--- trunk/xvidcore/src/motion/motion_comp.c 2003/02/15 08:39:17 850 +++ trunk/xvidcore/src/motion/motion_comp.c 2003/02/15 15:22:19 851 @@ -1,116 +1,278 @@ -/***************************************************************************** - * - * XVID MPEG-4 VIDEO CODEC - * - Motion Compensation module - - * - * Copyright(C) 2002 Peter Ross - * - * This file is part of XviD, a free MPEG-4 video encoder/decoder - * - * XviD is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - * Under section 8 of the GNU General Public License, the copyright - * holders of XVID explicitly forbid distribution in the following - * countries: - * - * - Japan - * - United States of America - * - * Linking XviD statically or dynamically with other modules is making a - * combined work based on XviD. Thus, the terms and conditions of the - * GNU General Public License cover the whole combination. - * - * As a special exception, the copyright holders of XviD give you - * permission to link XviD with independent modules that communicate with - * XviD solely through the VFW1.1 and DShow interfaces, regardless of the - * license terms of these independent modules, and to copy and distribute - * the resulting combined work under terms of your choice, provided that - * every copy of the combined work is accompanied by a complete copy of - * the source code of XviD (the version of XviD used to produce the - * combined work), being distributed under the terms of the GNU General - * Public License plus this exception. An independent module is a module - * which is not derived from or based on XviD. - * - * Note that people who make modified versions of XviD are not obligated - * to grant this special exception for their modified versions; it is - * their choice whether to do so. The GNU General Public License gives - * permission to release a modified version without this exception; this - * exception also makes it possible to release a modified version which - * carries forward this exception. - * - * $Id: motion_comp.c,v 1.16 2002-11-26 23:44:10 edgomez Exp $ - * - *************************************************************************/ +// 30.10.2002 corrected qpel chroma rounding +// 04.10.2002 added qpel support to MBMotionCompensation +// 01.05.2002 updated MBMotionCompensationBVOP +// 14.04.2002 bframe compensation + +#include #include "../encoder.h" #include "../utils/mbfunctions.h" #include "../image/interpolate8x8.h" +#include "../image/reduced.h" #include "../utils/timer.h" #include "motion.h" +#ifndef ABS #define ABS(X) (((X)>0)?(X):-(X)) +#endif +#ifndef SIGN #define SIGN(X) (((X)>0)?1:-1) +#endif + +#ifndef RSHIFT +#define RSHIFT(a,b) ((a) > 0 ? ((a) + (1<<((b)-1)))>>(b) : ((a) + (1<<((b)-1))-1)>>(b)) +#endif + +/* assume b>0 */ +#ifndef RDIV +#define RDIV(a,b) (((a)>0 ? (a) + ((b)>>1) : (a) - ((b)>>1))/(b)) +#endif + + +/* This is borrowed from decoder.c */ +static __inline int gmc_sanitize(int value, int quarterpel, int fcode) +{ + int length = 1 << (fcode+4); + +// if (quarterpel) value *= 2; + + if (value < -length) + return -length; + else if (value >= length) + return length-1; + else return value; +} + +/* And this is borrowed from bitstream.c until we find a common solution */ + +static uint32_t __inline +log2bin(uint32_t value) +{ +/* Changed by Chenm001 */ +#if !defined(_MSC_VER) + int n = 0; + + while (value) { + value >>= 1; + n++; + } + return n; +#else + __asm { + bsr eax, value + inc eax + } +#endif +} + static __inline void -compensate8x8_halfpel(int16_t * const dct_codes, - uint8_t * const cur, - const uint8_t * const ref, - const uint8_t * const refh, - const uint8_t * const refv, - const uint8_t * const refhv, - const uint32_t x, - const uint32_t y, - const int32_t dx, - const int dy, - const uint32_t stride) +compensate16x16_interpolate(int16_t * const dct_codes, + uint8_t * const cur, + const uint8_t * const ref, + const uint8_t * const refh, + const uint8_t * const refv, + const uint8_t * const refhv, + uint8_t * const tmp, + uint32_t x, + uint32_t y, + const int32_t dx, + const int32_t dy, + const int32_t stride, + const int quarterpel, + const int reduced_resolution, + const int32_t rounding) { - int32_t ddx, ddy; + const uint8_t * ptr; - switch (((dx & 1) << 1) + (dy & 1)) /* ((dx%2)?2:0)+((dy%2)?1:0) */ - { - case 0: - ddx = dx / 2; - ddy = dy / 2; - transfer_8to16sub(dct_codes, cur + y * stride + x, - ref + (int) ((y + ddy) * stride + x + ddx), stride); - break; + if (!reduced_resolution) { - case 1: - ddx = dx / 2; - ddy = (dy - 1) / 2; - transfer_8to16sub(dct_codes, cur + y * stride + x, - refv + (int) ((y + ddy) * stride + x + ddx), stride); - break; + if(quarterpel) { + if ((dx&3) | (dy&3)) { + interpolate16x16_quarterpel(tmp - y * stride - x, + (uint8_t *) ref, tmp + 32, + tmp + 64, tmp + 96, x, y, dx, dy, stride, rounding); + ptr = tmp; + } else ptr = ref + (y + dy/4)*stride + x + dx/4; // fullpixel position - case 2: - ddx = (dx - 1) / 2; - ddy = dy / 2; - transfer_8to16sub(dct_codes, cur + y * stride + x, - refh + (int) ((y + ddy) * stride + x + ddx), stride); - break; + } else ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); - default: /* case 3: */ - ddx = (dx - 1) / 2; - ddy = (dy - 1) / 2; transfer_8to16sub(dct_codes, cur + y * stride + x, - refhv + (int) ((y + ddy) * stride + x + ddx), stride); - break; + ptr, stride); + transfer_8to16sub(dct_codes+64, cur + y * stride + x + 8, + ptr + 8, stride); + transfer_8to16sub(dct_codes+128, cur + y * stride + x + 8*stride, + ptr + 8*stride, stride); + transfer_8to16sub(dct_codes+192, cur + y * stride + x + 8*stride+8, + ptr + 8*stride + 8, stride); + + } else { //reduced_resolution + + x *= 2; y *= 2; + + ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); + + filter_18x18_to_8x8(dct_codes, cur+y*stride + x, stride); + filter_diff_18x18_to_8x8(dct_codes, ptr, stride); + + filter_18x18_to_8x8(dct_codes+64, cur+y*stride + x + 16, stride); + filter_diff_18x18_to_8x8(dct_codes+64, ptr + 16, stride); + + filter_18x18_to_8x8(dct_codes+128, cur+(y+16)*stride + x, stride); + filter_diff_18x18_to_8x8(dct_codes+128, ptr + 16*stride, stride); + + filter_18x18_to_8x8(dct_codes+192, cur+(y+16)*stride + x + 16, stride); + filter_diff_18x18_to_8x8(dct_codes+192, ptr + 16*stride + 16, stride); + + transfer32x32_copy(cur + y*stride + x, ptr, stride); } } +static __inline void +compensate8x8_interpolate( int16_t * const dct_codes, + uint8_t * const cur, + const uint8_t * const ref, + const uint8_t * const refh, + const uint8_t * const refv, + const uint8_t * const refhv, + uint8_t * const tmp, + uint32_t x, + uint32_t y, + const int32_t dx, + const int32_t dy, + const int32_t stride, + const int32_t quarterpel, + const int reduced_resolution, + const int32_t rounding) +{ + const uint8_t * ptr; + + if (!reduced_resolution) { + + if(quarterpel) { + if ((dx&3) | (dy&3)) { + interpolate8x8_quarterpel(tmp - y*stride - x, + (uint8_t *) ref, tmp + 32, + tmp + 64, tmp + 96, x, y, dx, dy, stride, rounding); + ptr = tmp; + } else ptr = ref + (y + dy/4)*stride + x + dx/4; // fullpixel position + } else ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); + + transfer_8to16sub(dct_codes, cur + y * stride + x, ptr, stride); + } else { //reduced_resolution + + x *= 2; y *= 2; + + ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); + + filter_18x18_to_8x8(dct_codes, cur+y*stride + x, stride); + filter_diff_18x18_to_8x8(dct_codes, ptr, stride); + + transfer16x16_copy(cur + y*stride + x, ptr, stride); + } +} + + +static __inline void +compensate16x16_interpolate_ro(int16_t * const dct_codes, + const uint8_t * const cur, + const uint8_t * const ref, + const uint8_t * const refh, + const uint8_t * const refv, + const uint8_t * const refhv, + uint8_t * const tmp, + const uint32_t x, const uint32_t y, + const int32_t dx, const int32_t dy, + const int32_t stride, + const int quarterpel) +{ + const uint8_t * ptr; + + if(quarterpel) { + if ((dx&3) | (dy&3)) { + interpolate16x16_quarterpel(tmp - y * stride - x, + (uint8_t *) ref, tmp + 32, + tmp + 64, tmp + 96, x, y, dx, dy, stride, 0); + ptr = tmp; + } else ptr = ref + (y + dy/4)*stride + x + dx/4; // fullpixel position + + } else ptr = get_ref(ref, refh, refv, refhv, x, y, 1, dx, dy, stride); + + transfer_8to16subro(dct_codes, cur + y * stride + x, + ptr, stride); + transfer_8to16subro(dct_codes+64, cur + y * stride + x + 8, + ptr + 8, stride); + transfer_8to16subro(dct_codes+128, cur + y * stride + x + 8*stride, + ptr + 8*stride, stride); + transfer_8to16subro(dct_codes+192, cur + y * stride + x + 8*stride+8, + ptr + 8*stride + 8, stride); + +} + + +/* XXX: slow, inelegant... */ +static void +interpolate18x18_switch(uint8_t * const cur, + const uint8_t * const refn, + const uint32_t x, + const uint32_t y, + const int32_t dx, + const int dy, + const int32_t stride, + const int32_t rounding) +{ + interpolate8x8_switch(cur, refn, x-1, y-1, dx, dy, stride, rounding); + interpolate8x8_switch(cur, refn, x+7, y-1, dx, dy, stride, rounding); + interpolate8x8_switch(cur, refn, x+9, y-1, dx, dy, stride, rounding); + + interpolate8x8_switch(cur, refn, x-1, y+7, dx, dy, stride, rounding); + interpolate8x8_switch(cur, refn, x+7, y+7, dx, dy, stride, rounding); + interpolate8x8_switch(cur, refn, x+9, y+7, dx, dy, stride, rounding); + + interpolate8x8_switch(cur, refn, x-1, y+9, dx, dy, stride, rounding); + interpolate8x8_switch(cur, refn, x+7, y+9, dx, dy, stride, rounding); + interpolate8x8_switch(cur, refn, x+9, y+9, dx, dy, stride, rounding); +} + +static void +CompensateChroma( int dx, int dy, + const int i, const int j, + IMAGE * const Cur, + const IMAGE * const Ref, + uint8_t * const temp, + int16_t * const coeff, + const int32_t stride, + const int rounding, + const int rrv) +{ /* uv-block-based compensation */ + + if (!rrv) { + transfer_8to16sub(coeff, Cur->u + 8 * j * stride + 8 * i, + interpolate8x8_switch2(temp, Ref->u, 8 * i, 8 * j, + dx, dy, stride, rounding), + stride); + transfer_8to16sub(coeff + 64, Cur->v + 8 * j * stride + 8 * i, + interpolate8x8_switch2(temp, Ref->v, 8 * i, 8 * j, + dx, dy, stride, rounding), + stride); + } else { + uint8_t * current, * reference; + + current = Cur->u + 16*j*stride + 16*i; + reference = temp - 16*j*stride - 16*i; + interpolate18x18_switch(reference, Ref->u, 16*i, 16*j, dx, dy, stride, rounding); + filter_18x18_to_8x8(coeff, current, stride); + filter_diff_18x18_to_8x8(coeff, temp, stride); + transfer16x16_copy(current, temp, stride); + + current = Cur->v + 16*j*stride + 16*i; + interpolate18x18_switch(reference, Ref->v, 16*i, 16*j, dx, dy, stride, rounding); + filter_18x18_to_8x8(coeff + 64, current, stride); + filter_diff_18x18_to_8x8(coeff + 64, temp, stride); + transfer16x16_copy(current, temp, stride); + } +} void MBMotionCompensation(MACROBLOCK * const mb, @@ -120,91 +282,844 @@ const IMAGE * const refh, const IMAGE * const refv, const IMAGE * const refhv, + const IMAGE * const refGMC, IMAGE * const cur, int16_t * dct_codes, const uint32_t width, const uint32_t height, const uint32_t edged_width, - const uint32_t rounding) + const int32_t quarterpel, + const int reduced_resolution, + const int32_t rounding) +{ + int32_t dx; + int32_t dy; + + + uint8_t * const tmp = refv->u; + + if ( (!reduced_resolution) && (mb->mode == MODE_NOT_CODED) ) { /* quick copy for early SKIP */ +/* early SKIP is only activated in P-VOPs, not in S-VOPs, so mcsel can never be 1 */ + + transfer16x16_copy(cur->y + 16 * (i + j * edged_width), + ref->y + 16 * (i + j * edged_width), + edged_width); + + transfer8x8_copy(cur->u + 8 * (i + j * edged_width/2), + ref->u + 8 * (i + j * edged_width/2), + edged_width / 2); + transfer8x8_copy(cur->v + 8 * (i + j * edged_width/2), + ref->v + 8 * (i + j * edged_width/2), + edged_width / 2); + return; + } + + if ((mb->mode == MODE_NOT_CODED || mb->mode == MODE_INTER + || mb->mode == MODE_INTER_Q)) { + + /* reduced resolution + GMC: not possible */ + + if (mb->mcsel) { + + /* call normal routine once, easier than "if (mcsel)"ing all the time */ + + transfer_8to16sub(&dct_codes[0*64], cur->y + 16*j*edged_width + 16*i, + refGMC->y + 16*j*edged_width + 16*i, edged_width); + transfer_8to16sub(&dct_codes[1*64], cur->y + 16*j*edged_width + 16*i+8, + refGMC->y + 16*j*edged_width + 16*i+8, edged_width); + transfer_8to16sub(&dct_codes[2*64], cur->y + (16*j+8)*edged_width + 16*i, + refGMC->y + (16*j+8)*edged_width + 16*i, edged_width); + transfer_8to16sub(&dct_codes[3*64], cur->y + (16*j+8)*edged_width + 16*i+8, + refGMC->y + (16*j+8)*edged_width + 16*i+8, edged_width); + +/* lumi is needed earlier for mode decision, but chroma should be done block-based, but it isn't, yet. */ + + transfer_8to16sub(&dct_codes[4 * 64], cur->u + 8 *j*edged_width/2 + 8*i, + refGMC->u + 8 *j*edged_width/2 + 8*i, edged_width/2); + + transfer_8to16sub(&dct_codes[5 * 64], cur->v + 8*j* edged_width/2 + 8*i, + refGMC->v + 8*j* edged_width/2 + 8*i, edged_width/2); + + return; + } + + /* ordinary compensation */ + + dx = (quarterpel ? mb->qmvs[0].x : mb->mvs[0].x); + dy = (quarterpel ? mb->qmvs[0].y : mb->mvs[0].y); + + if (reduced_resolution) { + dx = RRV_MV_SCALEUP(dx); + dy = RRV_MV_SCALEUP(dy); + } + + compensate16x16_interpolate(&dct_codes[0 * 64], cur->y, ref->y, refh->y, + refv->y, refhv->y, tmp, 16 * i, 16 * j, dx, dy, + edged_width, quarterpel, reduced_resolution, rounding); + + dx /= (int)(1 + quarterpel); + dy /= (int)(1 + quarterpel); + + dx = (dx >> 1) + roundtab_79[dx & 0x3]; + dy = (dy >> 1) + roundtab_79[dy & 0x3]; + + } else { // mode == MODE_INTER4V + int k, sumx = 0, sumy = 0; + const VECTOR * const mvs = (quarterpel ? mb->qmvs : mb->mvs); + + for (k = 0; k < 4; k++) { + dx = mvs[k].x; + dy = mvs[k].y; + sumx += dx / (1 + quarterpel); + sumy += dy / (1 + quarterpel); + + if (reduced_resolution){ + dx = RRV_MV_SCALEUP(dx); + dy = RRV_MV_SCALEUP(dy); + } + + compensate8x8_interpolate(&dct_codes[k * 64], cur->y, ref->y, refh->y, + refv->y, refhv->y, tmp, 16 * i + 8*(k&1), 16 * j + 8*(k>>1), dx, + dy, edged_width, quarterpel, reduced_resolution, rounding); + } + dx = (sumx >> 3) + roundtab_76[sumx & 0xf]; + dy = (sumy >> 3) + roundtab_76[sumy & 0xf]; + } + + CompensateChroma(dx, dy, i, j, cur, ref, tmp, + &dct_codes[4 * 64], edged_width / 2, rounding, reduced_resolution); +} + + +void +MBMotionCompensationBVOP(MBParam * pParam, + MACROBLOCK * const mb, + const uint32_t i, + const uint32_t j, + IMAGE * const cur, + const IMAGE * const f_ref, + const IMAGE * const f_refh, + const IMAGE * const f_refv, + const IMAGE * const f_refhv, + const IMAGE * const b_ref, + const IMAGE * const b_refh, + const IMAGE * const b_refv, + const IMAGE * const b_refhv, + int16_t * dct_codes) +{ + const uint32_t edged_width = pParam->edged_width; + int32_t dx, dy, b_dx, b_dy, sumx, sumy, b_sumx, b_sumy; + int k; + const int quarterpel = pParam->m_quarterpel; + const uint8_t * ptr1, * ptr2; + uint8_t * const tmp = f_refv->u; + const VECTOR * const fmvs = (quarterpel ? mb->qmvs : mb->mvs); + const VECTOR * const bmvs = (quarterpel ? mb->b_qmvs : mb->b_mvs); + + switch (mb->mode) { + case MODE_FORWARD: + dx = fmvs->x; dy = fmvs->y; + + compensate16x16_interpolate(&dct_codes[0 * 64], cur->y, f_ref->y, f_refh->y, + f_refv->y, f_refhv->y, tmp, 16 * i, 16 * j, dx, + dy, edged_width, quarterpel, 0, 0); + + if (quarterpel) { dx /= 2; dy /= 2; } + + CompensateChroma( (dx >> 1) + roundtab_79[dx & 0x3], + (dy >> 1) + roundtab_79[dy & 0x3], + i, j, cur, f_ref, tmp, + &dct_codes[4 * 64], edged_width / 2, 0, 0); + + return; + + case MODE_BACKWARD: + b_dx = bmvs->x; b_dy = bmvs->y; + + compensate16x16_interpolate_ro(&dct_codes[0 * 64], cur->y, b_ref->y, b_refh->y, + b_refv->y, b_refhv->y, tmp, 16 * i, 16 * j, b_dx, + b_dy, edged_width, quarterpel); + + if (quarterpel) { b_dx /= 2; b_dy /= 2; } + + CompensateChroma( (b_dx >> 1) + roundtab_79[b_dx & 0x3], + (b_dy >> 1) + roundtab_79[b_dy & 0x3], + i, j, cur, b_ref, tmp, + &dct_codes[4 * 64], edged_width / 2, 0, 0); + + return; + + case MODE_INTERPOLATE: /* _could_ use DIRECT, but would be overkill (no 4MV there) */ + case MODE_DIRECT_NO4V: + dx = fmvs->x; dy = fmvs->y; + b_dx = bmvs->x; b_dy = bmvs->y; + + if (quarterpel) { + + if ((dx&3) | (dy&3)) { + interpolate16x16_quarterpel(tmp - i * 16 - j * 16 * edged_width, + (uint8_t *) f_ref->y, tmp + 32, + tmp + 64, tmp + 96, 16*i, 16*j, dx, dy, edged_width, 0); + ptr1 = tmp; + } else ptr1 = f_ref->y + (16*j + dy/4)*edged_width + 16*i + dx/4; // fullpixel position + + if ((b_dx&3) | (b_dy&3)) { + interpolate16x16_quarterpel(tmp - i * 16 - j * 16 * edged_width + 16, + (uint8_t *) b_ref->y, tmp + 32, + tmp + 64, tmp + 96, 16*i, 16*j, b_dx, b_dy, edged_width, 0); + ptr2 = tmp + 16; + } else ptr2 = b_ref->y + (16*j + b_dy/4)*edged_width + 16*i + b_dx/4; // fullpixel position + + b_dx /= 2; + b_dy /= 2; + dx /= 2; + dy /= 2; + + } else { + ptr1 = get_ref(f_ref->y, f_refh->y, f_refv->y, f_refhv->y, + i, j, 16, dx, dy, edged_width); + + ptr2 = get_ref(b_ref->y, b_refh->y, b_refv->y, b_refhv->y, + i, j, 16, b_dx, b_dy, edged_width); + } + for (k = 0; k < 4; k++) + transfer_8to16sub2(&dct_codes[k * 64], + cur->y + (i * 16+(k&1)*8) + (j * 16+((k>>1)*8)) * edged_width, + ptr1 + (k&1)*8 + (k>>1)*8*edged_width, + ptr2 + (k&1)*8 + (k>>1)*8*edged_width, edged_width); + + + dx = (dx >> 1) + roundtab_79[dx & 0x3]; + dy = (dy >> 1) + roundtab_79[dy & 0x3]; + + b_dx = (b_dx >> 1) + roundtab_79[b_dx & 0x3]; + b_dy = (b_dy >> 1) + roundtab_79[b_dy & 0x3]; + + break; + + default: // MODE_DIRECT + sumx = sumy = b_sumx = b_sumy = 0; + + for (k = 0; k < 4; k++) { + + dx = fmvs[k].x; dy = fmvs[k].y; + b_dx = bmvs[k].x; b_dy = bmvs[k].y; + + if (quarterpel) { + sumx += dx/2; sumy += dy/2; + b_sumx += b_dx/2; b_sumy += b_dy/2; + + if ((dx&3) | (dy&3)) { + interpolate8x8_quarterpel(tmp - (i * 16+(k&1)*8) - (j * 16+((k>>1)*8)) * edged_width, + (uint8_t *) f_ref->y, + tmp + 32, tmp + 64, tmp + 96, + 16*i + (k&1)*8, 16*j + (k>>1)*8, dx, dy, edged_width, 0); + ptr1 = tmp; + } else ptr1 = f_ref->y + (16*j + (k>>1)*8 + dy/4)*edged_width + 16*i + (k&1)*8 + dx/4; + + if ((b_dx&3) | (b_dy&3)) { + interpolate8x8_quarterpel(tmp - (i * 16+(k&1)*8) - (j * 16+((k>>1)*8)) * edged_width + 16, + (uint8_t *) b_ref->y, + tmp + 16, tmp + 32, tmp + 48, + 16*i + (k&1)*8, 16*j + (k>>1)*8, b_dx, b_dy, edged_width, 0); + ptr2 = tmp + 16; + } else ptr2 = b_ref->y + (16*j + (k>>1)*8 + b_dy/4)*edged_width + 16*i + (k&1)*8 + b_dx/4; + } else { + sumx += dx; sumy += dy; + b_sumx += b_dx; b_sumy += b_dy; + + ptr1 = get_ref(f_ref->y, f_refh->y, f_refv->y, f_refhv->y, + 2*i + (k&1), 2*j + (k>>1), 8, dx, dy, edged_width); + ptr2 = get_ref(b_ref->y, b_refh->y, b_refv->y, b_refhv->y, + 2*i + (k&1), 2*j + (k>>1), 8, b_dx, b_dy, edged_width); + } + transfer_8to16sub2(&dct_codes[k * 64], + cur->y + (i * 16+(k&1)*8) + (j * 16+((k>>1)*8)) * edged_width, + ptr1, ptr2, edged_width); + + } + + dx = (sumx >> 3) + roundtab_76[sumx & 0xf]; + dy = (sumy >> 3) + roundtab_76[sumy & 0xf]; + b_dx = (b_sumx >> 3) + roundtab_76[b_sumx & 0xf]; + b_dy = (b_sumy >> 3) + roundtab_76[b_sumy & 0xf]; + + break; + } + + // uv block-based chroma interpolation for direct and interpolate modes + transfer_8to16sub2(&dct_codes[4 * 64], + cur->u + (j * 8) * edged_width / 2 + (i * 8), + interpolate8x8_switch2(tmp, b_ref->u, 8 * i, 8 * j, + b_dx, b_dy, edged_width / 2, 0), + interpolate8x8_switch2(tmp + 8, f_ref->u, 8 * i, 8 * j, + dx, dy, edged_width / 2, 0), + edged_width / 2); + + transfer_8to16sub2(&dct_codes[5 * 64], + cur->v + (j * 8) * edged_width / 2 + (i * 8), + interpolate8x8_switch2(tmp, b_ref->v, 8 * i, 8 * j, + b_dx, b_dy, edged_width / 2, 0), + interpolate8x8_switch2(tmp + 8, f_ref->v, 8 * i, 8 * j, + dx, dy, edged_width / 2, 0), + edged_width / 2); +} + + + +void generate_GMCparameters( const int num_wp, const int res, + const WARPPOINTS *const warp, + const int width, const int height, + GMC_DATA *const gmc) { - static const uint32_t roundtab[16] = - { 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 }; + const int du0 = warp->duv[0].x; + const int dv0 = warp->duv[0].y; + const int du1 = warp->duv[1].x; + const int dv1 = warp->duv[1].y; + const int du2 = warp->duv[2].x; + const int dv2 = warp->duv[2].y; + + gmc->W = width; + gmc->H = height; + + gmc->rho = 4 - log2bin(res-1); // = {3,2,1,0} for res={2,4,8,16} + + gmc->alpha = log2bin(gmc->W-1); + gmc->Ws = (1 << gmc->alpha); + + gmc->dxF = 16*gmc->Ws + RDIV( 8*gmc->Ws*du1, gmc->W ); + gmc->dxG = RDIV( 8*gmc->Ws*dv1, gmc->W ); + gmc->Fo = (res*du0 + 1) << (gmc->alpha+gmc->rho-1); + gmc->Go = (res*dv0 + 1) << (gmc->alpha+gmc->rho-1); + + if (num_wp==2) { + gmc->dyF = -gmc->dxG; + gmc->dyG = gmc->dxF; + } + else if (num_wp==3) { + gmc->beta = log2bin(gmc->H-1); + gmc->Hs = (1 << gmc->beta); + gmc->dyF = RDIV( 8*gmc->Hs*du2, gmc->H ); + gmc->dyG = 16*gmc->Hs + RDIV( 8*gmc->Hs*dv2, gmc->H ); + if (gmc->beta > gmc->alpha) { + gmc->dxF <<= (gmc->beta - gmc->alpha); + gmc->dxG <<= (gmc->beta - gmc->alpha); + gmc->alpha = gmc->beta; + gmc->Ws = 1<< gmc->beta; + } + else { + gmc->dyF <<= gmc->alpha - gmc->beta; + gmc->dyG <<= gmc->alpha - gmc->beta; + } + } + + gmc->cFo = gmc->dxF + gmc->dyF + (1 << (gmc->alpha+gmc->rho+1)); + gmc->cFo += 16*gmc->Ws*(du0-1); + gmc->cGo = gmc->dxG + gmc->dyG + (1 << (gmc->alpha+gmc->rho+1)); + gmc->cGo += 16*gmc->Ws*(dv0-1); +} - if (mb->mode == MODE_INTER || mb->mode == MODE_INTER_Q) { - int32_t dx = mb->mvs[0].x; - int32_t dy = mb->mvs[0].y; - - compensate8x8_halfpel(&dct_codes[0 * 64], cur->y, ref->y, refh->y, - refv->y, refhv->y, 16 * i, 16 * j, dx, dy, - edged_width); - compensate8x8_halfpel(&dct_codes[1 * 64], cur->y, ref->y, refh->y, - refv->y, refhv->y, 16 * i + 8, 16 * j, dx, dy, - edged_width); - compensate8x8_halfpel(&dct_codes[2 * 64], cur->y, ref->y, refh->y, - refv->y, refhv->y, 16 * i, 16 * j + 8, dx, dy, - edged_width); - compensate8x8_halfpel(&dct_codes[3 * 64], cur->y, ref->y, refh->y, - refv->y, refhv->y, 16 * i + 8, 16 * j + 8, dx, - dy, edged_width); - - dx = (dx & 3) ? (dx >> 1) | 1 : dx / 2; - dy = (dy & 3) ? (dy >> 1) | 1 : dy / 2; - - /* uv-image-based compensation */ - - interpolate8x8_switch(refv->u, ref->u, 8 * i, 8 * j, dx, dy, - edged_width / 2, rounding); - transfer_8to16sub(&dct_codes[4 * 64], - cur->u + 8 * j * edged_width / 2 + 8 * i, - refv->u + 8 * j * edged_width / 2 + 8 * i, - edged_width / 2); - - interpolate8x8_switch(refv->v, ref->v, 8 * i, 8 * j, dx, dy, - edged_width / 2, rounding); - transfer_8to16sub(&dct_codes[5 * 64], - cur->v + 8 * j * edged_width / 2 + 8 * i, - refv->v + 8 * j * edged_width / 2 + 8 * i, - edged_width / 2); +void +generate_GMCimage( const GMC_DATA *const gmc_data, // [input] precalculated data + const IMAGE *const pRef, // [input] + const int mb_width, + const int mb_height, + const int stride, + const int stride2, + const int fcode, // [input] some parameters... + const int32_t quarterpel, // [input] for rounding avgMV + const int reduced_resolution, // [input] ignored + const int32_t rounding, // [input] for rounding image data + MACROBLOCK *const pMBs, // [output] average motion vectors + IMAGE *const pGMC) // [output] full warped image +{ - } else /* mode == MODE_INTER4V */ + unsigned int mj,mi; + VECTOR avgMV; + + for (mj=0;mjy, ref->y, refh->y, - refv->y, refhv->y, 16 * i, 16 * j, mb->mvs[0].x, - mb->mvs[0].y, edged_width); - compensate8x8_halfpel(&dct_codes[1 * 64], cur->y, ref->y, refh->y, - refv->y, refhv->y, 16 * i + 8, 16 * j, - mb->mvs[1].x, mb->mvs[1].y, edged_width); - compensate8x8_halfpel(&dct_codes[2 * 64], cur->y, ref->y, refh->y, - refv->y, refhv->y, 16 * i, 16 * j + 8, - mb->mvs[2].x, mb->mvs[2].y, edged_width); - compensate8x8_halfpel(&dct_codes[3 * 64], cur->y, ref->y, refh->y, - refv->y, refhv->y, 16 * i + 8, 16 * j + 8, - mb->mvs[3].x, mb->mvs[3].y, edged_width); - - sum = mb->mvs[0].x + mb->mvs[1].x + mb->mvs[2].x + mb->mvs[3].x; - dx = (sum ? SIGN(sum) * - (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2) : 0); - - sum = mb->mvs[0].y + mb->mvs[1].y + mb->mvs[2].y + mb->mvs[3].y; - dy = (sum ? SIGN(sum) * - (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2) : 0); - - /* uv-block-based compensation */ - interpolate8x8_switch(refv->u, ref->u, 8 * i, 8 * j, dx, dy, - edged_width / 2, rounding); - transfer_8to16sub(&dct_codes[4 * 64], - cur->u + 8 * j * edged_width / 2 + 8 * i, - refv->u + 8 * j * edged_width / 2 + 8 * i, - edged_width / 2); - - interpolate8x8_switch(refv->v, ref->v, 8 * i, 8 * j, dx, dy, - edged_width / 2, rounding); - transfer_8to16sub(&dct_codes[5 * 64], - cur->v + 8 * j * edged_width / 2 + 8 * i, - refv->v + 8 * j * edged_width / 2 + 8 * i, - edged_width / 2); + pMBs[mj*mb_width+mi].amv.x = gmc_sanitize(avgMV.x, quarterpel, fcode); + pMBs[mj*mb_width+mi].amv.y = gmc_sanitize(avgMV.y, quarterpel, fcode); + pMBs[mj*mb_width+mi].mcsel = 0; /* until mode decision */ } } + + + +#define MLT(i) (((16-(i))<<16) + (i)) +static const uint32_t MTab[16] = { + MLT( 0), MLT( 1), MLT( 2), MLT( 3), MLT( 4), MLT( 5), MLT( 6), MLT(7), + MLT( 8), MLT( 9), MLT(10), MLT(11), MLT(12), MLT(13), MLT(14), MLT(15) +}; +#undef MLT + +VECTOR generate_GMCimageMB( const GMC_DATA *const gmc_data, + const IMAGE *const pRef, + const int mi, const int mj, + const int stride, + const int stride2, + const int quarterpel, + const int rounding, + IMAGE *const pGMC) +{ + const int W = gmc_data->W; + const int H = gmc_data->H; + + const int rho = gmc_data->rho; + const int alpha = gmc_data->alpha; + + const int rounder = ( 128 - (rounding<<(rho+rho)) ) << 16; + + const int dxF = gmc_data->dxF; + const int dyF = gmc_data->dyF; + const int dxG = gmc_data->dxG; + const int dyG = gmc_data->dyG; + + uint8_t *dstY, *dstU, *dstV; + + int I,J; + VECTOR avgMV = {0,0}; + + int32_t Fj, Gj; + + dstY = &pGMC->y[(mj*16)*stride+mi*16] + 16; + + Fj = gmc_data->Fo + dyF*mj*16 + dxF*mi*16; + Gj = gmc_data->Go + dyG*mj*16 + dxG*mi*16; + for (J=16; J>0; --J) + { + int32_t Fi, Gi; + + Fi = Fj; Fj += dyF; + Gi = Gj; Gj += dyG; + for (I=-16; I<0; ++I) + { + int32_t F, G; + uint32_t ri, rj; + + F = ( Fi >> (alpha+rho) ) << rho; Fi += dxF; + G = ( Gi >> (alpha+rho) ) << rho; Gi += dxG; + + avgMV.x += F; + avgMV.y += G; + + ri = MTab[F&15]; + rj = MTab[G&15]; + + F >>= 4; + G >>= 4; + + if (F< -1) F=-1; + else if (F>W) F=W; + if (G< -1) G=-1; + else if (G>H) G=H; + + { // MMX-like bilinear... + const int offset = G*stride + F; + uint32_t f0, f1; + f0 = pRef->y[ offset +0 ]; + f0 |= pRef->y[ offset +1 ] << 16; + f1 = pRef->y[ offset+stride +0 ]; + f1 |= pRef->y[ offset+stride +1 ] << 16; + f0 = (ri*f0)>>16; + f1 = (ri*f1) & 0x0fff0000; + f0 |= f1; + f0 = ( rj*f0 + rounder ) >> 24; + + dstY[I] = (uint8_t)f0; + } + } + dstY += stride; + } + + dstU = &pGMC->u[(mj*8)*stride2+mi*8] + 8; + dstV = &pGMC->v[(mj*8)*stride2+mi*8] + 8; + + Fj = gmc_data->cFo + dyF*4 *mj*8 + dxF*4 *mi*8; + Gj = gmc_data->cGo + dyG*4 *mj*8 + dxG*4 *mi*8; + for (J=8; J>0; --J) + { + int32_t Fi, Gi; + Fi = Fj; Fj += 4*dyF; + Gi = Gj; Gj += 4*dyG; + + for (I=-8; I<0; ++I) + { + int32_t F, G; + uint32_t ri, rj; + + F = ( Fi >> (alpha+rho+2) ) << rho; Fi += 4*dxF; + G = ( Gi >> (alpha+rho+2) ) << rho; Gi += 4*dxG; + + ri = MTab[F&15]; + rj = MTab[G&15]; + + F >>= 4; + G >>= 4; + + if (F< -1) F=-1; + else if (F>=W/2) F=W/2; + if (G< -1) G=-1; + else if (G>=H/2) G=H/2; + + { + const int offset = G*stride2 + F; + uint32_t f0, f1; + + f0 = pRef->u[ offset +0 ]; + f0 |= pRef->u[ offset +1 ] << 16; + f1 = pRef->u[ offset+stride2 +0 ]; + f1 |= pRef->u[ offset+stride2 +1 ] << 16; + f0 = (ri*f0)>>16; + f1 = (ri*f1) & 0x0fff0000; + f0 |= f1; + f0 = ( rj*f0 + rounder ) >> 24; + + dstU[I] = (uint8_t)f0; + + + f0 = pRef->v[ offset +0 ]; + f0 |= pRef->v[ offset +1 ] << 16; + f1 = pRef->v[ offset+stride2 +0 ]; + f1 |= pRef->v[ offset+stride2 +1 ] << 16; + f0 = (ri*f0)>>16; + f1 = (ri*f1) & 0x0fff0000; + f0 |= f1; + f0 = ( rj*f0 + rounder ) >> 24; + + dstV[I] = (uint8_t)f0; + } + } + dstU += stride2; + dstV += stride2; + } + + + avgMV.x -= 16*((256*mi+120)<<4); // 120 = 15*16/2 + avgMV.y -= 16*((256*mj+120)<<4); + + avgMV.x = RSHIFT( avgMV.x, (4+7-quarterpel) ); + avgMV.y = RSHIFT( avgMV.y, (4+7-quarterpel) ); + + return avgMV; +} + + + +#ifdef OLD_GRUEL_GMC +void +generate_GMCparameters( const int num_wp, // [input]: number of warppoints + const int res, // [input]: resolution + const WARPPOINTS *const warp, // [input]: warp points + const int width, const int height, + GMC_DATA *const gmc) // [output] precalculated parameters +{ + +/* We follow mainly two sources: The original standard, which is ugly, and the + thesis from Andreas Dehnhardt, which is much nicer. + + Notation is: indices are written next to the variable, + primes in the standard are denoted by a suffix 'p'. + types are "c"=constant, "i"=input parameter, "f"=calculated, then fixed, + "o"=output data, " "=other, "u" = unused, "p"=calc for every pixel + +type | variable name | ISO name (TeX-style) | value or range | usage +------------------------------------------------------------------------------------- + c | H | H | [16 , ?] | image width (w/o edges) + c | W | W | [16 , ?] | image height (w/o edges) + + c | i0 | i_0 | 0 | ref. point #1, X + c | j0 | j_0 | 0 | ref. point #1, Y + c | i1 | i_1 | W | ref. point #2, X + c | j1 | j_1 | 0 | ref. point #2, Y + cu | i2 | i_2 | 0 | ref. point #3, X + cu | i2 | j_2 | H | ref. point #3, Y + + i | du0 | du[0] | [-16863,16863] | warp vector #1, Y + i | dv0 | dv[0] | [-16863,16863] | warp vector #1, Y + i | du1 | du[1] | [-16863,16863] | warp vector #2, Y + i | dv1 | dv[1] | [-16863,16863] | warp vector #2, Y + iu | du2 | du[2] | [-16863,16863] | warp vector #3, Y + iu | dv2 | dv[2] | [-16863,16863] | warp vector #3, Y + + i | s | s | {2,4,8,16} | interpol. resolution + f | sigma | - | log2(s) | X / s == X >> sigma + f | r | r | =16/s | complementary res. + f | rho | \rho | log2(r) | X / r == X >> rho + + f | i0s | i'_0 | | + f | j0s | j'_0 | | + f | i1s | i'_1 | | + f | j1s | j'_1 | | + f | i2s | i'_2 | | + f | j2s | j'_2 | | + + f | alpha | \alpha | | 2^{alpha-1} < W <= 2^alpha + f | beta | \beta | | 2^{beta-1} < H <= 2^beta + + f | Ws | W' | W = 2^{alpha} | scaled width + f | Hs | H' | W = 2^{beta} | scaled height + + f | i1ss | i''_1 | "virtual sprite stuff" + f | j1ss | j''_1 | "virtual sprite stuff" + f | i2ss | i''_2 | "virtual sprite stuff" + f | j2ss | j''_2 | "virtual sprite stuff" +*/ + +/* Some calculations are disabled because we only use 2 warppoints at the moment */ + + int du0 = warp->duv[0].x; + int dv0 = warp->duv[0].y; + int du1 = warp->duv[1].x; + int dv1 = warp->duv[1].y; +// int du2 = warp->duv[2].x; +// int dv2 = warp->duv[2].y; + + gmc->num_wp = num_wp; + + gmc->s = res; /* scaling parameters 2,4,8 or 16 */ + gmc->sigma = log2bin(res-1); /* log2bin(15)=4, log2bin(16)=5, log2bin(17)=5 */ + gmc->r = 16/res; + gmc->rho = 4 - gmc->sigma; /* = log2bin(r-1) */ + + gmc->W = width; + gmc->H = height; /* fixed reference coordinates */ + + gmc->alpha = log2bin(gmc->W-1); + gmc->Ws= 1<alpha; + +// gmc->beta = log2bin(gmc->H-1); +// gmc->Hs= 1<beta; + +// printf("du0=%d dv0=%d du1=%d dv1=%d s=%d sigma=%d W=%d alpha=%d, Ws=%d, rho=%d\n",du0,dv0,du1,dv1,gmc->s,gmc->sigma,gmc->W,gmc->alpha,gmc->Ws,gmc->rho); + + /* i2s is only needed for num_wp >= 3, etc. */ + /* the 's' values are in 1/s pel resolution */ + gmc->i0s = res/2 * ( du0 ); + gmc->j0s = res/2 * ( dv0 ); + gmc->i1s = res/2 * (2*width + du1 + du0 ); + gmc->j1s = res/2 * ( dv1 + dv0 ); +// gmc->i2s = res/2 * ( du2 + du0 ); +// gmc->j2s = res/2 * (2*height + dv2 + dv0 ); + + /* i2s and i2ss are only needed for num_wp == 3, etc. */ + + /* the 'ss' values are in 1/16 pel resolution */ + gmc->i1ss = 16*gmc->Ws + ROUNDED_DIV(((gmc->W-gmc->Ws)*(gmc->r*gmc->i0s) + gmc->Ws*(gmc->r*gmc->i1s - 16*gmc->W)),gmc->W); + gmc->j1ss = ROUNDED_DIV( ((gmc->W - gmc->Ws)*(gmc->r*gmc->j0s) + gmc->Ws*gmc->r*gmc->j1s) ,gmc->W ); + +// gmc->i2ss = ROUNDED_DIV( ((gmc->H - gmc->Hs)*(gmc->r*gmc->i0s) + gmc->Hs*(gmc->r*gmc->i2s)), gmc->H); +// gmc->j2ss = 16*gmc->Hs + ROUNDED_DIV( ((gmc->H-gmc->Hs)*(gmc->r*gmc->j0s) + gmc->Ws*(gmc->r*gmc->j2s - 16*gmc->H)), gmc->H); + + return; +} + + + +void +generate_GMCimage( const GMC_DATA *const gmc_data, // [input] precalculated data + const IMAGE *const pRef, // [input] + const int mb_width, + const int mb_height, + const int stride, + const int stride2, + const int fcode, // [input] some parameters... + const int32_t quarterpel, // [input] for rounding avgMV + const int reduced_resolution, // [input] ignored + const int32_t rounding, // [input] for rounding image data + MACROBLOCK *const pMBs, // [output] average motion vectors + IMAGE *const pGMC) // [output] full warped image +{ + + unsigned int mj,mi; + VECTOR avgMV; + + for (mj=0;mjW; + const int H = gmc_data->H; + + const int s = gmc_data->s; + const int sigma = gmc_data->sigma; + + const int r = gmc_data->r; + const int rho = gmc_data->rho; + + const int i0s = gmc_data->i0s; + const int j0s = gmc_data->j0s; + + const int i1ss = gmc_data->i1ss; + const int j1ss = gmc_data->j1ss; +// const int i2ss = gmc_data->i2ss; +// const int j2ss = gmc_data->j2ss; + + const int alpha = gmc_data->alpha; + const int Ws = gmc_data->Ws; + +// const int beta = gmc_data->beta; +// const int Hs = gmc_data->Hs; + + int I,J; + VECTOR avgMV = {0,0}; + + for (J=16*mj;J<16*(mj+1);J++) + for (I=16*mi;I<16*(mi+1);I++) + { + int F= i0s + ( ((-r*i0s+i1ss)*I + (r*j0s-j1ss)*J + (1<<(alpha+rho-1))) >> (alpha+rho) ); + int G= j0s + ( ((-r*j0s+j1ss)*I + (-r*i0s+i1ss)*J + (1<<(alpha+rho-1))) >> (alpha+rho) ); + +/* this naive implementation (with lots of multiplications) isn't slower (rather faster) than + working incremental. Don't ask me why... maybe the whole this is memory bound? */ + + const int ri= F & (s-1); // fractional part of pelwise MV X + const int rj= G & (s-1); // fractional part of pelwise MV Y + + int Y00,Y01,Y10,Y11; + +/* unclipped values are used for avgMV */ + avgMV.x += F-(I<>= sigma; + G >>= sigma; + +/* clip values to be in range. Since we have edges, clip to 1 less than lower boundary + this way positions F+1/G+1 are still right */ + + if (F< -1) + F=-1; + else if (F>W) + F=W; /* W or W-1 doesn't matter, so save 1 subtract ;-) */ + if (G< -1) + G=-1; + else if (G>H) + G=H; /* dito */ + + Y00 = pRef->y[ G*stride + F ]; // Lumi values + Y01 = pRef->y[ G*stride + F+1 ]; + Y10 = pRef->y[ G*stride + F+stride ]; + Y11 = pRef->y[ G*stride + F+stride+1 ]; + + /* bilinear interpolation */ + Y00 = ((s-ri)*Y00 + ri*Y01); + Y10 = ((s-ri)*Y10 + ri*Y11); + Y00 = ((s-rj)*Y00 + rj*Y10 + s*s/2 - rounding ) >> (sigma+sigma); + + pGMC->y[J*stride+I] = (uint8_t)Y00; /* output 1 Y-pixel */ + } + + +/* doing chroma _here_ is even more stupid and slow, because won't be used until Compensation and + most likely not even then (only if the block really _is_ GMC) +*/ + + for (J=8*mj;J<8*(mj+1);J++) /* this plays the role of j_c,i_c in the standard */ + for (I=8*mi;I<8*(mi+1);I++) /* For I_c we have to use I_c = 4*i_c+1 ! */ + { + /* same positions for both chroma components, U=Cb and V=Cr */ + int Fc=((-r*i0s+i1ss)*(4*I+1) + (r*j0s-j1ss)*(4*J+1) +2*Ws*r*i0s + -16*Ws +(1<<(alpha+rho+1)))>>(alpha+rho+2); + int Gc=((-r*j0s+j1ss)*(4*I+1) +(-r*i0s+i1ss)*(4*J+1) +2*Ws*r*j0s + -16*Ws +(1<<(alpha+rho+1))) >>(alpha+rho+2); + + const int ri= Fc & (s-1); // fractional part of pelwise MV X + const int rj= Gc & (s-1); // fractional part of pelwise MV Y + + int C00,C01,C10,C11; + + Fc >>= sigma; + Gc >>= sigma; + + if (Fc< -1) + Fc=-1; + else if (Fc>=W/2) + Fc=W/2; /* W or W-1 doesn't matter, so save 1 subtraction ;-) */ + if (Gc< -1) + Gc=-1; + else if (Gc>=H/2) + Gc=H/2; /* dito */ + +/* now calculate U data */ + C00 = pRef->u[ Gc*stride2 + Fc ]; // chroma-value Cb + C01 = pRef->u[ Gc*stride2 + Fc+1 ]; + C10 = pRef->u[ (Gc+1)*stride2 + Fc ]; + C11 = pRef->u[ (Gc+1)*stride2 + Fc+1 ]; + + /* bilinear interpolation */ + C00 = ((s-ri)*C00 + ri*C01); + C10 = ((s-ri)*C10 + ri*C11); + C00 = ((s-rj)*C00 + rj*C10 + s*s/2 - rounding ) >> (sigma+sigma); + + pGMC->u[J*stride2+I] = (uint8_t)C00; /* output 1 U-pixel */ + +/* now calculate V data */ + C00 = pRef->v[ Gc*stride2 + Fc ]; // chroma-value Cr + C01 = pRef->v[ Gc*stride2 + Fc+1 ]; + C10 = pRef->v[ (Gc+1)*stride2 + Fc ]; + C11 = pRef->v[ (Gc+1)*stride2 + Fc+1 ]; + + /* bilinear interpolation */ + C00 = ((s-ri)*C00 + ri*C01); + C10 = ((s-ri)*C10 + ri*C11); + C00 = ((s-rj)*C00 + rj*C10 + s*s/2 - rounding ) >> (sigma+sigma); + + pGMC->v[J*stride2+I] = (uint8_t)C00; /* output 1 V-pixel */ + } + +/* The average vector is rounded from 1/s-pel to 1/2 or 1/4 using the '//' operator*/ + + avgMV.x = RSHIFT( avgMV.x, (sigma+7-quarterpel) ); + avgMV.y = RSHIFT( avgMV.y, (sigma+7-quarterpel) ); + + /* ^^^^ this is the way MS Reference Software does it */ + + return avgMV; /* clipping to fcode area is done outside! */ +} + +#endif