--- branches/dev-api-4/xvidcore/src/motion/motion_comp.c 2003/02/21 14:49:29 886 +++ branches/dev-api-4/xvidcore/src/motion/motion_comp.c 2003/06/28 15:54:16 1077 @@ -1,7 +1,28 @@ -// 30.10.2002 corrected qpel chroma rounding -// 04.10.2002 added qpel support to MBMotionCompensation -// 01.05.2002 updated MBMotionCompensationBVOP -// 14.04.2002 bframe compensation +/***************************************************************************** + * + * XVID MPEG-4 VIDEO CODEC + * - Motion Compensation related code - + * + * Copyright(C) 2002 Peter Ross + * 2003 Christoph Lampert + * + * This program is free software ; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation ; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY ; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program ; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * $Id: motion_comp.c,v 1.18.2.7 2003-06-28 15:53:07 chl Exp $ + * + ****************************************************************************/ #include @@ -12,13 +33,6 @@ #include "../utils/timer.h" #include "motion.h" -#ifndef ABS -#define ABS(X) (((X)>0)?(X):-(X)) -#endif -#ifndef SIGN -#define SIGN(X) (((X)>0)?1:-1) -#endif - #ifndef RSHIFT #define RSHIFT(a,b) ((a) > 0 ? ((a) + (1<<((b)-1)))>>(b) : ((a) + (1<<((b)-1))-1)>>(b)) #endif @@ -29,21 +43,7 @@ #endif -/* This is borrowed from decoder.c */ -static __inline int gmc_sanitize(int value, int quarterpel, int fcode) -{ - int length = 1 << (fcode+4); - -// if (quarterpel) value *= 2; - - if (value < -length) - return -length; - else if (value >= length) - return length-1; - else return value; -} - -/* And this is borrowed from bitstream.c until we find a common solution */ +/* This is borrowed from bitstream.c until we find a common solution */ static uint32_t __inline log2bin(uint32_t value) @@ -59,7 +59,7 @@ return n; #else __asm { - bsr eax, value + bsr eax, value inc eax } #endif @@ -93,25 +93,25 @@ (uint8_t *) ref, tmp + 32, tmp + 64, tmp + 96, x, y, dx, dy, stride, rounding); ptr = tmp; - } else ptr = ref + (y + dy/4)*stride + x + dx/4; // fullpixel position + } else ptr = ref + (y + dy/4)*stride + x + dx/4; /* fullpixel position */ } else ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); transfer_8to16sub(dct_codes, cur + y * stride + x, - ptr, stride); + ptr, stride); transfer_8to16sub(dct_codes+64, cur + y * stride + x + 8, - ptr + 8, stride); + ptr + 8, stride); transfer_8to16sub(dct_codes+128, cur + y * stride + x + 8*stride, - ptr + 8*stride, stride); + ptr + 8*stride, stride); transfer_8to16sub(dct_codes+192, cur + y * stride + x + 8*stride+8, - ptr + 8*stride + 8, stride); + ptr + 8*stride + 8, stride); + + } else { /* reduced_resolution */ - } else { //reduced_resolution - x *= 2; y *= 2; ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); - + filter_18x18_to_8x8(dct_codes, cur+y*stride + x, stride); filter_diff_18x18_to_8x8(dct_codes, ptr, stride); @@ -155,12 +155,12 @@ (uint8_t *) ref, tmp + 32, tmp + 64, tmp + 96, x, y, dx, dy, stride, rounding); ptr = tmp; - } else ptr = ref + (y + dy/4)*stride + x + dx/4; // fullpixel position + } else ptr = ref + (y + dy/4)*stride + x + dx/4; /* fullpixel position */ } else ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); transfer_8to16sub(dct_codes, cur + y * stride + x, ptr, stride); - } else { //reduced_resolution + } else { /* reduced_resolution */ x *= 2; y *= 2; @@ -168,49 +168,11 @@ filter_18x18_to_8x8(dct_codes, cur+y*stride + x, stride); filter_diff_18x18_to_8x8(dct_codes, ptr, stride); - + transfer16x16_copy(cur + y*stride + x, ptr, stride); } } - -static __inline void -compensate16x16_interpolate_ro(int16_t * const dct_codes, - const uint8_t * const cur, - const uint8_t * const ref, - const uint8_t * const refh, - const uint8_t * const refv, - const uint8_t * const refhv, - uint8_t * const tmp, - const uint32_t x, const uint32_t y, - const int32_t dx, const int32_t dy, - const int32_t stride, - const int quarterpel) -{ - const uint8_t * ptr; - - if(quarterpel) { - if ((dx&3) | (dy&3)) { - interpolate16x16_quarterpel(tmp - y * stride - x, - (uint8_t *) ref, tmp + 32, - tmp + 64, tmp + 96, x, y, dx, dy, stride, 0); - ptr = tmp; - } else ptr = ref + (y + dy/4)*stride + x + dx/4; // fullpixel position - - } else ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); - - transfer_8to16subro(dct_codes, cur + y * stride + x, - ptr, stride); - transfer_8to16subro(dct_codes+64, cur + y * stride + x + 8, - ptr + 8, stride); - transfer_8to16subro(dct_codes+128, cur + y * stride + x + 8*stride, - ptr + 8*stride, stride); - transfer_8to16subro(dct_codes+192, cur + y * stride + x + 8*stride+8, - ptr + 8*stride + 8, stride); - -} - - /* XXX: slow, inelegant... */ static void interpolate18x18_switch(uint8_t * const cur, @@ -249,11 +211,11 @@ if (!rrv) { transfer_8to16sub(coeff, Cur->u + 8 * j * stride + 8 * i, - interpolate8x8_switch2(temp, Ref->u, 8 * i, 8 * j, + interpolate8x8_switch2(temp, Ref->u, 8 * i, 8 * j, dx, dy, stride, rounding), stride); transfer_8to16sub(coeff + 64, Cur->v + 8 * j * stride + 8 * i, - interpolate8x8_switch2(temp, Ref->v, 8 * i, 8 * j, + interpolate8x8_switch2(temp, Ref->v, 8 * i, 8 * j, dx, dy, stride, rounding), stride); } else { @@ -276,35 +238,34 @@ void MBMotionCompensation(MACROBLOCK * const mb, - const uint32_t i, - const uint32_t j, - const IMAGE * const ref, - const IMAGE * const refh, - const IMAGE * const refv, - const IMAGE * const refhv, - const IMAGE * const refGMC, - IMAGE * const cur, - int16_t * dct_codes, - const uint32_t width, - const uint32_t height, - const uint32_t edged_width, - const int32_t quarterpel, - const int reduced_resolution, - const int32_t rounding) + const uint32_t i, + const uint32_t j, + const IMAGE * const ref, + const IMAGE * const refh, + const IMAGE * const refv, + const IMAGE * const refhv, + const IMAGE * const refGMC, + IMAGE * const cur, + int16_t * dct_codes, + const uint32_t width, + const uint32_t height, + const uint32_t edged_width, + const int32_t quarterpel, + const int reduced_resolution, + const int32_t rounding) { int32_t dx; int32_t dy; - uint8_t * const tmp = refv->u; if ( (!reduced_resolution) && (mb->mode == MODE_NOT_CODED) ) { /* quick copy for early SKIP */ /* early SKIP is only activated in P-VOPs, not in S-VOPs, so mcsel can never be 1 */ transfer16x16_copy(cur->y + 16 * (i + j * edged_width), - ref->y + 16 * (i + j * edged_width), - edged_width); - + ref->y + 16 * (i + j * edged_width), + edged_width); + transfer8x8_copy(cur->u + 8 * (i + j * edged_width/2), ref->u + 8 * (i + j * edged_width/2), edged_width / 2); @@ -314,23 +275,23 @@ return; } - if ((mb->mode == MODE_NOT_CODED || mb->mode == MODE_INTER + if ((mb->mode == MODE_NOT_CODED || mb->mode == MODE_INTER || mb->mode == MODE_INTER_Q)) { /* reduced resolution + GMC: not possible */ if (mb->mcsel) { - + /* call normal routine once, easier than "if (mcsel)"ing all the time */ - + transfer_8to16sub(&dct_codes[0*64], cur->y + 16*j*edged_width + 16*i, - refGMC->y + 16*j*edged_width + 16*i, edged_width); + refGMC->y + 16*j*edged_width + 16*i, edged_width); transfer_8to16sub(&dct_codes[1*64], cur->y + 16*j*edged_width + 16*i+8, - refGMC->y + 16*j*edged_width + 16*i+8, edged_width); + refGMC->y + 16*j*edged_width + 16*i+8, edged_width); transfer_8to16sub(&dct_codes[2*64], cur->y + (16*j+8)*edged_width + 16*i, - refGMC->y + (16*j+8)*edged_width + 16*i, edged_width); + refGMC->y + (16*j+8)*edged_width + 16*i, edged_width); transfer_8to16sub(&dct_codes[3*64], cur->y + (16*j+8)*edged_width + 16*i+8, - refGMC->y + (16*j+8)*edged_width + 16*i+8, edged_width); + refGMC->y + (16*j+8)*edged_width + 16*i+8, edged_width); /* lumi is needed earlier for mode decision, but chroma should be done block-based, but it isn't, yet. */ @@ -344,7 +305,7 @@ } /* ordinary compensation */ - + dx = (quarterpel ? mb->qmvs[0].x : mb->mvs[0].x); dy = (quarterpel ? mb->qmvs[0].y : mb->mvs[0].y); @@ -357,21 +318,20 @@ refv->y, refhv->y, tmp, 16 * i, 16 * j, dx, dy, edged_width, quarterpel, reduced_resolution, rounding); - dx /= (int)(1 + quarterpel); - dy /= (int)(1 + quarterpel); - + if (quarterpel) { dx /= 2; dy /= 2; } + dx = (dx >> 1) + roundtab_79[dx & 0x3]; dy = (dy >> 1) + roundtab_79[dy & 0x3]; - } else { // mode == MODE_INTER4V + } else { /* mode == MODE_INTER4V */ int k, sumx = 0, sumy = 0; const VECTOR * const mvs = (quarterpel ? mb->qmvs : mb->mvs); for (k = 0; k < 4; k++) { dx = mvs[k].x; dy = mvs[k].y; - sumx += dx / (1 + quarterpel); - sumy += dy / (1 + quarterpel); + sumx += quarterpel ? dx/2 : dx; + sumy += quarterpel ? dy/2 : dy; if (reduced_resolution){ dx = RRV_MV_SCALEUP(dx); @@ -410,7 +370,7 @@ const uint32_t edged_width = pParam->edged_width; int32_t dx, dy, b_dx, b_dy, sumx, sumy, b_sumx, b_sumy; int k; - const int quarterpel = pParam->m_quarterpel; + const int quarterpel = pParam->vol_flags & XVID_VOL_QUARTERPEL; const uint8_t * ptr1, * ptr2; uint8_t * const tmp = f_refv->u; const VECTOR * const fmvs = (quarterpel ? mb->qmvs : mb->mvs); @@ -436,9 +396,9 @@ case MODE_BACKWARD: b_dx = bmvs->x; b_dy = bmvs->y; - compensate16x16_interpolate_ro(&dct_codes[0 * 64], cur->y, b_ref->y, b_refh->y, + compensate16x16_interpolate(&dct_codes[0 * 64], cur->y, b_ref->y, b_refh->y, b_refv->y, b_refhv->y, tmp, 16 * i, 16 * j, b_dx, - b_dy, edged_width, quarterpel); + b_dy, edged_width, quarterpel, 0, 0); if (quarterpel) { b_dx /= 2; b_dy /= 2; } @@ -455,20 +415,20 @@ b_dx = bmvs->x; b_dy = bmvs->y; if (quarterpel) { - + if ((dx&3) | (dy&3)) { interpolate16x16_quarterpel(tmp - i * 16 - j * 16 * edged_width, (uint8_t *) f_ref->y, tmp + 32, tmp + 64, tmp + 96, 16*i, 16*j, dx, dy, edged_width, 0); ptr1 = tmp; - } else ptr1 = f_ref->y + (16*j + dy/4)*edged_width + 16*i + dx/4; // fullpixel position + } else ptr1 = f_ref->y + (16*j + dy/4)*edged_width + 16*i + dx/4; /* fullpixel position */ if ((b_dx&3) | (b_dy&3)) { interpolate16x16_quarterpel(tmp - i * 16 - j * 16 * edged_width + 16, (uint8_t *) b_ref->y, tmp + 32, tmp + 64, tmp + 96, 16*i, 16*j, b_dx, b_dy, edged_width, 0); ptr2 = tmp + 16; - } else ptr2 = b_ref->y + (16*j + b_dy/4)*edged_width + 16*i + b_dx/4; // fullpixel position + } else ptr2 = b_ref->y + (16*j + b_dy/4)*edged_width + 16*i + b_dx/4; /* fullpixel position */ b_dx /= 2; b_dy /= 2; @@ -496,12 +456,12 @@ b_dy = (b_dy >> 1) + roundtab_79[b_dy & 0x3]; break; - - default: // MODE_DIRECT + + default: /* MODE_DIRECT (or MODE_DIRECT_NONE_MV in case of bframes decoding) */ sumx = sumy = b_sumx = b_sumy = 0; for (k = 0; k < 4; k++) { - + dx = fmvs[k].x; dy = fmvs[k].y; b_dx = bmvs[k].x; b_dy = bmvs[k].y; @@ -511,8 +471,8 @@ if ((dx&3) | (dy&3)) { interpolate8x8_quarterpel(tmp - (i * 16+(k&1)*8) - (j * 16+((k>>1)*8)) * edged_width, - (uint8_t *) f_ref->y, - tmp + 32, tmp + 64, tmp + 96, + (uint8_t *) f_ref->y, + tmp + 32, tmp + 64, tmp + 96, 16*i + (k&1)*8, 16*j + (k>>1)*8, dx, dy, edged_width, 0); ptr1 = tmp; } else ptr1 = f_ref->y + (16*j + (k>>1)*8 + dy/4)*edged_width + 16*i + (k&1)*8 + dx/4; @@ -520,7 +480,7 @@ if ((b_dx&3) | (b_dy&3)) { interpolate8x8_quarterpel(tmp - (i * 16+(k&1)*8) - (j * 16+((k>>1)*8)) * edged_width + 16, (uint8_t *) b_ref->y, - tmp + 16, tmp + 32, tmp + 48, + tmp + 16, tmp + 32, tmp + 48, 16*i + (k&1)*8, 16*j + (k>>1)*8, b_dx, b_dy, edged_width, 0); ptr2 = tmp + 16; } else ptr2 = b_ref->y + (16*j + (k>>1)*8 + b_dy/4)*edged_width + 16*i + (k&1)*8 + b_dx/4; @@ -528,15 +488,15 @@ sumx += dx; sumy += dy; b_sumx += b_dx; b_sumy += b_dy; - ptr1 = get_ref(f_ref->y, f_refh->y, f_refv->y, f_refhv->y, + ptr1 = get_ref(f_ref->y, f_refh->y, f_refv->y, f_refhv->y, 2*i + (k&1), 2*j + (k>>1), 8, dx, dy, edged_width); - ptr2 = get_ref(b_ref->y, b_refh->y, b_refv->y, b_refhv->y, + ptr2 = get_ref(b_ref->y, b_refh->y, b_refv->y, b_refhv->y, 2*i + (k&1), 2*j + (k>>1), 8, b_dx, b_dy, edged_width); } transfer_8to16sub2(&dct_codes[k * 64], cur->y + (i * 16+(k&1)*8) + (j * 16+((k>>1)*8)) * edged_width, ptr1, ptr2, edged_width); - + } dx = (sumx >> 3) + roundtab_76[sumx & 0xf]; @@ -547,7 +507,7 @@ break; } - // uv block-based chroma interpolation for direct and interpolate modes + /* v block-based chroma interpolation for direct and interpolate modes */ transfer_8to16sub2(&dct_codes[4 * 64], cur->u + (j * 8) * edged_width / 2 + (i * 8), interpolate8x8_switch2(tmp, b_ref->u, 8 * i, 8 * j, @@ -564,562 +524,3 @@ dx, dy, edged_width / 2, 0), edged_width / 2); } - - - -void generate_GMCparameters( const int num_wp, const int res, - const WARPPOINTS *const warp, - const int width, const int height, - GMC_DATA *const gmc) -{ - const int du0 = warp->duv[0].x; - const int dv0 = warp->duv[0].y; - const int du1 = warp->duv[1].x; - const int dv1 = warp->duv[1].y; - const int du2 = warp->duv[2].x; - const int dv2 = warp->duv[2].y; - - gmc->W = width; - gmc->H = height; - - gmc->rho = 4 - log2bin(res-1); // = {3,2,1,0} for res={2,4,8,16} - - gmc->alpha = log2bin(gmc->W-1); - gmc->Ws = (1 << gmc->alpha); - - gmc->dxF = 16*gmc->Ws + RDIV( 8*gmc->Ws*du1, gmc->W ); - gmc->dxG = RDIV( 8*gmc->Ws*dv1, gmc->W ); - gmc->Fo = (res*du0 + 1) << (gmc->alpha+gmc->rho-1); - gmc->Go = (res*dv0 + 1) << (gmc->alpha+gmc->rho-1); - - if (num_wp==2) { - gmc->dyF = -gmc->dxG; - gmc->dyG = gmc->dxF; - } - else if (num_wp==3) { - gmc->beta = log2bin(gmc->H-1); - gmc->Hs = (1 << gmc->beta); - gmc->dyF = RDIV( 8*gmc->Hs*du2, gmc->H ); - gmc->dyG = 16*gmc->Hs + RDIV( 8*gmc->Hs*dv2, gmc->H ); - if (gmc->beta > gmc->alpha) { - gmc->dxF <<= (gmc->beta - gmc->alpha); - gmc->dxG <<= (gmc->beta - gmc->alpha); - gmc->alpha = gmc->beta; - gmc->Ws = 1<< gmc->beta; - } - else { - gmc->dyF <<= gmc->alpha - gmc->beta; - gmc->dyG <<= gmc->alpha - gmc->beta; - } - } - - gmc->cFo = gmc->dxF + gmc->dyF + (1 << (gmc->alpha+gmc->rho+1)); - gmc->cFo += 16*gmc->Ws*(du0-1); - - gmc->cGo = gmc->dxG + gmc->dyG + (1 << (gmc->alpha+gmc->rho+1)); - gmc->cGo += 16*gmc->Ws*(dv0-1); -} - -void -generate_GMCimage( const GMC_DATA *const gmc_data, // [input] precalculated data - const IMAGE *const pRef, // [input] - const int mb_width, - const int mb_height, - const int stride, - const int stride2, - const int fcode, // [input] some parameters... - const int32_t quarterpel, // [input] for rounding avgMV - const int reduced_resolution, // [input] ignored - const int32_t rounding, // [input] for rounding image data - MACROBLOCK *const pMBs, // [output] average motion vectors - IMAGE *const pGMC) // [output] full warped image -{ - - unsigned int mj,mi; - VECTOR avgMV; - - for (mj=0;mj<(unsigned int)mb_height;mj++) - for (mi=0;mi<(unsigned int)mb_width; mi++) - { - avgMV = generate_GMCimageMB(gmc_data, pRef, mi, mj, - stride, stride2, quarterpel, rounding, pGMC); - - pMBs[mj*mb_width+mi].amv.x = gmc_sanitize(avgMV.x, quarterpel, fcode); - pMBs[mj*mb_width+mi].amv.y = gmc_sanitize(avgMV.y, quarterpel, fcode); - pMBs[mj*mb_width+mi].mcsel = 0; /* until mode decision */ - } -} - - - -#define MLT(i) (((16-(i))<<16) + (i)) -static const uint32_t MTab[16] = { - MLT( 0), MLT( 1), MLT( 2), MLT( 3), MLT( 4), MLT( 5), MLT( 6), MLT(7), - MLT( 8), MLT( 9), MLT(10), MLT(11), MLT(12), MLT(13), MLT(14), MLT(15) -}; -#undef MLT - -VECTOR generate_GMCimageMB( const GMC_DATA *const gmc_data, - const IMAGE *const pRef, - const int mi, const int mj, - const int stride, - const int stride2, - const int quarterpel, - const int rounding, - IMAGE *const pGMC) -{ - const int W = gmc_data->W; - const int H = gmc_data->H; - - const int rho = gmc_data->rho; - const int alpha = gmc_data->alpha; - - const int rounder = ( 128 - (rounding<<(rho+rho)) ) << 16; - - const int dxF = gmc_data->dxF; - const int dyF = gmc_data->dyF; - const int dxG = gmc_data->dxG; - const int dyG = gmc_data->dyG; - - uint8_t *dstY, *dstU, *dstV; - - int I,J; - VECTOR avgMV = {0,0}; - - int32_t Fj, Gj; - - dstY = &pGMC->y[(mj*16)*stride+mi*16] + 16; - - Fj = gmc_data->Fo + dyF*mj*16 + dxF*mi*16; - Gj = gmc_data->Go + dyG*mj*16 + dxG*mi*16; - for (J=16; J>0; --J) - { - int32_t Fi, Gi; - - Fi = Fj; Fj += dyF; - Gi = Gj; Gj += dyG; - for (I=-16; I<0; ++I) - { - int32_t F, G; - uint32_t ri, rj; - - F = ( Fi >> (alpha+rho) ) << rho; Fi += dxF; - G = ( Gi >> (alpha+rho) ) << rho; Gi += dxG; - - avgMV.x += F; - avgMV.y += G; - - ri = MTab[F&15]; - rj = MTab[G&15]; - - F >>= 4; - G >>= 4; - - if (F< -1) F=-1; - else if (F>W) F=W; - if (G< -1) G=-1; - else if (G>H) G=H; - - { // MMX-like bilinear... - const int offset = G*stride + F; - uint32_t f0, f1; - f0 = pRef->y[ offset +0 ]; - f0 |= pRef->y[ offset +1 ] << 16; - f1 = pRef->y[ offset+stride +0 ]; - f1 |= pRef->y[ offset+stride +1 ] << 16; - f0 = (ri*f0)>>16; - f1 = (ri*f1) & 0x0fff0000; - f0 |= f1; - f0 = ( rj*f0 + rounder ) >> 24; - - dstY[I] = (uint8_t)f0; - } - } - dstY += stride; - } - - dstU = &pGMC->u[(mj*8)*stride2+mi*8] + 8; - dstV = &pGMC->v[(mj*8)*stride2+mi*8] + 8; - - Fj = gmc_data->cFo + dyF*4 *mj*8 + dxF*4 *mi*8; - Gj = gmc_data->cGo + dyG*4 *mj*8 + dxG*4 *mi*8; - for (J=8; J>0; --J) - { - int32_t Fi, Gi; - Fi = Fj; Fj += 4*dyF; - Gi = Gj; Gj += 4*dyG; - - for (I=-8; I<0; ++I) - { - int32_t F, G; - uint32_t ri, rj; - - F = ( Fi >> (alpha+rho+2) ) << rho; Fi += 4*dxF; - G = ( Gi >> (alpha+rho+2) ) << rho; Gi += 4*dxG; - - ri = MTab[F&15]; - rj = MTab[G&15]; - - F >>= 4; - G >>= 4; - - if (F< -1) F=-1; - else if (F>=W/2) F=W/2; - if (G< -1) G=-1; - else if (G>=H/2) G=H/2; - - { - const int offset = G*stride2 + F; - uint32_t f0, f1; - - f0 = pRef->u[ offset +0 ]; - f0 |= pRef->u[ offset +1 ] << 16; - f1 = pRef->u[ offset+stride2 +0 ]; - f1 |= pRef->u[ offset+stride2 +1 ] << 16; - f0 = (ri*f0)>>16; - f1 = (ri*f1) & 0x0fff0000; - f0 |= f1; - f0 = ( rj*f0 + rounder ) >> 24; - - dstU[I] = (uint8_t)f0; - - - f0 = pRef->v[ offset +0 ]; - f0 |= pRef->v[ offset +1 ] << 16; - f1 = pRef->v[ offset+stride2 +0 ]; - f1 |= pRef->v[ offset+stride2 +1 ] << 16; - f0 = (ri*f0)>>16; - f1 = (ri*f1) & 0x0fff0000; - f0 |= f1; - f0 = ( rj*f0 + rounder ) >> 24; - - dstV[I] = (uint8_t)f0; - } - } - dstU += stride2; - dstV += stride2; - } - - - avgMV.x -= 16*((256*mi+120)<<4); // 120 = 15*16/2 - avgMV.y -= 16*((256*mj+120)<<4); - - avgMV.x = RSHIFT( avgMV.x, (4+7-quarterpel) ); - avgMV.y = RSHIFT( avgMV.y, (4+7-quarterpel) ); - - return avgMV; -} - - - -#ifdef OLD_GRUEL_GMC -void -generate_GMCparameters( const int num_wp, // [input]: number of warppoints - const int res, // [input]: resolution - const WARPPOINTS *const warp, // [input]: warp points - const int width, const int height, - GMC_DATA *const gmc) // [output] precalculated parameters -{ - -/* We follow mainly two sources: The original standard, which is ugly, and the - thesis from Andreas Dehnhardt, which is much nicer. - - Notation is: indices are written next to the variable, - primes in the standard are denoted by a suffix 'p'. - types are "c"=constant, "i"=input parameter, "f"=calculated, then fixed, - "o"=output data, " "=other, "u" = unused, "p"=calc for every pixel - -type | variable name | ISO name (TeX-style) | value or range | usage -------------------------------------------------------------------------------------- - c | H | H | [16 , ?] | image width (w/o edges) - c | W | W | [16 , ?] | image height (w/o edges) - - c | i0 | i_0 | 0 | ref. point #1, X - c | j0 | j_0 | 0 | ref. point #1, Y - c | i1 | i_1 | W | ref. point #2, X - c | j1 | j_1 | 0 | ref. point #2, Y - cu | i2 | i_2 | 0 | ref. point #3, X - cu | i2 | j_2 | H | ref. point #3, Y - - i | du0 | du[0] | [-16863,16863] | warp vector #1, Y - i | dv0 | dv[0] | [-16863,16863] | warp vector #1, Y - i | du1 | du[1] | [-16863,16863] | warp vector #2, Y - i | dv1 | dv[1] | [-16863,16863] | warp vector #2, Y - iu | du2 | du[2] | [-16863,16863] | warp vector #3, Y - iu | dv2 | dv[2] | [-16863,16863] | warp vector #3, Y - - i | s | s | {2,4,8,16} | interpol. resolution - f | sigma | - | log2(s) | X / s == X >> sigma - f | r | r | =16/s | complementary res. - f | rho | \rho | log2(r) | X / r == X >> rho - - f | i0s | i'_0 | | - f | j0s | j'_0 | | - f | i1s | i'_1 | | - f | j1s | j'_1 | | - f | i2s | i'_2 | | - f | j2s | j'_2 | | - - f | alpha | \alpha | | 2^{alpha-1} < W <= 2^alpha - f | beta | \beta | | 2^{beta-1} < H <= 2^beta - - f | Ws | W' | W = 2^{alpha} | scaled width - f | Hs | H' | W = 2^{beta} | scaled height - - f | i1ss | i''_1 | "virtual sprite stuff" - f | j1ss | j''_1 | "virtual sprite stuff" - f | i2ss | i''_2 | "virtual sprite stuff" - f | j2ss | j''_2 | "virtual sprite stuff" -*/ - -/* Some calculations are disabled because we only use 2 warppoints at the moment */ - - int du0 = warp->duv[0].x; - int dv0 = warp->duv[0].y; - int du1 = warp->duv[1].x; - int dv1 = warp->duv[1].y; -// int du2 = warp->duv[2].x; -// int dv2 = warp->duv[2].y; - - gmc->num_wp = num_wp; - - gmc->s = res; /* scaling parameters 2,4,8 or 16 */ - gmc->sigma = log2bin(res-1); /* log2bin(15)=4, log2bin(16)=5, log2bin(17)=5 */ - gmc->r = 16/res; - gmc->rho = 4 - gmc->sigma; /* = log2bin(r-1) */ - - gmc->W = width; - gmc->H = height; /* fixed reference coordinates */ - - gmc->alpha = log2bin(gmc->W-1); - gmc->Ws= 1<alpha; - -// gmc->beta = log2bin(gmc->H-1); -// gmc->Hs= 1<beta; - -// printf("du0=%d dv0=%d du1=%d dv1=%d s=%d sigma=%d W=%d alpha=%d, Ws=%d, rho=%d\n",du0,dv0,du1,dv1,gmc->s,gmc->sigma,gmc->W,gmc->alpha,gmc->Ws,gmc->rho); - - /* i2s is only needed for num_wp >= 3, etc. */ - /* the 's' values are in 1/s pel resolution */ - gmc->i0s = res/2 * ( du0 ); - gmc->j0s = res/2 * ( dv0 ); - gmc->i1s = res/2 * (2*width + du1 + du0 ); - gmc->j1s = res/2 * ( dv1 + dv0 ); -// gmc->i2s = res/2 * ( du2 + du0 ); -// gmc->j2s = res/2 * (2*height + dv2 + dv0 ); - - /* i2s and i2ss are only needed for num_wp == 3, etc. */ - - /* the 'ss' values are in 1/16 pel resolution */ - gmc->i1ss = 16*gmc->Ws + ROUNDED_DIV(((gmc->W-gmc->Ws)*(gmc->r*gmc->i0s) + gmc->Ws*(gmc->r*gmc->i1s - 16*gmc->W)),gmc->W); - gmc->j1ss = ROUNDED_DIV( ((gmc->W - gmc->Ws)*(gmc->r*gmc->j0s) + gmc->Ws*gmc->r*gmc->j1s) ,gmc->W ); - -// gmc->i2ss = ROUNDED_DIV( ((gmc->H - gmc->Hs)*(gmc->r*gmc->i0s) + gmc->Hs*(gmc->r*gmc->i2s)), gmc->H); -// gmc->j2ss = 16*gmc->Hs + ROUNDED_DIV( ((gmc->H-gmc->Hs)*(gmc->r*gmc->j0s) + gmc->Ws*(gmc->r*gmc->j2s - 16*gmc->H)), gmc->H); - - return; -} - - - -void -generate_GMCimage( const GMC_DATA *const gmc_data, // [input] precalculated data - const IMAGE *const pRef, // [input] - const int mb_width, - const int mb_height, - const int stride, - const int stride2, - const int fcode, // [input] some parameters... - const int32_t quarterpel, // [input] for rounding avgMV - const int reduced_resolution, // [input] ignored - const int32_t rounding, // [input] for rounding image data - MACROBLOCK *const pMBs, // [output] average motion vectors - IMAGE *const pGMC) // [output] full warped image -{ - - unsigned int mj,mi; - VECTOR avgMV; - - for (mj=0;mjW; - const int H = gmc_data->H; - - const int s = gmc_data->s; - const int sigma = gmc_data->sigma; - - const int r = gmc_data->r; - const int rho = gmc_data->rho; - - const int i0s = gmc_data->i0s; - const int j0s = gmc_data->j0s; - - const int i1ss = gmc_data->i1ss; - const int j1ss = gmc_data->j1ss; -// const int i2ss = gmc_data->i2ss; -// const int j2ss = gmc_data->j2ss; - - const int alpha = gmc_data->alpha; - const int Ws = gmc_data->Ws; - -// const int beta = gmc_data->beta; -// const int Hs = gmc_data->Hs; - - int I,J; - VECTOR avgMV = {0,0}; - - for (J=16*mj;J<16*(mj+1);J++) - for (I=16*mi;I<16*(mi+1);I++) - { - int F= i0s + ( ((-r*i0s+i1ss)*I + (r*j0s-j1ss)*J + (1<<(alpha+rho-1))) >> (alpha+rho) ); - int G= j0s + ( ((-r*j0s+j1ss)*I + (-r*i0s+i1ss)*J + (1<<(alpha+rho-1))) >> (alpha+rho) ); - -/* this naive implementation (with lots of multiplications) isn't slower (rather faster) than - working incremental. Don't ask me why... maybe the whole this is memory bound? */ - - const int ri= F & (s-1); // fractional part of pelwise MV X - const int rj= G & (s-1); // fractional part of pelwise MV Y - - int Y00,Y01,Y10,Y11; - -/* unclipped values are used for avgMV */ - avgMV.x += F-(I<>= sigma; - G >>= sigma; - -/* clip values to be in range. Since we have edges, clip to 1 less than lower boundary - this way positions F+1/G+1 are still right */ - - if (F< -1) - F=-1; - else if (F>W) - F=W; /* W or W-1 doesn't matter, so save 1 subtract ;-) */ - if (G< -1) - G=-1; - else if (G>H) - G=H; /* dito */ - - Y00 = pRef->y[ G*stride + F ]; // Lumi values - Y01 = pRef->y[ G*stride + F+1 ]; - Y10 = pRef->y[ G*stride + F+stride ]; - Y11 = pRef->y[ G*stride + F+stride+1 ]; - - /* bilinear interpolation */ - Y00 = ((s-ri)*Y00 + ri*Y01); - Y10 = ((s-ri)*Y10 + ri*Y11); - Y00 = ((s-rj)*Y00 + rj*Y10 + s*s/2 - rounding ) >> (sigma+sigma); - - pGMC->y[J*stride+I] = (uint8_t)Y00; /* output 1 Y-pixel */ - } - - -/* doing chroma _here_ is even more stupid and slow, because won't be used until Compensation and - most likely not even then (only if the block really _is_ GMC) -*/ - - for (J=8*mj;J<8*(mj+1);J++) /* this plays the role of j_c,i_c in the standard */ - for (I=8*mi;I<8*(mi+1);I++) /* For I_c we have to use I_c = 4*i_c+1 ! */ - { - /* same positions for both chroma components, U=Cb and V=Cr */ - int Fc=((-r*i0s+i1ss)*(4*I+1) + (r*j0s-j1ss)*(4*J+1) +2*Ws*r*i0s - -16*Ws +(1<<(alpha+rho+1)))>>(alpha+rho+2); - int Gc=((-r*j0s+j1ss)*(4*I+1) +(-r*i0s+i1ss)*(4*J+1) +2*Ws*r*j0s - -16*Ws +(1<<(alpha+rho+1))) >>(alpha+rho+2); - - const int ri= Fc & (s-1); // fractional part of pelwise MV X - const int rj= Gc & (s-1); // fractional part of pelwise MV Y - - int C00,C01,C10,C11; - - Fc >>= sigma; - Gc >>= sigma; - - if (Fc< -1) - Fc=-1; - else if (Fc>=W/2) - Fc=W/2; /* W or W-1 doesn't matter, so save 1 subtraction ;-) */ - if (Gc< -1) - Gc=-1; - else if (Gc>=H/2) - Gc=H/2; /* dito */ - -/* now calculate U data */ - C00 = pRef->u[ Gc*stride2 + Fc ]; // chroma-value Cb - C01 = pRef->u[ Gc*stride2 + Fc+1 ]; - C10 = pRef->u[ (Gc+1)*stride2 + Fc ]; - C11 = pRef->u[ (Gc+1)*stride2 + Fc+1 ]; - - /* bilinear interpolation */ - C00 = ((s-ri)*C00 + ri*C01); - C10 = ((s-ri)*C10 + ri*C11); - C00 = ((s-rj)*C00 + rj*C10 + s*s/2 - rounding ) >> (sigma+sigma); - - pGMC->u[J*stride2+I] = (uint8_t)C00; /* output 1 U-pixel */ - -/* now calculate V data */ - C00 = pRef->v[ Gc*stride2 + Fc ]; // chroma-value Cr - C01 = pRef->v[ Gc*stride2 + Fc+1 ]; - C10 = pRef->v[ (Gc+1)*stride2 + Fc ]; - C11 = pRef->v[ (Gc+1)*stride2 + Fc+1 ]; - - /* bilinear interpolation */ - C00 = ((s-ri)*C00 + ri*C01); - C10 = ((s-ri)*C10 + ri*C11); - C00 = ((s-rj)*C00 + rj*C10 + s*s/2 - rounding ) >> (sigma+sigma); - - pGMC->v[J*stride2+I] = (uint8_t)C00; /* output 1 V-pixel */ - } - -/* The average vector is rounded from 1/s-pel to 1/2 or 1/4 using the '//' operator*/ - - avgMV.x = RSHIFT( avgMV.x, (sigma+7-quarterpel) ); - avgMV.y = RSHIFT( avgMV.y, (sigma+7-quarterpel) ); - - /* ^^^^ this is the way MS Reference Software does it */ - - return avgMV; /* clipping to fcode area is done outside! */ -} - -#endif