[0] = MV_MAX_ERROR;
1445    
1446          static int32_t threshA,threshB;                                  CheckCandidate(startMV.x, startMV.y, 255, &iDirection, Data);
1447          int32_t iFound,bPredEq;                                  MainSearchPtr(startMV.x, startMV.y, Data, 255);
1448          int32_t iMinSAD,iSAD;                                  if (bSAD < Data->iMinSAD[0]) {
1449                                            Data->currentMV[0] = backupMV;
1450                                            Data->iMinSAD[0] = bSAD; }
1451                            }
1452                    }
1453            }
1454    
1455          int32_t iSubBlock = ((y&1)<<1) + (x&1);          if (MotionFlags & XVID_ME_HALFPELREFINE16)
1456                            SubpelRefine(Data);
1457    
1458  /* Get maximum range */          for(i = 0; i < 5; i++) {
1459      get_range(&min_dx, &max_dx, &min_dy, &max_dy,                  Data->currentQMV[i].x = 2 * Data->currentMV[i].x; /* initialize qpel vectors */
1460                          x, y, 8, iWidth, iHeight, iFcode);                  Data->currentQMV[i].y = 2 * Data->currentMV[i].y;
1461            }
1462    
1463  /* we work with abs. MVs, not relative to prediction, so range is relative to 0,0 */          if (Data->qpel) {
1464                    get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
1465                                    pParam->width, pParam->height, Data->iFcode, 1, 0);
1466                    Data->qpel_precision = 1;
1467                    if (MotionFlags & XVID_ME_QUARTERPELREFINE16)
1468                            SubpelRefine(Data);
1469            }
1470    
1471          if (!(MotionFlags & PMV_HALFPELDIAMOND8 ))          if (Data->iMinSAD[0] < (int32_t)pMB->quant * 30)
1472          { min_dx = EVEN(min_dx);                  inter4v = 0;
           max_dx = EVEN(max_dx);  
           min_dy = EVEN(min_dy);  
           max_dy = EVEN(max_dy);  
         }               /* because we might use IF (dx>max_dx) THEN dx=max_dx; */  
1473    
1474            if (inter4v) {
1475                    SearchData Data8;
1476                    memcpy(&Data8, Data, sizeof(SearchData)); /* quick copy of common data */
1477    
1478          bPredEq  = get_pmvdata(pMBs, (x>>1), (y>>1), iWcount, iSubBlock, pmv, psad);                  Search8(Data, 2*x, 2*y, MotionFlags, pParam, pMB, pMBs, 0, &Data8);
1479                    Search8(Data, 2*x + 1, 2*y, MotionFlags, pParam, pMB, pMBs, 1, &Data8);
1480                    Search8(Data, 2*x, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 2, &Data8);
1481                    Search8(Data, 2*x + 1, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 3, &Data8);
1482    
1483          if ((x==0) && (y==0) )                  if ((Data->chroma) && (!(VopFlags & XVID_VOP_MODEDECISION_RD))) {
1484          {                          /* chroma is only used for comparsion to INTER. if the comparsion will be done in BITS domain, it will not be used */
1485                  threshA =  512/4;                          int sumx = 0, sumy = 0;
                 threshB = 1024/4;  
1486    
1487                            if (Data->qpel)
1488                                    for (i = 1; i < 5; i++) {
1489                                            sumx += Data->currentQMV[i].x/2;
1490                                            sumy += Data->currentQMV[i].y/2;
1491          }          }
1492          else          else
1493          {                                  for (i = 1; i < 5; i++) {
1494                  threshA = psad[0]/4;                    /* good estimate */                                          sumx += Data->currentMV[i].x;
1495                  threshB = threshA+256/4;                                          sumy += Data->currentMV[i].y;
                 if (threshA< 512/4) threshA =  512/4;  
                 if (threshA>1024/4) threshA = 1024/4;  
                 if (threshB>1792/4) threshB = 1792/4;  
1496          }          }
1497    
1498          iFound=0;                          Data->iMinSAD[1] += ChromaSAD(  (sumx >> 3) + roundtab_76[sumx & 0xf],
1499                                                                                            (sumy >> 3) + roundtab_76[sumy & 0xf], Data);
1500  /* Step 2: Calculate Distance= |MedianMVX| + |MedianMVY| where MedianMV is the motion                  }
1501          vector of the median.          } else Data->iMinSAD[1] = 4096*256;
1502          If PredEq=1 and MVpredicted = Previous Frame MV, set Found=2  }
 */  
1503    
1504          if ((bPredEq) && (MVequal(pmv[0],pMB->mvs[iSubBlock]) ) )  static void
1505                  iFound=2;  Search8(const SearchData * const OldData,
1506                    const int x, const int y,
1507                    const uint32_t MotionFlags,
1508                    const MBParam * const pParam,
1509                    MACROBLOCK * const pMB,
1510                    const MACROBLOCK * const pMBs,
1511                    const int block,
1512                    SearchData * const Data)
1513    {
1514            int i = 0;
1515            Data->iMinSAD = OldData->iMinSAD + 1 + block;
1516            Data->currentMV = OldData->currentMV + 1 + block;
1517            Data->currentQMV = OldData->currentQMV + 1 + block;
1518    
1519  /* Step 3: If Distance>0 or thresb<1536 or PredEq=1 Select small Diamond Search.          if(Data->qpel) {
1520          Otherwise select large Diamond Search.                  Data->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x/2, y/2, block);
1521  */                  if (block != 0) i = d_mv_bits(  Data->currentQMV->x, Data->currentQMV->y,
1522                                                                                    Data->predMV, Data->iFcode, 0, 0);
1523            } else {
1524                    Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x/2, y/2, block);
1525                    if (block != 0) i = d_mv_bits(  Data->currentMV->x, Data->currentMV->y,
1526                                                                                    Data->predMV, Data->iFcode, 0, Data->rrv);
1527            }
1528    
1529          if ( (pmv[0].x != 0) || (pmv[0].y != 0) || (threshB<1536/4) || (bPredEq) )          *(Data->iMinSAD) += (Data->lambda8 * i * (*Data->iMinSAD + NEIGH_8X8_BIAS))>>10;
                 iDiamondSize=1; // 1 halfpel!  
         else  
                 iDiamondSize=2; // 2 halfpel = 1 full pixel!  
1530    
1531          if (!(MotionFlags & PMV_HALFPELDIAMOND8) )          if (MotionFlags & (XVID_ME_EXTSEARCH8|XVID_ME_HALFPELREFINE8|XVID_ME_QUARTERPELREFINE8)) {
                 iDiamondSize*=2;  
1532    
1533  /* Step 4: Calculate SAD around the Median prediction.                  if (Data->rrv) i = 16; else i = 8;
1534          MinSAD=SAD  
1535          If Motion Vector equal to Previous frame motion vector                  Data->RefP[0] = OldData->RefP[0] + i * ((block&1) + Data->iEdgedWidth*(block>>1));
1536                  and MinSAD<PrevFrmSAD goto Step 10.                  Data->RefP[1] = OldData->RefP[1] + i * ((block&1) + Data->iEdgedWidth*(block>>1));
1537          If SAD<=256 goto Step 10.                  Data->RefP[2] = OldData->RefP[2] + i * ((block&1) + Data->iEdgedWidth*(block>>1));
1538  */                  Data->RefP[3] = OldData->RefP[3] + i * ((block&1) + Data->iEdgedWidth*(block>>1));
1539    
1540                    Data->Cur = OldData->Cur + i * ((block&1) + Data->iEdgedWidth*(block>>1));
1541                    Data->qpel_precision = 0;
1542    
1543                    get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 8,
1544                                            pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv);
1545    
1546                    if (!Data->rrv) CheckCandidate = CheckCandidate8;
1547                    else CheckCandidate = CheckCandidate16no4v;
1548    
1549                    if (MotionFlags & XVID_ME_EXTSEARCH8 && (!(MotionFlags & XVID_ME_EXTSEARCH_RD))) {
1550                            int32_t temp_sad = *(Data->iMinSAD); /* store current MinSAD */
1551    
1552  // Prepare for main loop                          MainSearchFunc *MainSearchPtr;
1553                            if (MotionFlags & XVID_ME_USESQUARES8) MainSearchPtr = SquareSearch;
1554                                    else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND8) MainSearchPtr = AdvDiamondSearch;
1555                                            else MainSearchPtr = DiamondSearch;
1556    
1557          currMV->x=start_x;              /* start with mv16 */                          MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, 255);
         currMV->y=start_y;  
1558    
1559          iMinSAD = sad8( cur,                          if(*(Data->iMinSAD) < temp_sad) {
1560                  get_ref_mv(pRef, pRefH, pRefV, pRefHV, x, y, 8, currMV, iEdgedWidth),                                          Data->currentQMV->x = 2 * Data->currentMV->x; /* update our qpel vector */
1561                  iEdgedWidth);                                          Data->currentQMV->y = 2 * Data->currentMV->y;
         iMinSAD += calc_delta_8(currMV->x - pmv[0].x, currMV->y - pmv[0].y, (uint8_t)iFcode) * iQuant;  
   
         if ( (iMinSAD < 256/4 ) || ( (MVequal(*currMV,pMB->mvs[iSubBlock])) && (iMinSAD < pMB->sad8[iSubBlock]) ) )  
                 {  
                         if (MotionFlags & PMV_QUICKSTOP8)  
                                 goto step10_8b;  
                         if (MotionFlags & PMV_EARLYSTOP8)  
                                 goto step10_8;  
1562                  }                  }
1563                    }
1564    
1565                    if (MotionFlags & XVID_ME_HALFPELREFINE8) {
1566                            int32_t temp_sad = *(Data->iMinSAD); /* store current MinSAD */
1567    
1568                            SubpelRefine(Data); /* perform halfpel refine of current best vector */
1569    
1570                            if(*(Data->iMinSAD) < temp_sad) { /* we have found a better match */
1571                                    Data->currentQMV->x = 2 * Data->currentMV->x; /* update our qpel vector */
1572                                    Data->currentQMV->y = 2 * Data->currentMV->y;
1573                            }
1574                    }
1575    
1576                    if (Data->qpel && MotionFlags & XVID_ME_QUARTERPELREFINE8) {
1577                                    Data->qpel_precision = 1;
1578                                    get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 8,
1579                                            pParam->width, pParam->height, Data->iFcode, 1, 0);
1580                                    SubpelRefine(Data);
1581                    }
1582            }
1583    
1584            if (Data->rrv) {
1585                            Data->currentMV->x = RRV_MV_SCALEDOWN(Data->currentMV->x);
1586                            Data->currentMV->y = RRV_MV_SCALEDOWN(Data->currentMV->y);
1587            }
1588    
1589            if(Data->qpel) {
1590                    pMB->pmvs[block].x = Data->currentQMV->x - Data->predMV.x;
1591                    pMB->pmvs[block].y = Data->currentQMV->y - Data->predMV.y;
1592                    pMB->qmvs[block] = *Data->currentQMV;
1593            } else {
1594                    pMB->pmvs[block].x = Data->currentMV->x - Data->predMV.x;
1595                    pMB->pmvs[block].y = Data->currentMV->y - Data->predMV.y;
1596            }
1597    
1598            pMB->mvs[block] = *Data->currentMV;
1599            pMB->sad8[block] = 4 * *Data->iMinSAD;
1600    }
1601    
1602    /* motion estimation for B-frames */
1603    
1604    static __inline VECTOR
1605    ChoosePred(const MACROBLOCK * const pMB, const uint32_t mode)
1606    {
1607    /* the stupidiest function ever */
1608            return (mode == MODE_FORWARD ? pMB->mvs[0] : pMB->b_mvs[0]);
1609    }
1610    
1611    static void __inline
1612    PreparePredictionsBF(VECTOR * const pmv, const int x, const int y,
1613                                                            const uint32_t iWcount,
1614                                                            const MACROBLOCK * const pMB,
1615                                                            const uint32_t mode_curr)
1616    {
1617    
1618            /* [0] is prediction */
1619            pmv[0].x = EVEN(pmv[0].x); pmv[0].y = EVEN(pmv[0].y);
1620    
1621            pmv[1].x = pmv[1].y = 0; /* [1] is zero */
1622    
1623            pmv[2] = ChoosePred(pMB, mode_curr);
1624            pmv[2].x = EVEN(pmv[2].x); pmv[2].y = EVEN(pmv[2].y);
1625    
1626            if ((y != 0)&&(x != (int)(iWcount+1))) {                        /* [3] top-right neighbour */
1627                    pmv[3] = ChoosePred(pMB+1-iWcount, mode_curr);
1628                    pmv[3].x = EVEN(pmv[3].x); pmv[3].y = EVEN(pmv[3].y);
1629            } else pmv[3].x = pmv[3].y = 0;
1630    
1631            if (y != 0) {
1632                    pmv[4] = ChoosePred(pMB-iWcount, mode_curr);
1633                    pmv[4].x = EVEN(pmv[4].x); pmv[4].y = EVEN(pmv[4].y);
1634            } else pmv[4].x = pmv[4].y = 0;
1635    
1636            if (x != 0) {
1637                    pmv[5] = ChoosePred(pMB-1, mode_curr);
1638                    pmv[5].x = EVEN(pmv[5].x); pmv[5].y = EVEN(pmv[5].y);
1639            } else pmv[5].x = pmv[5].y = 0;
1640    
1641            if (x != 0 && y != 0) {
1642                    pmv[6] = ChoosePred(pMB-1-iWcount, mode_curr);
1643                    pmv[6].x = EVEN(pmv[6].x); pmv[6].y = EVEN(pmv[6].y);
1644            } else pmv[6].x = pmv[6].y = 0;
1645    }
1646    
1647    
1648    /* search backward or forward */
1649    static void
1650    SearchBF(       const IMAGE * const pRef,
1651                            const uint8_t * const pRefH,
1652                            const uint8_t * const pRefV,
1653                            const uint8_t * const pRefHV,
1654                            const IMAGE * const pCur,
1655                            const int x, const int y,
1656                            const uint32_t MotionFlags,
1657                            const uint32_t iFcode,
1658                            const MBParam * const pParam,
1659                            MACROBLOCK * const pMB,
1660                            const VECTOR * const predMV,
1661                            int32_t * const best_sad,
1662                            const int32_t mode_current,
1663                            SearchData * const Data)
1664    {
1665    
1666            int i, iDirection = 255, mask;
1667            VECTOR pmv[7];
1668            MainSearchFunc *MainSearchPtr;
1669            *Data->iMinSAD = MV_MAX_ERROR;
1670            Data->iFcode = iFcode;
1671            Data->qpel_precision = 0;
1672            Data->temp[5] = Data->temp[6] = Data->temp[7] = 256*4096; /* reset chroma-sad cache */
1673    
1674            Data->RefP[0] = pRef->y + (x + Data->iEdgedWidth*y) * 16;
1675            Data->RefP[2] = pRefH + (x + Data->iEdgedWidth*y) * 16;
1676            Data->RefP[1] = pRefV + (x + Data->iEdgedWidth*y) * 16;
1677            Data->RefP[3] = pRefHV + (x + Data->iEdgedWidth*y) * 16;
1678            Data->RefP[4] = pRef->u + (x + y * (Data->iEdgedWidth/2)) * 8;
1679            Data->RefP[5] = pRef->v + (x + y * (Data->iEdgedWidth/2)) * 8;
1680    
1681            Data->predMV = *predMV;
1682    
1683            get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
1684                                    pParam->width, pParam->height, iFcode - Data->qpel, 0, 0);
1685    
1686            pmv[0] = Data->predMV;
1687            if (Data->qpel) { pmv[0].x /= 2; pmv[0].y /= 2; }
1688    
1689            PreparePredictionsBF(pmv, x, y, pParam->mb_width, pMB, mode_current);
1690    
1691            Data->currentMV->x = Data->currentMV->y = 0;
1692            CheckCandidate = CheckCandidate16no4v;
1693    
1694            /* main loop. checking all predictions */
1695            for (i = 0; i < 7; i++) {
1696                    if (!(mask = make_mask(pmv, i)) ) continue;
1697                    CheckCandidate16no4v(pmv[i].x, pmv[i].y, mask, &iDirection, Data);
1698            }
1699    
1700            if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = SquareSearch;
1701            else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch;
1702                    else MainSearchPtr = DiamondSearch;
1703    
1704            MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, iDirection);
1705    
1706            SubpelRefine(Data);
1707    
1708            if (Data->qpel && *Data->iMinSAD < *best_sad + 300) {
1709                    Data->currentQMV->x = 2*Data->currentMV->x;
1710                    Data->currentQMV->y = 2*Data->currentMV->y;
1711                    Data->qpel_precision = 1;
1712                    get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
1713                                            pParam->width, pParam->height, iFcode, 1, 0);
1714                    SubpelRefine(Data);
1715            }
1716    
1717            /* three bits are needed to code backward mode. four for forward */
1718    
1719            if (mode_current == MODE_FORWARD) *Data->iMinSAD += 4 * Data->lambda16;
1720            else *Data->iMinSAD += 3 * Data->lambda16;
1721    
1722            if (*Data->iMinSAD < *best_sad) {
1723                    *best_sad = *Data->iMinSAD;
1724                    pMB->mode = mode_current;
1725                    if (Data->qpel) {
1726                            pMB->pmvs[0].x = Data->currentQMV->x - predMV->x;
1727                            pMB->pmvs[0].y = Data->currentQMV->y - predMV->y;
1728                            if (mode_current == MODE_FORWARD)
1729                                    pMB->qmvs[0] = *Data->currentQMV;
1730                            else
1731                                    pMB->b_qmvs[0] = *Data->currentQMV;
1732                    } else {
1733                            pMB->pmvs[0].x = Data->currentMV->x - predMV->x;
1734                            pMB->pmvs[0].y = Data->currentMV->y - predMV->y;
1735                    }
1736                    if (mode_current == MODE_FORWARD) pMB->mvs[0] = *Data->currentMV;
1737                    else pMB->b_mvs[0] = *Data->currentMV;
1738            }
1739    
1740            if (mode_current == MODE_FORWARD) *(Data->currentMV+2) = *Data->currentMV;
1741            else *(Data->currentMV+1) = *Data->currentMV; /* we store currmv for interpolate search */
1742    }
1743    
1744    static void
1745    SkipDecisionB(const IMAGE * const pCur,
1746                                    const IMAGE * const f_Ref,
1747                                    const IMAGE * const b_Ref,
1748                                    MACROBLOCK * const pMB,
1749                                    const uint32_t x, const uint32_t y,
1750                                    const SearchData * const Data)
1751    {
1752            int dx = 0, dy = 0, b_dx = 0, b_dy = 0;
1753            int32_t sum;
1754            const int div = 1 + Data->qpel;
1755            int k;
1756            const uint32_t stride = Data->iEdgedWidth/2;
1757            /* this is not full chroma compensation, only it's fullpel approximation. should work though */
1758    
1759            for (k = 0; k < 4; k++) {
1760                    dy += Data->directmvF[k].y / div;
1761                    dx += Data->directmvF[k].x / div;
1762                    b_dy += Data->directmvB[k].y / div;
1763                    b_dx += Data->directmvB[k].x / div;
1764            }
1765    
1766            dy = (dy >> 3) + roundtab_76[dy & 0xf];
1767            dx = (dx >> 3) + roundtab_76[dx & 0xf];
1768            b_dy = (b_dy >> 3) + roundtab_76[b_dy & 0xf];
1769            b_dx = (b_dx >> 3) + roundtab_76[b_dx & 0xf];
1770    
1771            sum = sad8bi(pCur->u + 8 * x + 8 * y * stride,
1772                                            f_Ref->u + (y*8 + dy/2) * stride + x*8 + dx/2,
1773                                            b_Ref->u + (y*8 + b_dy/2) * stride + x*8 + b_dx/2,
1774                                            stride);
1775    
1776            if (sum >= MAX_CHROMA_SAD_FOR_SKIP * pMB->quant) return; /* no skip */
1777    
1778            sum += sad8bi(pCur->v + 8*x + 8 * y * stride,
1779                                            f_Ref->v + (y*8 + dy/2) * stride + x*8 + dx/2,
1780                                            b_Ref->v + (y*8 + b_dy/2) * stride + x*8 + b_dx/2,
1781                                            stride);
1782    
1783            if (sum < MAX_CHROMA_SAD_FOR_SKIP * pMB->quant) {
1784                    pMB->mode = MODE_DIRECT_NONE_MV; /* skipped */
1785                    for (k = 0; k < 4; k++) {
1786                            pMB->qmvs[k] = pMB->mvs[k];
1787                            pMB->b_qmvs[k] = pMB->b_mvs[k];
1788                    }
1789            }
1790    }
1791    
1792    static __inline uint32_t
1793    SearchDirect(const IMAGE * const f_Ref,
1794                                    const uint8_t * const f_RefH,
1795                                    const uint8_t * const f_RefV,
1796                                    const uint8_t * const f_RefHV,
1797                                    const IMAGE * const b_Ref,
1798                                    const uint8_t * const b_RefH,
1799                                    const uint8_t * const b_RefV,
1800                                    const uint8_t * const b_RefHV,
1801                                    const IMAGE * const pCur,
1802                                    const int x, const int y,
1803                                    const uint32_t MotionFlags,
1804                                    const int32_t TRB, const int32_t TRD,
1805                                    const MBParam * const pParam,
1806                                    MACROBLOCK * const pMB,
1807                                    const MACROBLOCK * const b_mb,
1808                                    int32_t * const best_sad,
1809                                    SearchData * const Data)
1810    
1811    {
1812            int32_t skip_sad;
1813            int k = (x + Data->iEdgedWidth*y) * 16;
1814            MainSearchFunc *MainSearchPtr;
1815    
1816            *Data->iMinSAD = 256*4096;
1817            Data->RefP[0] = f_Ref->y + k;
1818            Data->RefP[2] = f_RefH + k;
1819            Data->RefP[1] = f_RefV + k;
1820            Data->RefP[3] = f_RefHV + k;
1821            Data->b_RefP[0] = b_Ref->y + k;
1822            Data->b_RefP[2] = b_RefH + k;
1823            Data->b_RefP[1] = b_RefV + k;
1824            Data->b_RefP[3] = b_RefHV + k;
1825            Data->RefP[4] = f_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8;
1826            Data->RefP[5] = f_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8;
1827            Data->b_RefP[4] = b_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8;
1828            Data->b_RefP[5] = b_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8;
1829    
1830            k = Data->qpel ? 4 : 2;
1831            Data->max_dx = k * (pParam->width - x * 16);
1832            Data->max_dy = k * (pParam->height - y * 16);
1833            Data->min_dx = -k * (16 + x * 16);
1834            Data->min_dy = -k * (16 + y * 16);
1835    
1836            Data->referencemv = Data->qpel ? b_mb->qmvs : b_mb->mvs;
1837            Data->qpel_precision = 0;
1838    
1839            for (k = 0; k < 4; k++) {
1840                    pMB->mvs[k].x = Data->directmvF[k].x = ((TRB * Data->referencemv[k].x) / TRD);
1841                    pMB->b_mvs[k].x = Data->directmvB[k].x = ((TRB - TRD) * Data->referencemv[k].x) / TRD;
1842                    pMB->mvs[k].y = Data->directmvF[k].y = ((TRB * Data->referencemv[k].y) / TRD);
1843                    pMB->b_mvs[k].y = Data->directmvB[k].y = ((TRB - TRD) * Data->referencemv[k].y) / TRD;
1844    
1845                    if ( (pMB->b_mvs[k].x > Data->max_dx) | (pMB->b_mvs[k].x < Data->min_dx)
1846                            | (pMB->b_mvs[k].y > Data->max_dy) | (pMB->b_mvs[k].y < Data->min_dy) ) {
1847    
1848                            *best_sad = 256*4096; /* in that case, we won't use direct mode */
1849                            pMB->mode = MODE_DIRECT; /* just to make sure it doesn't say "MODE_DIRECT_NONE_MV" */
1850                            pMB->b_mvs[0].x = pMB->b_mvs[0].y = 0;
1851                            return 256*4096;
1852                    }
1853                    if (b_mb->mode != MODE_INTER4V) {
1854                            pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = pMB->mvs[0];
1855                            pMB->b_mvs[1] = pMB->b_mvs[2] = pMB->b_mvs[3] = pMB->b_mvs[0];
1856                            Data->directmvF[1] = Data->directmvF[2] = Data->directmvF[3] = Data->directmvF[0];
1857                            Data->directmvB[1] = Data->directmvB[2] = Data->directmvB[3] = Data->directmvB[0];
1858                            break;
1859                    }
1860            }
1861    
1862            CheckCandidate = b_mb->mode == MODE_INTER4V ? CheckCandidateDirect : CheckCandidateDirectno4v;
1863    
1864            CheckCandidate(0, 0, 255, &k, Data);
1865    
1866            /* initial (fast) skip decision */
1867            if (*Data->iMinSAD < pMB->quant * INITIAL_SKIP_THRESH * (Data->chroma?3:2)) {
1868                    /* possible skip */
1869                    if (Data->chroma) {
1870                            pMB->mode = MODE_DIRECT_NONE_MV;
1871                            return *Data->iMinSAD; /* skip. */
1872                    } else {
1873                            SkipDecisionB(pCur, f_Ref, b_Ref, pMB, x, y, Data);
1874                            if (pMB->mode == MODE_DIRECT_NONE_MV) return *Data->iMinSAD; /* skip. */
1875                    }
1876            }
1877    
1878            *Data->iMinSAD += Data->lambda16;
1879            skip_sad = *Data->iMinSAD;
1880    
1881  /*  /*
1882  Step 5: Calculate SAD for motion vectors taken from left block, top, top-right, and Previous frame block.           * DIRECT MODE DELTA VECTOR SEARCH.
1883          Also calculate (0,0) but do not subtract offset.           * This has to be made more effective, but at the moment I'm happy it's running at all
         Let MinSAD be the smallest SAD up to this point.  
         If MV is (0,0) subtract offset. ******** WHAT'S THIS 'OFFSET' ??? ***********  
1884  */  */
1885    
1886  // the prediction might be even better than mv16          if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = SquareSearch;
1887          CHECK_MV8_CANDIDATE(pmv[0].x,pmv[0].y);                  else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch;
1888                            else MainSearchPtr = DiamondSearch;
1889    
1890            MainSearchPtr(0, 0, Data, 255);
1891    
1892            SubpelRefine(Data);
1893    
1894            *best_sad = *Data->iMinSAD;
1895    
1896            if (Data->qpel || b_mb->mode == MODE_INTER4V) pMB->mode = MODE_DIRECT;
1897            else pMB->mode = MODE_DIRECT_NO4V; /* for faster compensation */
1898    
1899            pMB->pmvs[3] = *Data->currentMV;
1900    
1901            for (k = 0; k < 4; k++) {
1902                    pMB->mvs[k].x = Data->directmvF[k].x + Data->currentMV->x;
1903                    pMB->b_mvs[k].x = (     (Data->currentMV->x == 0)
1904                                                            ? Data->directmvB[k].x
1905                                                            :pMB->mvs[k].x - Data->referencemv[k].x);
1906                    pMB->mvs[k].y = (Data->directmvF[k].y + Data->currentMV->y);
1907                    pMB->b_mvs[k].y = ((Data->currentMV->y == 0)
1908                                                            ? Data->directmvB[k].y
1909                                                            : pMB->mvs[k].y - Data->referencemv[k].y);
1910                    if (Data->qpel) {
1911                            pMB->qmvs[k].x = pMB->mvs[k].x; pMB->mvs[k].x /= 2;
1912                            pMB->b_qmvs[k].x = pMB->b_mvs[k].x; pMB->b_mvs[k].x /= 2;
1913                            pMB->qmvs[k].y = pMB->mvs[k].y; pMB->mvs[k].y /= 2;
1914                            pMB->b_qmvs[k].y = pMB->b_mvs[k].y; pMB->b_mvs[k].y /= 2;
1915                    }
1916    
1917                    if (b_mb->mode != MODE_INTER4V) {
1918                            pMB->mvs[3] = pMB->mvs[2] = pMB->mvs[1] = pMB->mvs[0];
1919                            pMB->b_mvs[3] = pMB->b_mvs[2] = pMB->b_mvs[1] = pMB->b_mvs[0];
1920                            pMB->qmvs[3] = pMB->qmvs[2] = pMB->qmvs[1] = pMB->qmvs[0];
1921                            pMB->b_qmvs[3] = pMB->b_qmvs[2] = pMB->b_qmvs[1] = pMB->b_qmvs[0];
1922                            break;
1923                    }
1924            }
1925            return skip_sad;
1926    }
1927    
1928    static void
1929    SearchInterpolate(const IMAGE * const f_Ref,
1930                                    const uint8_t * const f_RefH,
1931                                    const uint8_t * const f_RefV,
1932                                    const uint8_t * const f_RefHV,
1933                                    const IMAGE * const b_Ref,
1934                                    const uint8_t * const b_RefH,
1935                                    const uint8_t * const b_RefV,
1936                                    const uint8_t * const b_RefHV,
1937                                    const IMAGE * const pCur,
1938                                    const int x, const int y,
1939                                    const uint32_t fcode,
1940                                    const uint32_t bcode,
1941                                    const uint32_t MotionFlags,
1942                                    const MBParam * const pParam,
1943                                    const VECTOR * const f_predMV,
1944                                    const VECTOR * const b_predMV,
1945                                    MACROBLOCK * const pMB,
1946                                    int32_t * const best_sad,
1947                                    SearchData * const fData)
1948    
1949    {
1950    
1951            int iDirection, i, j;
1952            SearchData bData;
1953    
1954            fData->qpel_precision = 0;
1955            memcpy(&bData, fData, sizeof(SearchData)); /* quick copy of common data */
1956            *fData->iMinSAD = 4096*256;
1957            bData.currentMV++; bData.currentQMV++;
1958            fData->iFcode = bData.bFcode = fcode; fData->bFcode = bData.iFcode = bcode;
1959    
1960            i = (x + y * fData->iEdgedWidth) * 16;
1961    
1962            bData.b_RefP[0] = fData->RefP[0] = f_Ref->y + i;
1963            bData.b_RefP[2] = fData->RefP[2] = f_RefH + i;
1964            bData.b_RefP[1] = fData->RefP[1] = f_RefV + i;
1965            bData.b_RefP[3] = fData->RefP[3] = f_RefHV + i;
1966            bData.RefP[0] = fData->b_RefP[0] = b_Ref->y + i;
1967            bData.RefP[2] = fData->b_RefP[2] = b_RefH + i;
1968            bData.RefP[1] = fData->b_RefP[1] = b_RefV + i;
1969            bData.RefP[3] = fData->b_RefP[3] = b_RefHV + i;
1970            bData.b_RefP[4] = fData->RefP[4] = f_Ref->u + (x + (fData->iEdgedWidth/2) * y) * 8;
1971            bData.b_RefP[5] = fData->RefP[5] = f_Ref->v + (x + (fData->iEdgedWidth/2) * y) * 8;
1972            bData.RefP[4] = fData->b_RefP[4] = b_Ref->u + (x + (fData->iEdgedWidth/2) * y) * 8;
1973            bData.RefP[5] = fData->b_RefP[5] = b_Ref->v + (x + (fData->iEdgedWidth/2) * y) * 8;
1974    
1975            bData.bpredMV = fData->predMV = *f_predMV;
1976            fData->bpredMV = bData.predMV = *b_predMV;
1977            fData->currentMV[0] = fData->currentMV[2];
1978    
1979            get_range(&fData->min_dx, &fData->max_dx, &fData->min_dy, &fData->max_dy, x, y, 16, pParam->width, pParam->height, fcode - fData->qpel, 0, 0);
1980            get_range(&bData.min_dx, &bData.max_dx, &bData.min_dy, &bData.max_dy, x, y, 16, pParam->width, pParam->height, bcode - fData->qpel, 0, 0);
1981    
1982            if (fData->currentMV[0].x > fData->max_dx) fData->currentMV[0].x = fData->max_dx;
1983            if (fData->currentMV[0].x < fData->min_dx) fData->currentMV[0].x = fData->min_dx;
1984            if (fData->currentMV[0].y > fData->max_dy) fData->currentMV[0].y = fData->max_dy;
1985            if (fData->currentMV[0].y < fData->min_dy) fData->currentMV[0].y = fData->min_dy;
1986    
1987            if (fData->currentMV[1].x > bData.max_dx) fData->currentMV[1].x = bData.max_dx;
1988            if (fData->currentMV[1].x < bData.min_dx) fData->currentMV[1].x = bData.min_dx;
1989            if (fData->currentMV[1].y > bData.max_dy) fData->currentMV[1].y = bData.max_dy;
1990            if (fData->currentMV[1].y < bData.min_dy) fData->currentMV[1].y = bData.min_dy;
1991    
1992            CheckCandidateInt(fData->currentMV[0].x, fData->currentMV[0].y, 255, &iDirection, fData);
1993    
1994            /* diamond */
1995            do {
1996                    iDirection = 255;
1997                    /* forward MV moves */
1998                    i = fData->currentMV[0].x; j = fData->currentMV[0].y;
1999    
2000                    CheckCandidateInt(i + 1, j, 0, &iDirection, fData);
2001                    CheckCandidateInt(i, j + 1, 0, &iDirection, fData);
2002                    CheckCandidateInt(i - 1, j, 0, &iDirection, fData);
2003                    CheckCandidateInt(i, j - 1, 0, &iDirection, fData);
2004    
2005                    /* backward MV moves */
2006                    i = fData->currentMV[1].x; j = fData->currentMV[1].y;
2007                    fData->currentMV[2] = fData->currentMV[0];
2008                    CheckCandidateInt(i + 1, j, 0, &iDirection, &bData);
2009                    CheckCandidateInt(i, j + 1, 0, &iDirection, &bData);
2010                    CheckCandidateInt(i - 1, j, 0, &iDirection, &bData);
2011                    CheckCandidateInt(i, j - 1, 0, &iDirection, &bData);
2012    
2013            } while (!(iDirection));
2014    
2015            /* qpel refinement */
2016            if (fData->qpel) {
2017                    if (*fData->iMinSAD > *best_sad + 500) return;
2018                    CheckCandidate = CheckCandidateInt;
2019                    fData->qpel_precision = bData.qpel_precision = 1;
2020                    get_range(&fData->min_dx, &fData->max_dx, &fData->min_dy, &fData->max_dy, x, y, 16, pParam->width, pParam->height, fcode, 1, 0);
2021                    get_range(&bData.min_dx, &bData.max_dx, &bData.min_dy, &bData.max_dy, x, y, 16, pParam->width, pParam->height, bcode, 1, 0);
2022                    fData->currentQMV[2].x = fData->currentQMV[0].x = 2 * fData->currentMV[0].x;
2023                    fData->currentQMV[2].y = fData->currentQMV[0].y = 2 * fData->currentMV[0].y;
2024                    fData->currentQMV[1].x = 2 * fData->currentMV[1].x;
2025                    fData->currentQMV[1].y = 2 * fData->currentMV[1].y;
2026                    SubpelRefine(fData);
2027                    if (*fData->iMinSAD > *best_sad + 300) return;
2028                    fData->currentQMV[2] = fData->currentQMV[0];
2029                    SubpelRefine(&bData);
2030            }
2031    
2032            *fData->iMinSAD += (2+3) * fData->lambda16; /* two bits are needed to code interpolate mode. */
2033    
2034            if (*fData->iMinSAD < *best_sad) {
2035                    *best_sad = *fData->iMinSAD;
2036                    pMB->mvs[0] = fData->currentMV[0];
2037                    pMB->b_mvs[0] = fData->currentMV[1];
2038                    pMB->mode = MODE_INTERPOLATE;
2039                    if (fData->qpel) {
2040                            pMB->qmvs[0] = fData->currentQMV[0];
2041                            pMB->b_qmvs[0] = fData->currentQMV[1];
2042                            pMB->pmvs[1].x = pMB->qmvs[0].x - f_predMV->x;
2043                            pMB->pmvs[1].y = pMB->qmvs[0].y - f_predMV->y;
2044                            pMB->pmvs[0].x = pMB->b_qmvs[0].x - b_predMV->x;
2045                            pMB->pmvs[0].y = pMB->b_qmvs[0].y - b_predMV->y;
2046                    } else {
2047                            pMB->pmvs[1].x = pMB->mvs[0].x - f_predMV->x;
2048                            pMB->pmvs[1].y = pMB->mvs[0].y - f_predMV->y;
2049                            pMB->pmvs[0].x = pMB->b_mvs[0].x - b_predMV->x;
2050                            pMB->pmvs[0].y = pMB->b_mvs[0].y - b_predMV->y;
2051                    }
2052            }
2053    }
2054    
2055    void
2056    MotionEstimationBVOP(MBParam * const pParam,
2057                                             FRAMEINFO * const frame,
2058                                             const int32_t time_bp,
2059                                             const int32_t time_pp,
2060                                             /* forward (past) reference */
2061                                             const MACROBLOCK * const f_mbs,
2062                                             const IMAGE * const f_ref,
2063                                             const IMAGE * const f_refH,
2064                                             const IMAGE * const f_refV,
2065                                             const IMAGE * const f_refHV,
2066                                             /* backward (future) reference */
2067                                             const FRAMEINFO * const b_reference,
2068                                             const IMAGE * const b_ref,
2069                                             const IMAGE * const b_refH,
2070                                             const IMAGE * const b_refV,
2071                                             const IMAGE * const b_refHV)
2072    {
2073            uint32_t i, j;
2074            int32_t best_sad;
2075            uint32_t skip_sad;
2076            int f_count = 0, b_count = 0, i_count = 0, d_count = 0, n_count = 0;
2077            const MACROBLOCK * const b_mbs = b_reference->mbs;
2078    
2079            VECTOR f_predMV, b_predMV;      /* there is no prediction for direct mode*/
2080    
2081            const int32_t TRB = time_pp - time_bp;
2082            const int32_t TRD = time_pp;
2083    
2084            /* some pre-inintialized data for the rest of the search */
2085    
2086            SearchData Data;
2087            int32_t iMinSAD;
2088            VECTOR currentMV[3];
2089            VECTOR currentQMV[3];
2090            int32_t temp[8];
2091            memset(&Data, 0, sizeof(SearchData));
2092            Data.iEdgedWidth = pParam->edged_width;
2093            Data.currentMV = currentMV; Data.currentQMV = currentQMV;
2094            Data.iMinSAD = &iMinSAD;
2095            Data.lambda16 = lambda_vec16[frame->quant];
2096            Data.qpel = pParam->vol_flags & XVID_VOL_QUARTERPEL ? 1 : 0;
2097            Data.rounding = 0;
2098            Data.chroma = frame->motion_flags & XVID_ME_CHROMA_BVOP;
2099            Data.temp = temp;
2100    
2101            Data.RefQ = f_refV->u; /* a good place, also used in MC (for similar purpose) */
2102    
2103            /* note: i==horizontal, j==vertical */
2104            for (j = 0; j < pParam->mb_height; j++) {
2105    
2106                    f_predMV = b_predMV = zeroMV;   /* prediction is reset at left boundary */
2107    
2108                    for (i = 0; i < pParam->mb_width; i++) {
2109                            MACROBLOCK * const pMB = frame->mbs + i + j * pParam->mb_width;
2110                            const MACROBLOCK * const b_mb = b_mbs + i + j * pParam->mb_width;
2111    
2112    /* special case, if collocated block is SKIPed in P-VOP: encoding is forward (0,0), cpb=0 without further ado */
2113                            if (b_reference->coding_type != S_VOP)
2114                                    if (b_mb->mode == MODE_NOT_CODED) {
2115                                            pMB->mode = MODE_NOT_CODED;
2116                                            continue;
2117                                    }
2118    
2119                            Data.Cur = frame->image.y + (j * Data.iEdgedWidth + i) * 16;
2120                            Data.CurU = frame->image.u + (j * Data.iEdgedWidth/2 + i) * 8;
2121                            Data.CurV = frame->image.v + (j * Data.iEdgedWidth/2 + i) * 8;
2122                            pMB->quant = frame->quant;
2123    
2124    /* direct search comes first, because it (1) checks for SKIP-mode
2125            and (2) sets very good predictions for forward and backward search */
2126                            skip_sad = SearchDirect(f_ref, f_refH->y, f_refV->y, f_refHV->y,
2127                                                                            b_ref, b_refH->y, b_refV->y, b_refHV->y,
2128                                                                            &frame->image,
2129                                                                            i, j,
2130                                                                            frame->motion_flags,
2131                                                                            TRB, TRD,
2132                                                                            pParam,
2133                                                                            pMB, b_mb,
2134                                                                            &best_sad,
2135                                                                            &Data);
2136    
2137                            if (pMB->mode == MODE_DIRECT_NONE_MV) { n_count++; continue; }
2138    
2139                            /* forward search */
2140                            SearchBF(f_ref, f_refH->y, f_refV->y, f_refHV->y,
2141                                                    &frame->image, i, j,
2142                                                    frame->motion_flags,
2143                                                    frame->fcode, pParam,
2144                                                    pMB, &f_predMV, &best_sad,
2145                                                    MODE_FORWARD, &Data);
2146    
2147                            /* backward search */
2148                            SearchBF(b_ref, b_refH->y, b_refV->y, b_refHV->y,
2149                                                    &frame->image, i, j,
2150                                                    frame->motion_flags,
2151                                                    frame->bcode, pParam,
2152                                                    pMB, &b_predMV, &best_sad,
2153                                                    MODE_BACKWARD, &Data);
2154    
2155                            /* interpolate search comes last, because it uses data from forward and backward as prediction */
2156                            SearchInterpolate(f_ref, f_refH->y, f_refV->y, f_refHV->y,
2157                                                    b_ref, b_refH->y, b_refV->y, b_refHV->y,
2158                                                    &frame->image,
2159                                                    i, j,
2160                                                    frame->fcode, frame->bcode,
2161                                                    frame->motion_flags,
2162                                                    pParam,
2163                                                    &f_predMV, &b_predMV,
2164                                                    pMB, &best_sad,
2165                                                    &Data);
2166    
2167                            /* final skip decision */
2168                            if ( (skip_sad < frame->quant * MAX_SAD00_FOR_SKIP * 2)
2169                                            && ((100*best_sad)/(skip_sad+1) > FINAL_SKIP_THRESH) )
2170                                    SkipDecisionB(&frame->image, f_ref, b_ref, pMB, i, j, &Data);
2171    
2172                            switch (pMB->mode) {
2173                                    case MODE_FORWARD:
2174                                            f_count++;
2175                                            f_predMV = Data.qpel ? pMB->qmvs[0] : pMB->mvs[0];
2176                                            break;
2177                                    case MODE_BACKWARD:
2178                                            b_count++;
2179                                            b_predMV = Data.qpel ? pMB->b_qmvs[0] : pMB->b_mvs[0];
2180                                            break;
2181                                    case MODE_INTERPOLATE:
2182                                            i_count++;
2183                                            f_predMV = Data.qpel ? pMB->qmvs[0] : pMB->mvs[0];
2184                                            b_predMV = Data.qpel ? pMB->b_qmvs[0] : pMB->b_mvs[0];
2185                                            break;
2186                                    case MODE_DIRECT:
2187                                    case MODE_DIRECT_NO4V:
2188                                            d_count++;
2189                                    default:
2190                                            break;
2191                            }
2192                    }
2193            }
2194    }
2195    
2196    static __inline void
2197    MEanalyzeMB (   const uint8_t * const pRef,
2198                                    const uint8_t * const pCur,
2199                                    const int x,
2200                                    const int y,
2201                                    const MBParam * const pParam,
2202                                    MACROBLOCK * const pMBs,
2203                                    SearchData * const Data)
2204    {
2205    
2206            int i, mask;
2207            int quarterpel = (pParam->vol_flags & XVID_VOL_QUARTERPEL)? 1: 0;
2208            VECTOR pmv[3];
2209            MACROBLOCK * const pMB = &pMBs[x + y * pParam->mb_width];
2210    
2211  // (0,0) is always possible          for (i = 0; i < 5; i++) Data->iMinSAD[i] = MV_MAX_ERROR;
         CHECK_MV8_ZERO;  
2212    
2213  // previous frame MV is always possible          /* median is only used as prediction. it doesn't have to be real */
2214          CHECK_MV8_CANDIDATE(pMB->mvs[iSubBlock].x,pMB->mvs[iSubBlock].y);          if (x == 1 && y == 1) Data->predMV.x = Data->predMV.y = 0;
2215            else
2216                    if (x == 1) /* left macroblock does not have any vector now */
2217                            Data->predMV = (pMB - pParam->mb_width)->mvs[0]; /* top instead of median */
2218                    else if (y == 1) /* top macroblock doesn't have it's vector */
2219                            Data->predMV = (pMB - 1)->mvs[0]; /* left instead of median */
2220                            else Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, 0); /* else median */
2221    
2222            get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
2223                            pParam->width, pParam->height, Data->iFcode - quarterpel, 0, 0);
2224    
2225            Data->Cur = pCur + (x + y * pParam->edged_width) * 16;
2226            Data->RefP[0] = pRef + (x + y * pParam->edged_width) * 16;
2227    
2228            pmv[1].x = EVEN(pMB->mvs[0].x);
2229            pmv[1].y = EVEN(pMB->mvs[0].y);
2230            pmv[2].x = EVEN(Data->predMV.x);
2231            pmv[2].y = EVEN(Data->predMV.y);
2232            pmv[0].x = pmv[0].y = 0;
2233    
2234            CheckCandidate32I(0, 0, 255, &i, Data);
2235    
2236            if (*Data->iMinSAD > 4 * MAX_SAD00_FOR_SKIP) {
2237    
2238                    if (!(mask = make_mask(pmv, 1)))
2239                            CheckCandidate32I(pmv[1].x, pmv[1].y, mask, &i, Data);
2240                    if (!(mask = make_mask(pmv, 2)))
2241                            CheckCandidate32I(pmv[2].x, pmv[2].y, mask, &i, Data);
2242    
2243                    if (*Data->iMinSAD > 4 * MAX_SAD00_FOR_SKIP) /* diamond only if needed */
2244                            DiamondSearch(Data->currentMV->x, Data->currentMV->y, Data, i);
2245            }
2246    
2247            for (i = 0; i < 4; i++) {
2248                    MACROBLOCK * MB = &pMBs[x + (i&1) + (y+(i>>1)) * pParam->mb_width];
2249                    MB->mvs[0] = MB->mvs[1] = MB->mvs[2] = MB->mvs[3] = Data->currentMV[i];
2250                    MB->mode = MODE_INTER;
2251                    MB->sad16 = Data->iMinSAD[i+1];
2252            }
2253    }
2254    
2255    #define INTRA_THRESH    2200
2256    #define INTER_THRESH    50
2257    #define INTRA_THRESH2   95
2258    
2259    int
2260    MEanalysis(     const IMAGE * const pRef,
2261                            const FRAMEINFO * const Current,
2262                            const MBParam * const pParam,
2263                            const int maxIntra, //maximum number if non-I frames
2264                            const int intraCount, //number of non-I frames after last I frame; 0 if we force P/B frame
2265                            const int bCount, // number of B frames in a row
2266                            const int b_thresh)
2267    {
2268            uint32_t x, y, intra = 0;
2269            int sSAD = 0;
2270            MACROBLOCK * const pMBs = Current->mbs;
2271            const IMAGE * const pCurrent = &Current->image;
2272            int IntraThresh = INTRA_THRESH, InterThresh = INTER_THRESH + b_thresh;
2273            int blocks = 0;
2274            int complexity = 0;
2275    
2276            int32_t iMinSAD[5], temp[5];
2277            VECTOR currentMV[5];
2278            SearchData Data;
2279            Data.iEdgedWidth = pParam->edged_width;
2280            Data.currentMV = currentMV;
2281            Data.iMinSAD = iMinSAD;
2282            Data.iFcode = Current->fcode;
2283            Data.temp = temp;
2284            CheckCandidate = CheckCandidate32I;
2285    
2286            if (intraCount != 0) {
2287                    if (intraCount < 10) // we're right after an I frame
2288                            IntraThresh += 15* (intraCount - 10) * (intraCount - 10);
2289                    else
2290                            if ( 5*(maxIntra - intraCount) < maxIntra) // we're close to maximum. 2 sec when max is 10 sec
2291                                    IntraThresh -= (IntraThresh * (maxIntra - 8*(maxIntra - intraCount)))/maxIntra;
2292            }
2293    
2294            InterThresh -= 12 * bCount;
2295            if (InterThresh < 15 + b_thresh) InterThresh = 15 + b_thresh;
2296    
2297            if (sadInit) (*sadInit) ();
2298    
2299            for (y = 1; y < pParam->mb_height-1; y += 2) {
2300                    for (x = 1; x < pParam->mb_width-1; x += 2) {
2301                            int i;
2302                            blocks += 10;
2303    
2304                            if (bCount == 0) pMBs[x + y * pParam->mb_width].mvs[0] = zeroMV;
2305                            else { //extrapolation of the vector found for last frame
2306                                    pMBs[x + y * pParam->mb_width].mvs[0].x =
2307                                            (pMBs[x + y * pParam->mb_width].mvs[0].x * (bCount+1) ) / bCount;
2308                                    pMBs[x + y * pParam->mb_width].mvs[0].y =
2309                                            (pMBs[x + y * pParam->mb_width].mvs[0].y * (bCount+1) ) / bCount;
2310                            }
2311    
2312                            MEanalyzeMB(pRef->y, pCurrent->y, x, y, pParam, pMBs, &Data);
2313    
2314                            for (i = 0; i < 4; i++) {
2315                                    int dev;
2316                                    MACROBLOCK *pMB = &pMBs[x+(i&1) + (y+(i>>1)) * pParam->mb_width];
2317                                    dev = dev16(pCurrent->y + (x + (i&1) + (y + (i>>1)) * pParam->edged_width) * 16,
2318                                                                    pParam->edged_width);
2319    
2320                                    complexity += MAX(dev, 300);
2321                                    if (dev + IntraThresh < pMB->sad16) {
2322                                            pMB->mode = MODE_INTRA;
2323                                            if (++intra > ((pParam->mb_height-2)*(pParam->mb_width-2))/2) return I_VOP;
2324                                    }
2325    
2326                                    if (pMB->mvs[0].x == 0 && pMB->mvs[0].y == 0)
2327                                            if (dev > 500 && pMB->sad16 < 1000)
2328                                                    sSAD += 1000;
2329    
2330                                    sSAD += (dev < 3000) ? pMB->sad16 : pMB->sad16/2; /* blocks with big contrast differences usually have large SAD - while they look very good in b-frames */
2331                            }
2332                    }
2333            }
2334            complexity >>= 7;
2335    
2336            sSAD /= complexity + 4*blocks;
2337    
2338            if (intraCount > 80 && sSAD > INTRA_THRESH2 ) return I_VOP;
2339            if (sSAD > InterThresh ) return P_VOP;
2340            emms();
2341            return B_VOP;
2342    }
2343    
2344  // left neighbour, if allowed  
2345          if (psad[1] != MV_MAX_ERROR)  /* functions which perform BITS-based search/bitcount */
2346    
2347    static int
2348    findRDinter(SearchData * const Data,
2349                            const MACROBLOCK * const pMBs, const int x, const int y,
2350                            const MBParam * const pParam,
2351                            const uint32_t MotionFlags)
2352          {          {
2353                  if (!(MotionFlags & PMV_HALFPEL8 ))          int i, iDirection;
2354                  {       pmv[1].x = EVEN(pmv[1].x);          int32_t bsad[5];
2355                          pmv[1].y = EVEN(pmv[1].y);  
2356            CheckCandidate = CheckCandidateRD16;
2357    
2358            if (Data->qpel) {
2359                    for(i = 0; i < 5; i++) {
2360                            Data->currentMV[i].x = Data->currentQMV[i].x/2;
2361                            Data->currentMV[i].y = Data->currentQMV[i].y/2;
2362                    }
2363                    Data->qpel_precision = 1;
2364                    CheckCandidateRD16(Data->currentQMV[0].x, Data->currentQMV[0].y, 255, &iDirection, Data);
2365    
2366                    if (MotionFlags & (XVID_ME_HALFPELREFINE16_RD | XVID_ME_EXTSEARCH_RD)) { /* we have to prepare for halfpixel-precision search */
2367                            for(i = 0; i < 5; i++) bsad[i] = Data->iMinSAD[i];
2368                            get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
2369                                                    pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv);
2370                            Data->qpel_precision = 0;
2371                            if (Data->currentQMV->x & 1 || Data->currentQMV->y & 1)
2372                                    CheckCandidateRD16(Data->currentMV[0].x, Data->currentMV[0].y, 255, &iDirection, Data);
2373                    }
2374    
2375            } else { /* not qpel */
2376    
2377                    CheckCandidateRD16(Data->currentMV[0].x, Data->currentMV[0].y, 255, &iDirection, Data);
2378            }
2379    
2380            if (MotionFlags&XVID_ME_EXTSEARCH_RD) SquareSearch(Data->currentMV->x, Data->currentMV->y, Data, iDirection);
2381    
2382            if (MotionFlags&XVID_ME_HALFPELREFINE16_RD) SubpelRefine(Data);
2383    
2384            if (Data->qpel) {
2385                    if (MotionFlags&(XVID_ME_EXTSEARCH_RD | XVID_ME_HALFPELREFINE16_RD)) { /* there was halfpel-precision search */
2386                            for(i = 0; i < 5; i++) if (bsad[i] > Data->iMinSAD[i]) {
2387                                    Data->currentQMV[i].x = 2 * Data->currentMV[i].x; /* we have found a better match */
2388                                    Data->currentQMV[i].y = 2 * Data->currentMV[i].y;
2389                            }
2390    
2391                            /* preparing for qpel-precision search */
2392                            Data->qpel_precision = 1;
2393                            get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
2394                                            pParam->width, pParam->height, Data->iFcode, 1, 0);
2395                  }                  }
2396                  CHECK_MV8_CANDIDATE(pmv[1].x,pmv[1].y);                  if (MotionFlags&XVID_ME_QUARTERPELREFINE16_RD) SubpelRefine(Data);
2397          }          }
2398    
2399  // top neighbour, if allowed          if (MotionFlags&XVID_ME_CHECKPREDICTION_RD) { /* let's check vector equal to prediction */
2400          if (psad[2] != MV_MAX_ERROR)                  VECTOR * v = Data->qpel ? Data->currentQMV : Data->currentMV;
2401                    if (!(Data->predMV.x == v->x && Data->predMV.y == v->y))
2402                            CheckCandidateRD16(Data->predMV.x, Data->predMV.y, 255, &iDirection, Data);
2403            }
2404            return Data->iMinSAD[0];
2405    }
2406    
2407    static int
2408    findRDinter4v(const SearchData * const Data,
2409                                    MACROBLOCK * const pMB, const MACROBLOCK * const pMBs,
2410                                    const int x, const int y,
2411                                    const MBParam * const pParam, const uint32_t MotionFlags,
2412                                    const VECTOR * const backup)
2413          {          {
2414                  if (!(MotionFlags & PMV_HALFPEL8 ))  
2415                  {       pmv[2].x = EVEN(pmv[2].x);          int cbp = 0, bits = 0, t = 0, i, iDirection;
2416                          pmv[2].y = EVEN(pmv[2].y);          SearchData Data2, *Data8 = &Data2;
2417            int sumx = 0, sumy = 0;
2418            int16_t *in = Data->dctSpace, *coeff = Data->dctSpace + 64;
2419            uint8_t * ptr;
2420    
2421            memcpy(Data8, Data, sizeof(SearchData));
2422            CheckCandidate = CheckCandidateRD8;
2423    
2424            for (i = 0; i < 4; i++) { /* for all luma blocks */
2425    
2426                    Data8->iMinSAD = Data->iMinSAD + i + 1;
2427                    Data8->currentMV = Data->currentMV + i + 1;
2428                    Data8->currentQMV = Data->currentQMV + i + 1;
2429                    Data8->Cur = Data->Cur + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
2430                    Data8->RefP[0] = Data->RefP[0] + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
2431                    Data8->RefP[2] = Data->RefP[2] + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
2432                    Data8->RefP[1] = Data->RefP[1] + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
2433                    Data8->RefP[3] = Data->RefP[3] + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
2434                    *Data8->cbp = (Data->cbp[1] & (1<<(5-i))) ? 1:0; // copy corresponding cbp bit
2435    
2436                    if(Data->qpel) {
2437                            Data8->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, i);
2438                            if (i != 0)     t = d_mv_bits(  Data8->currentQMV->x, Data8->currentQMV->y,
2439                                                                                    Data8->predMV, Data8->iFcode, 0, 0);
2440                    } else {
2441                            Data8->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, i);
2442                            if (i != 0)     t = d_mv_bits(  Data8->currentMV->x, Data8->currentMV->y,
2443                                                                                    Data8->predMV, Data8->iFcode, 0, 0);
2444                  }                  }
                 CHECK_MV8_CANDIDATE(pmv[2].x,pmv[2].y);  
2445    
2446  // top right neighbour, if allowed                  get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8,
2447                  if (psad[3] != MV_MAX_ERROR)                                          pParam->width, pParam->height, Data8->iFcode, Data8->qpel, 0);
2448    
2449                    *Data8->iMinSAD += BITS_MULT*t;
2450    
2451                    Data8->qpel_precision = Data8->qpel;
2452                    /* checking the vector which has been found by SAD-based 8x8 search (if it's different than the one found so far) */
2453                  {                  {
2454                  if (!(MotionFlags & PMV_HALFPEL8 ))                          VECTOR *v = Data8->qpel ? Data8->currentQMV : Data8->currentMV;
2455                  {       pmv[3].x = EVEN(pmv[3].x);                          if (!MVequal (*v, backup[i+1]) )
2456                          pmv[3].y = EVEN(pmv[3].y);                                  CheckCandidateRD8(backup[i+1].x, backup[i+1].y, 255, &iDirection, Data8);
2457                    }
2458    
2459                    if (Data8->qpel) {
2460                            if (MotionFlags&XVID_ME_HALFPELREFINE8_RD || (MotionFlags&XVID_ME_EXTSEARCH8 && MotionFlags&XVID_ME_EXTSEARCH_RD)) { /* halfpixel motion search follows */
2461                                    int32_t s = *Data8->iMinSAD;
2462                                    Data8->currentMV->x = Data8->currentQMV->x/2;
2463                                    Data8->currentMV->y = Data8->currentQMV->y/2;
2464                                    Data8->qpel_precision = 0;
2465                                    get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8,
2466                                                            pParam->width, pParam->height, Data8->iFcode - 1, 0, 0);
2467    
2468                                    if (Data8->currentQMV->x & 1 || Data8->currentQMV->y & 1)
2469                                            CheckCandidateRD8(Data8->currentMV->x, Data8->currentMV->y, 255, &iDirection, Data8);
2470    
2471                                    if (MotionFlags & XVID_ME_EXTSEARCH8 && MotionFlags & XVID_ME_EXTSEARCH_RD)
2472                                            SquareSearch(Data8->currentMV->x, Data8->currentMV->x, Data8, 255);
2473    
2474                                    if (MotionFlags & XVID_ME_HALFPELREFINE8_RD)
2475                                            SubpelRefine(Data8);
2476    
2477                                    if(s > *Data8->iMinSAD) { /* we have found a better match */
2478                                            Data8->currentQMV->x = 2*Data8->currentMV->x;
2479                                            Data8->currentQMV->y = 2*Data8->currentMV->y;
2480                                    }
2481    
2482                                    Data8->qpel_precision = 1;
2483                                    get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8,
2484                                                            pParam->width, pParam->height, Data8->iFcode, 1, 0);
2485    
2486                  }                  }
2487                          CHECK_MV8_CANDIDATE(pmv[3].x,pmv[3].y);                          if (MotionFlags & XVID_ME_QUARTERPELREFINE8_RD) SubpelRefine(Data8);
2488    
2489                    } else { /* not qpel */
2490    
2491                            if (MotionFlags & XVID_ME_EXTSEARCH8 && MotionFlags & XVID_ME_EXTSEARCH_RD) /* extsearch */
2492                                    SquareSearch(Data8->currentMV->x, Data8->currentMV->x, Data8, 255);
2493    
2494                            if (MotionFlags & XVID_ME_HALFPELREFINE8_RD)
2495                                    SubpelRefine(Data8); /* halfpel refinement */
2496                  }                  }
2497    
2498                    /* checking vector equal to predicion */
2499                    if (i != 0 && MotionFlags & XVID_ME_CHECKPREDICTION_RD) {
2500                            const VECTOR * v = Data->qpel ? Data8->currentQMV : Data8->currentMV;
2501                            if (!MVequal(*v, Data8->predMV))
2502                                    CheckCandidateRD8(Data8->predMV.x, Data8->predMV.y, 255, &iDirection, Data8);
2503          }          }
2504    
2505  /* Step 6: If MinSAD <= thresa goto Step 10.                  bits += *Data8->iMinSAD;
2506     If Motion Vector equal to Previous frame motion vector and MinSAD<PrevFrmSAD goto Step 10.                  if (bits >= Data->iMinSAD[0]) return bits; /* no chances for INTER4V */
 */  
2507    
2508          if ( (iMinSAD <= threshA) || ( MVequal(*currMV,pMB->mvs[iSubBlock]) && (iMinSAD < pMB->sad8[iSubBlock]) ) )                  /* MB structures for INTER4V mode; we have to set them here, we don't have predictor anywhere else */
2509                    if(Data->qpel) {
2510                            pMB->pmvs[i].x = Data8->currentQMV->x - Data8->predMV.x;
2511                            pMB->pmvs[i].y = Data8->currentQMV->y - Data8->predMV.y;
2512                            pMB->qmvs[i] = *Data8->currentQMV;
2513                            sumx += Data8->currentQMV->x/2;
2514                            sumy += Data8->currentQMV->y/2;
2515                    } else {
2516                            pMB->pmvs[i].x = Data8->currentMV->x - Data8->predMV.x;
2517                            pMB->pmvs[i].y = Data8->currentMV->y - Data8->predMV.y;
2518                            sumx += Data8->currentMV->x;
2519                            sumy += Data8->currentMV->y;
2520                    }
2521                    pMB->mvs[i] = *Data8->currentMV;
2522                    pMB->sad8[i] = 4 * *Data8->iMinSAD;
2523                    if (Data8->cbp[0]) cbp |= 1 << (5 - i);
2524    
2525            } /* end - for all luma blocks */
2526    
2527            bits += BITS_MULT*xvid_cbpy_tab[15-(cbp>>2)].len;
2528    
2529            /* let's check chroma */
2530            sumx = (sumx >> 3) + roundtab_76[sumx & 0xf];
2531            sumy = (sumy >> 3) + roundtab_76[sumy & 0xf];
2532    
2533            /* chroma U */
2534            ptr = interpolate8x8_switch2(Data->RefQ + 64, Data->RefP[4], 0, 0, sumx, sumy, Data->iEdgedWidth/2, Data->rounding);
2535            transfer_8to16subro(in, Data->CurU, ptr, Data->iEdgedWidth/2);
2536            bits += Block_CalcBits(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 4);
2537    
2538            if (bits >= *Data->iMinSAD) return bits;
2539    
2540            /* chroma V */
2541            ptr = interpolate8x8_switch2(Data->RefQ + 64, Data->RefP[5], 0, 0, sumx, sumy, Data->iEdgedWidth/2, Data->rounding);
2542            transfer_8to16subro(in, Data->CurV, ptr, Data->iEdgedWidth/2);
2543            bits += Block_CalcBits(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 5);
2544    
2545            bits += BITS_MULT*mcbpc_inter_tab[(MODE_INTER4V & 7) | ((cbp & 3) << 3)].len;
2546    
2547            *Data->cbp = cbp;
2548            return bits;
2549    }
2550    
2551    static int
2552    findRDintra(const SearchData * const Data)
2553                  {                  {
2554                          if (MotionFlags & PMV_QUICKSTOP8)          int bits = BITS_MULT*1; /* this one is ac/dc prediction flag bit */
2555                                  goto step10_8b;          int cbp = 0, i, dc = 0;
2556                          if (MotionFlags & PMV_EARLYSTOP8)          int16_t *in = Data->dctSpace, * coeff = Data->dctSpace + 64;
2557                                  goto step10_8;  
2558            for(i = 0; i < 4; i++) {
2559                    int s = 8*((i&1) + (i>>1)*Data->iEdgedWidth);
2560                    transfer_8to16copy(in, Data->Cur + s, Data->iEdgedWidth);
2561                    bits += Block_CalcBitsIntra(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, i, &dc);
2562    
2563                    if (bits >= Data->iMinSAD[0]) return bits;
2564                  }                  }
2565    
2566  /************ (Diamond Search)  **************/          bits += BITS_MULT*xvid_cbpy_tab[cbp>>2].len;
2567  /*  
2568  Step 7: Perform Diamond search, with either the small or large diamond.          /*chroma U */
2569          If Found=2 only examine one Diamond pattern, and afterwards goto step 10          transfer_8to16copy(in, Data->CurU, Data->iEdgedWidth/2);
2570  Step 8: If small diamond, iterate small diamond search pattern until motion vector lies in the center of the diamond.          bits += Block_CalcBitsIntra(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 4, &dc);
2571          If center then goto step 10.  
2572  Step 9: If large diamond, iterate large diamond search pattern until motion vector lies in the center.          if (bits >= Data->iMinSAD[0]) return bits;
2573          Refine by using small diamond and goto step 10.  
2574            /* chroma V */
2575            transfer_8to16copy(in, Data->CurV, Data->iEdgedWidth/2);
2576            bits += Block_CalcBitsIntra(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 5, &dc);
2577    
2578            bits += BITS_MULT*mcbpc_inter_tab[(MODE_INTRA & 7) | ((cbp & 3) << 3)].len;
2579    
2580            return bits;
2581    }
2582    
2583    static int
2584    findRDgmc(const SearchData * const Data, const IMAGE * const vGMC, const int x, const int y)
2585    {
2586            int bits = BITS_MULT*1; /* this one is mcsel */
2587            int cbp = 0, i;
2588            int16_t *in = Data->dctSpace, * coeff = Data->dctSpace + 64;
2589    
2590            for(i = 0; i < 4; i++) {
2591                    int s = 8*((i&1) + (i>>1)*Data->iEdgedWidth);
2592                    transfer_8to16subro(in, Data->Cur + s, vGMC->y + s + 16*(x+y*Data->iEdgedWidth), Data->iEdgedWidth);
2593                    bits += Block_CalcBits(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, i);
2594                    if (bits >= Data->iMinSAD[0]) return bits;
2595            }
2596    
2597            bits += BITS_MULT*xvid_cbpy_tab[15-(cbp>>2)].len;
2598    
2599            /*chroma U */
2600            transfer_8to16subro(in, Data->CurU, vGMC->u + 8*(x+y*(Data->iEdgedWidth/2)), Data->iEdgedWidth/2);
2601            bits += Block_CalcBits(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 4);
2602    
2603            if (bits >= Data->iMinSAD[0]) return bits;
2604    
2605            /* chroma V */
2606            transfer_8to16subro(in, Data->CurV , vGMC->v + 8*(x+y*(Data->iEdgedWidth/2)), Data->iEdgedWidth/2);
2607            bits += Block_CalcBits(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 5);
2608    
2609            bits += BITS_MULT*mcbpc_inter_tab[(MODE_INTER & 7) | ((cbp & 3) << 3)].len;
2610    
2611            *Data->cbp = cbp;
2612    
2613            return bits;
2614    }
2615    
2616    
2617    
2618    
2619    static __inline void
2620    GMEanalyzeMB (  const uint8_t * const pCur,
2621                                    const uint8_t * const pRef,
2622                                    const uint8_t * const pRefH,
2623                                    const uint8_t * const pRefV,
2624                                    const uint8_t * const pRefHV,
2625                                    const int x,
2626                                    const int y,
2627                                    const MBParam * const pParam,
2628                                    MACROBLOCK * const pMBs,
2629                                    SearchData * const Data)
2630    {
2631    
2632            int i=0;
2633            MACROBLOCK * const pMB = &pMBs[x + y * pParam->mb_width];
2634    
2635            Data->iMinSAD[0] = MV_MAX_ERROR;
2636    
2637            Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, 0);
2638    
2639            get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
2640                                    pParam->width, pParam->height, 16, 0, 0);
2641    
2642            Data->Cur = pCur + 16*(x + y * pParam->edged_width);
2643            Data->RefP[0] = pRef + 16*(x + y * pParam->edged_width);
2644            Data->RefP[1] = pRefV + 16*(x + y * pParam->edged_width);
2645            Data->RefP[2] = pRefH + 16*(x + y * pParam->edged_width);
2646            Data->RefP[3] = pRefHV + 16*(x + y * pParam->edged_width);
2647    
2648            Data->currentMV[0].x = Data->currentMV[0].y = 0;
2649            CheckCandidate16I(0, 0, 255, &i, Data);
2650    
2651            if ( (Data->predMV.x !=0) || (Data->predMV.y != 0) )
2652                    CheckCandidate16I(Data->predMV.x, Data->predMV.y, 255, &i, Data);
2653    
2654            AdvDiamondSearch(Data->currentMV[0].x, Data->currentMV[0].y, Data, 255);
2655    
2656            SubpelRefine(Data);
2657    
2658    
2659            /* for QPel halfpel positions are worse than in halfpel mode :( */
2660    /*      if (Data->qpel) {
2661                    Data->currentQMV->x = 2*Data->currentMV->x;
2662                    Data->currentQMV->y = 2*Data->currentMV->y;
2663                    Data->qpel_precision = 1;
2664                    get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
2665                                            pParam->width, pParam->height, iFcode, 1, 0);
2666                    SubpelRefine(Data);
2667            }
2668  */  */
2669    
2670          backupMV = *currMV; /* save best prediction, actually only for EXTSEARCH */          pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = Data->currentMV[0];
2671            pMB->sad16 = Data->iMinSAD[0];
2672            pMB->mode = MODE_INTER;
2673            pMB->sad16 += 10*d_mv_bits(pMB->mvs[0].x, pMB->mvs[0].y, Data->predMV, Data->iFcode, 0, 0);
2674            return;
2675    }
2676    
2677    void
2678    GMEanalysis(const MBParam * const pParam,
2679                            const FRAMEINFO * const current,
2680                            const FRAMEINFO * const reference,
2681                            const IMAGE * const pRefH,
2682                            const IMAGE * const pRefV,
2683                            const IMAGE * const pRefHV)
2684    {
2685            uint32_t x, y;
2686            MACROBLOCK * const pMBs = current->mbs;
2687            const IMAGE * const pCurrent = &current->image;
2688            const IMAGE * const pReference = &reference->image;
2689    
2690            int32_t iMinSAD[5], temp[5];
2691            VECTOR currentMV[5];
2692            SearchData Data;
2693            memset(&Data, 0, sizeof(SearchData));
2694    
2695  /* default: use best prediction as starting point for one call of PMVfast_MainSearch */          Data.iEdgedWidth = pParam->edged_width;
2696          iSAD = PMVfastSearch8_MainSearch(pRef, pRefH, pRefV, pRefHV, cur,          Data.rounding = pParam->m_rounding_type;
                 x, y,  
                 currMV->x, currMV->y, iMinSAD, &newMV,  
                 pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, iFound);  
2697    
2698          if (iSAD < iMinSAD)          Data.currentMV = &currentMV[0];
2699            Data.iMinSAD = &iMinSAD[0];
2700            Data.iFcode = current->fcode;
2701            Data.temp = temp;
2702    
2703            CheckCandidate = CheckCandidate16I;
2704    
2705            if (sadInit) (*sadInit) ();
2706    
2707            for (y = 0; y < pParam->mb_height; y ++) {
2708                    for (x = 0; x < pParam->mb_width; x ++) {
2709    
2710                            GMEanalyzeMB(pCurrent->y, pReference->y, pRefH->y, pRefV->y, pRefHV->y, x, y, pParam, pMBs, &Data);
2711                    }
2712            }
2713            return;
2714    }
2715    
2716    
2717    WARPPOINTS
2718    GlobalMotionEst(MACROBLOCK * const pMBs,
2719                                    const MBParam * const pParam,
2720                                    const FRAMEINFO * const current,
2721                                    const FRAMEINFO * const reference,
2722                                    const IMAGE * const pRefH,
2723                                    const IMAGE * const pRefV,
2724                                    const IMAGE * const pRefHV)
2725    {
2726    
2727            const int deltax=8;             // upper bound for difference between a MV and it's neighbour MVs
2728            const int deltay=8;
2729            const unsigned int gradx=512;           // lower bound for gradient in MB (ignore "flat" blocks)
2730            const unsigned int grady=512;
2731    
2732            double sol[4] = { 0., 0., 0., 0. };
2733    
2734            WARPPOINTS gmc;
2735    
2736            uint32_t mx, my;
2737    
2738            int MBh = pParam->mb_height;
2739            int MBw = pParam->mb_width;
2740            const int minblocks = 9; //MBh*MBw/32+3;                /* just some reasonable number 3% + 3 */
2741            const int maxblocks = MBh*MBw/4;                /* just some reasonable number 3% + 3 */
2742    
2743            int num=0;
2744            int oldnum;
2745    
2746            gmc.duv[0].x = gmc.duv[0].y = gmc.duv[1].x = gmc.duv[1].y = gmc.duv[2].x = gmc.duv[2].y = 0;
2747    
2748            GMEanalysis(pParam,current, reference, pRefH, pRefV, pRefHV);
2749    
2750            /* block based ME isn't done, yet, so do a quick presearch */
2751    
2752    // filter mask of all blocks
2753    
2754            for (my = 0; my < (uint32_t)MBh; my++)
2755            for (mx = 0; mx < (uint32_t)MBw; mx++)
2756          {          {
2757                  *currMV = newMV;                  const int mbnum = mx + my * MBw;
2758                  iMinSAD = iSAD;                          pMBs[mbnum].mcsel = 0;
2759          }          }
2760    
2761          if (MotionFlags & PMV_EXTSEARCH8)  
2762            for (my = 1; my < (uint32_t)MBh-1; my++) /* ignore boundary blocks */
2763            for (mx = 1; mx < (uint32_t)MBw-1; mx++) /* theirs MVs are often wrong */
2764          {          {
2765  /* extended: search (up to) two more times: orignal prediction and (0,0) */                  const int mbnum = mx + my * MBw;
2766                    MACROBLOCK *const pMB = &pMBs[mbnum];
2767                    const VECTOR mv = pMB->mvs[0];
2768    
2769                    /* don't use object boundaries */
2770                    if   ( (abs(mv.x -   (pMB-1)->mvs[0].x) < deltax)
2771                            && (abs(mv.y -   (pMB-1)->mvs[0].y) < deltay)
2772                            && (abs(mv.x -   (pMB+1)->mvs[0].x) < deltax)
2773                            && (abs(mv.y -   (pMB+1)->mvs[0].y) < deltay)
2774                            && (abs(mv.x - (pMB-MBw)->mvs[0].x) < deltax)
2775                            && (abs(mv.y - (pMB-MBw)->mvs[0].y) < deltay)
2776                            && (abs(mv.x - (pMB+MBw)->mvs[0].x) < deltax)
2777                            && (abs(mv.y - (pMB+MBw)->mvs[0].y) < deltay) )
2778                    {       const int iEdgedWidth = pParam->edged_width;
2779                            const uint8_t *const pCur = current->image.y + 16*(my*iEdgedWidth + mx);
2780                            if ( (sad16 ( pCur, pCur+1 , iEdgedWidth, 65536) >= gradx )
2781                             &&  (sad16 ( pCur, pCur+iEdgedWidth, iEdgedWidth, 65536) >= grady ) )
2782                             {      pMB->mcsel = 1;
2783                                    num++;
2784                             }
2785    
2786                    /* only use "structured" blocks */
2787                    }
2788            }
2789            emms();
2790    
2791            /*      further filtering would be possible, but during iteration, remaining
2792                    outliers usually are removed, too */
2793    
2794                  if (!(MVequal(pmv[0],backupMV)) )          if (num>= minblocks)
2795                  {       iSAD = PMVfastSearch16_MainSearch(pRef, pRefH, pRefV, pRefHV, cur,          do {            /* until convergence */
2796                                  x, y,                  double DtimesF[4];
2797                          pmv[0].x, pmv[0].y, iMinSAD, &newMV,                  double a,b,c,n,invdenom;
2798                          pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, iFound);                  double meanx,meany;
2799    
2800                          if (iSAD < iMinSAD)                  a = b = c = n = 0;
2801                    DtimesF[0] = DtimesF[1] = DtimesF[2] = DtimesF[3] = 0.;
2802                    for (my = 1; my < (uint32_t)MBh-1; my++)
2803                    for (mx = 1; mx < (uint32_t)MBw-1; mx++)
2804                          {                          {
2805                                  *currMV = newMV;                          const int mbnum = mx + my * MBw;
2806                                  iMinSAD = iSAD;                          const VECTOR mv = pMBs[mbnum].mvs[0];
2807    
2808                            if (!pMBs[mbnum].mcsel)
2809                                    continue;
2810    
2811                            n++;
2812                            a += 16*mx+8;
2813                            b += 16*my+8;
2814                            c += (16*mx+8)*(16*mx+8)+(16*my+8)*(16*my+8);
2815    
2816                            DtimesF[0] += (double)mv.x;
2817                            DtimesF[1] += (double)mv.x*(16*mx+8) + (double)mv.y*(16*my+8);
2818                            DtimesF[2] += (double)mv.x*(16*my+8) - (double)mv.y*(16*mx+8);
2819                            DtimesF[3] += (double)mv.y;
2820                          }                          }
2821    
2822            invdenom = a*a+b*b-c*n;
2823    
2824    /* Solve the system:    sol = (D'*E*D)^{-1} D'*E*F   */
2825    /* D'*E*F has been calculated in the same loop as matrix */
2826    
2827            sol[0] = -c*DtimesF[0] + a*DtimesF[1] + b*DtimesF[2];
2828            sol[1] =  a*DtimesF[0] - n*DtimesF[1]                           + b*DtimesF[3];
2829            sol[2] =  b*DtimesF[0]                          - n*DtimesF[2] - a*DtimesF[3];
2830            sol[3] =                                 b*DtimesF[1] - a*DtimesF[2] - c*DtimesF[3];
2831    
2832            sol[0] /= invdenom;
2833            sol[1] /= invdenom;
2834            sol[2] /= invdenom;
2835            sol[3] /= invdenom;
2836    
2837            meanx = meany = 0.;
2838            oldnum = 0;
2839            for (my = 1; my < (uint32_t)MBh-1; my++)
2840                    for (mx = 1; mx < (uint32_t)MBw-1; mx++)
2841                    {
2842                            const int mbnum = mx + my * MBw;
2843                            const VECTOR mv = pMBs[mbnum].mvs[0];
2844    
2845                            if (!pMBs[mbnum].mcsel)
2846                                    continue;
2847    
2848                            oldnum++;
2849                            meanx += fabs(( sol[0] + (16*mx+8)*sol[1] + (16*my+8)*sol[2] ) - (double)mv.x );
2850                            meany += fabs(( sol[3] - (16*mx+8)*sol[2] + (16*my+8)*sol[1] ) - (double)mv.y );
2851                    }
2852    
2853            if (4*meanx > oldnum)   /* better fit than 0.25 (=1/4pel) is useless */
2854                    meanx /= oldnum;
2855            else
2856                    meanx = 0.25;
2857    
2858            if (4*meany > oldnum)
2859                    meany /= oldnum;
2860            else
2861                    meany = 0.25;
2862    
2863            num = 0;
2864            for (my = 0; my < (uint32_t)MBh; my++)
2865                    for (mx = 0; mx < (uint32_t)MBw; mx++)
2866                    {
2867                            const int mbnum = mx + my * MBw;
2868                            const VECTOR mv = pMBs[mbnum].mvs[0];
2869    
2870                            if (!pMBs[mbnum].mcsel)
2871                                    continue;
2872    
2873                            if  ( ( fabs(( sol[0] + (16*mx+8)*sol[1] + (16*my+8)*sol[2] ) - (double)mv.x ) > meanx )
2874                                    || ( fabs(( sol[3] - (16*mx+8)*sol[2] + (16*my+8)*sol[1] ) - (double)mv.y ) > meany ) )
2875                                    pMBs[mbnum].mcsel=0;
2876                            else
2877                                    num++;
2878                    }
2879    
2880            } while ( (oldnum != num) && (num>= minblocks) );
2881    
2882            if (num < minblocks)
2883            {
2884                    const int iEdgedWidth = pParam->edged_width;
2885                    num = 0;
2886    
2887    /*              fprintf(stderr,"Warning! Unreliable GME (%d/%d blocks), falling back to translation.\n",num,MBh*MBw);
2888    */
2889                    gmc.duv[0].x= gmc.duv[0].y= gmc.duv[1].x= gmc.duv[1].y= gmc.duv[2].x= gmc.duv[2].y=0;
2890    
2891                    if (!(current->motion_flags & XVID_ME_GME_REFINE))
2892                            return gmc;
2893    
2894                    for (my = 1; my < (uint32_t)MBh-1; my++) /* ignore boundary blocks */
2895                    for (mx = 1; mx < (uint32_t)MBw-1; mx++) /* theirs MVs are often wrong */
2896                    {
2897                            const int mbnum = mx + my * MBw;
2898                            MACROBLOCK *const pMB = &pMBs[mbnum];
2899                            const uint8_t *const pCur = current->image.y + 16*(my*iEdgedWidth + mx);
2900                            if ( (sad16 ( pCur, pCur+1 , iEdgedWidth, 65536) >= gradx )
2901                             &&  (sad16 ( pCur, pCur+iEdgedWidth, iEdgedWidth, 65536) >= grady ) )
2902                             {      pMB->mcsel = 1;
2903                                    gmc.duv[0].x += pMB->mvs[0].x;
2904                                    gmc.duv[0].y += pMB->mvs[0].y;
2905                                    num++;
2906                  }                  }
2907                    }
2908    
2909                    if (gmc.duv[0].x)
2910                            gmc.duv[0].x /= num;
2911                    if (gmc.duv[0].y)
2912                            gmc.duv[0].y /= num;
2913            } else {
2914    
2915                  if ( (!(MVzero(pmv[0]))) && (!(MVzero(backupMV))) )                  gmc.duv[0].x=(int)(sol[0]+0.5);
2916                  {       iSAD = PMVfastSearch16_MainSearch(pRef, pRefH, pRefV, pRefHV, cur,                  gmc.duv[0].y=(int)(sol[3]+0.5);
                                 x, y,  
                         0, 0, iMinSAD, &newMV,  
                         pmv, min_dx, max_dx, min_dy, max_dy, iEdgedWidth, iDiamondSize, iFcode, iQuant, iFound);  
2917    
2918                          if (iSAD < iMinSAD)                  gmc.duv[1].x=(int)(sol[1]*pParam->width+0.5);
2919                    gmc.duv[1].y=(int)(-sol[2]*pParam->width+0.5);
2920    
2921                    gmc.duv[2].x=-gmc.duv[1].y;             /* two warp points only */
2922                    gmc.duv[2].y=gmc.duv[1].x;
2923            }
2924            if (num>maxblocks)
2925            {       for (my = 1; my < (uint32_t)MBh-1; my++)
2926                    for (mx = 1; mx < (uint32_t)MBw-1; mx++)
2927                          {                          {
2928                                  *currMV = newMV;                          const int mbnum = mx + my * MBw;
2929                                  iMinSAD = iSAD;                          if (pMBs[mbnum-1].mcsel)
2930                                    pMBs[mbnum].mcsel=0;
2931                            else
2932                                    if (pMBs[mbnum-MBw].mcsel)
2933                                            pMBs[mbnum].mcsel=0;
2934                          }                          }
2935                  }                  }
2936            return gmc;
2937    }
2938    
2939    int
2940    GlobalMotionEstRefine(
2941                                    WARPPOINTS *const startwp,
2942                                    MACROBLOCK * const pMBs,
2943                                    const MBParam * const pParam,
2944                                    const FRAMEINFO * const current,
2945                                    const FRAMEINFO * const reference,
2946                                    const IMAGE * const pCurr,
2947                                    const IMAGE * const pRef,
2948                                    const IMAGE * const pRefH,
2949                                    const IMAGE * const pRefV,
2950                                    const IMAGE * const pRefHV)
2951    {
2952            uint8_t* GMCblock = (uint8_t*)malloc(16*pParam->edged_width);
2953            WARPPOINTS bestwp=*startwp;
2954            WARPPOINTS centerwp,currwp;
2955            int gmcminSAD=0;
2956            int gmcSAD=0;
2957            int direction;
2958    //      int mx,my;
2959    
2960    /* use many blocks... */
2961    /*              for (my = 0; my < (uint32_t)pParam->mb_height; my++)
2962                    for (mx = 0; mx < (uint32_t)pParam->mb_width; mx++)
2963                    {
2964                            const int mbnum = mx + my * pParam->mb_width;
2965                            pMBs[mbnum].mcsel=1;
2966          }          }
2967    */
2968    
2969    /* or rather don't use too many blocks... */
2970    /*
2971                    for (my = 1; my < (uint32_t)MBh-1; my++)
2972                    for (mx = 1; mx < (uint32_t)MBw-1; mx++)
2973                    {
2974                            const int mbnum = mx + my * MBw;
2975                            if (MBmask[mbnum-1])
2976                                    MBmask[mbnum-1]=0;
2977                            else
2978                                    if (MBmask[mbnum-MBw])
2979                                            MBmask[mbnum-1]=0;
2980    
2981  /* Step 10: The motion vector is chosen according to the block corresponding to MinSAD.                  }
          By performing an optional local half-pixel search, we can refine this result even further.  
2982  */  */
2983                    gmcminSAD = globalSAD(&bestwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
2984    
2985                    if ( (reference->coding_type == S_VOP)
2986                            && ( (reference->warp.duv[1].x != bestwp.duv[1].x)
2987                              || (reference->warp.duv[1].y != bestwp.duv[1].y)
2988                              || (reference->warp.duv[0].x != bestwp.duv[0].x)
2989                              || (reference->warp.duv[0].y != bestwp.duv[0].y)
2990                              || (reference->warp.duv[2].x != bestwp.duv[2].x)
2991                              || (reference->warp.duv[2].y != bestwp.duv[2].y) ) )
2992                    {
2993                            gmcSAD = globalSAD(&reference->warp, pParam, pMBs,
2994                                                                    current, pRef, pCurr, GMCblock);
2995    
2996                            if (gmcSAD < gmcminSAD)
2997                            {       bestwp = reference->warp;
2998                                    gmcminSAD = gmcSAD;
2999                            }
3000                    }
3001    
3002            do {
3003                    direction = 0;
3004                    centerwp = bestwp;
3005    
3006                    currwp = centerwp;
3007    
3008                    currwp.duv[0].x--;
3009                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3010                    if (gmcSAD < gmcminSAD)
3011                    {       bestwp = currwp;
3012                            gmcminSAD = gmcSAD;
3013                            direction = 1;
3014                    }
3015                    else
3016                    {
3017                    currwp = centerwp; currwp.duv[0].x++;
3018                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3019                    if (gmcSAD < gmcminSAD)
3020                    {       bestwp = currwp;
3021                            gmcminSAD = gmcSAD;
3022                            direction = 2;
3023                    }
3024                    }
3025                    if (direction) continue;
3026    
3027                    currwp = centerwp; currwp.duv[0].y--;
3028                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3029                    if (gmcSAD < gmcminSAD)
3030                    {       bestwp = currwp;
3031                            gmcminSAD = gmcSAD;
3032                            direction = 4;
3033                    }
3034                    else
3035                    {
3036                    currwp = centerwp; currwp.duv[0].y++;
3037                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3038                    if (gmcSAD < gmcminSAD)
3039                    {       bestwp = currwp;
3040                            gmcminSAD = gmcSAD;
3041                            direction = 8;
3042                    }
3043                    }
3044                    if (direction) continue;
3045    
3046                    currwp = centerwp; currwp.duv[1].x++;
3047                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3048                    if (gmcSAD < gmcminSAD)
3049                    {       bestwp = currwp;
3050                            gmcminSAD = gmcSAD;
3051                            direction = 32;
3052                    }
3053                    currwp.duv[2].y++;
3054                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3055                    if (gmcSAD < gmcminSAD)
3056                    {       bestwp = currwp;
3057                            gmcminSAD = gmcSAD;
3058                            direction = 1024;
3059                    }
3060    
3061                    currwp = centerwp; currwp.duv[1].x--;
3062                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3063                    if (gmcSAD < gmcminSAD)
3064                    {       bestwp = currwp;
3065                            gmcminSAD = gmcSAD;
3066                            direction = 16;
3067                    }
3068                    else
3069                    {
3070                    currwp = centerwp; currwp.duv[1].x++;
3071                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3072                    if (gmcSAD < gmcminSAD)
3073                    {       bestwp = currwp;
3074                            gmcminSAD = gmcSAD;
3075                            direction = 32;
3076                    }
3077                    }
3078                    if (direction) continue;
3079    
3080    
3081                    currwp = centerwp; currwp.duv[1].y--;
3082                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3083                    if (gmcSAD < gmcminSAD)
3084                    {       bestwp = currwp;
3085                            gmcminSAD = gmcSAD;
3086                            direction = 64;
3087                    }
3088                    else
3089                    {
3090                    currwp = centerwp; currwp.duv[1].y++;
3091                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3092                    if (gmcSAD < gmcminSAD)
3093                    {       bestwp = currwp;
3094                            gmcminSAD = gmcSAD;
3095                            direction = 128;
3096                    }
3097                    }
3098                    if (direction) continue;
3099    
3100                    currwp = centerwp; currwp.duv[2].x--;
3101                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3102                    if (gmcSAD < gmcminSAD)
3103                    {       bestwp = currwp;
3104                            gmcminSAD = gmcSAD;
3105                            direction = 256;
3106                    }
3107                    else
3108                    {
3109                    currwp = centerwp; currwp.duv[2].x++;
3110                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3111                    if (gmcSAD < gmcminSAD)
3112                    {       bestwp = currwp;
3113                            gmcminSAD = gmcSAD;
3114                            direction = 512;
3115                    }
3116                    }
3117                    if (direction) continue;
3118    
3119                    currwp = centerwp; currwp.duv[2].y--;
3120                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3121                    if (gmcSAD < gmcminSAD)
3122                    {       bestwp = currwp;
3123                            gmcminSAD = gmcSAD;
3124                            direction = 1024;
3125                    }
3126                    else
3127                    {
3128                    currwp = centerwp; currwp.duv[2].y++;
3129                    gmcSAD = globalSAD(&currwp, pParam, pMBs, current, pRef, pCurr, GMCblock);
3130                    if (gmcSAD < gmcminSAD)
3131                    {       bestwp = currwp;
3132                            gmcminSAD = gmcSAD;
3133                            direction = 2048;
3134                    }
3135                    }
3136            } while (direction);
3137            free(GMCblock);
3138    
3139  step10_8:          *startwp = bestwp;
         if (MotionFlags & PMV_HALFPELREFINE8)           // perform final half-pel step  
                 iMinSAD = PMVfastSearch8_Refine( pRef, pRefH, pRefV, pRefHV, cur,  
                                 x, y,  
                                 currMV, iMinSAD,  
                                 pmv, min_dx, max_dx, min_dy, max_dy, iFcode, iQuant, iEdgedWidth);  
3140    
3141  step10_8b:          return gmcminSAD;
3142    }
3143    
3144    int
3145    globalSAD(const WARPPOINTS *const wp,
3146                      const MBParam * const pParam,
3147                      const MACROBLOCK * const pMBs,
3148                      const FRAMEINFO * const current,
3149                      const IMAGE * const pRef,
3150                      const IMAGE * const pCurr,
3151                      uint8_t *const GMCblock)
3152    {
3153            NEW_GMC_DATA gmc_data;
3154            int iSAD, gmcSAD=0;
3155            int num=0;
3156            unsigned int mx, my;
3157    
3158            generate_GMCparameters( 3, 3, wp, pParam->width, pParam->height, &gmc_data);
3159    
3160          currPMV->x = currMV->x - pmv[0].x;          for (my = 0; my < (uint32_t)pParam->mb_height; my++)
3161          currPMV->y = currMV->y - pmv[0].y;                  for (mx = 0; mx < (uint32_t)pParam->mb_width; mx++) {
3162    
3163          return iMinSAD;                  const int mbnum = mx + my * pParam->mb_width;
3164                    const int iEdgedWidth = pParam->edged_width;
3165    
3166                    if (!pMBs[mbnum].mcsel)
3167                            continue;
3168    
3169                    gmc_data.predict_16x16(&gmc_data, GMCblock,
3170                                                    pRef->y,
3171                                                    iEdgedWidth,
3172                                                    iEdgedWidth,
3173                                                    mx, my,
3174                                                    pParam->m_rounding_type);
3175    
3176                    iSAD = sad16 ( pCurr->y + 16*(my*iEdgedWidth + mx),
3177                                                    GMCblock , iEdgedWidth, 65536);
3178                    iSAD -= pMBs[mbnum].sad16;
3179    
3180                    if (iSAD<0)
3181                            gmcSAD += iSAD;
3182                    num++;
3183  }  }
3184            return gmcSAD;
3185    }
3186    

Legend:
Removed from v.3  
changed lines
  Added in v.1115

No admin address has been configured
ViewVC Help
Powered by ViewVC 1.0.4