[svn] / branches / dev-api-4 / xvidcore / src / motion / gmc.c Repository:
ViewVC logotype

View of /branches/dev-api-4/xvidcore/src/motion/gmc.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1142 - (download) (annotate)
Wed Sep 10 22:19:00 2003 UTC (20 years, 7 months ago) by edgomez
File size: 12525 byte(s)
Motion Estimation module splitting.
/*****************************************************************************
 *
 *  XVID MPEG-4 VIDEO CODEC
 *  - GMC interpolation module -
 *
 *  Copyright(C) 2002-2003 Pascal Massimino <skal@planet-d.net>
 *
 *  This program is free software ; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation ; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY ; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program ; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 * $Id: gmc.c,v 1.1.2.4 2003-09-10 22:18:59 edgomez Exp $
 *
 ****************************************************************************/

#include "../portab.h"
#include "../global.h"
#include "../encoder.h"
#include "gmc.h"

#include <stdio.h>

/* These are mainly the new GMC routines by -Skal- (C) 2003 */

//////////////////////////////////////////////////////////
// Pts = 2 or 3

// Warning! *src is the global frame pointer (that is: adress
// of pixel 0,0), not the macroblock one.
// Conversely, *dst is the macroblock top-left adress.

void Predict_16x16_C(const NEW_GMC_DATA * const This,
					 uint8_t *dst, const uint8_t *src,
					 int dststride, int srcstride, int x, int y, int rounding)
{
	const int W = This->sW;
	const int H	= This->sH;
	const int rho = 3 - This->accuracy;
	const int Rounder = ( (1<<7) - (rounding<<(2*rho)) ) << 16;

	const int dUx = This->dU[0];
	const int dVx = This->dV[0];
	const int dUy = This->dU[1];
	const int dVy = This->dV[1];

	int Uo = This->Uo + 16*(dUy*y + dUx*x);
	int Vo = This->Vo + 16*(dVy*y + dVx*x);

	int i, j;

	dst += 16;
	for (j=16; j>0; --j) {
		int U = Uo, V = Vo;
		Uo += dUy; Vo += dVy;
		for (i=-16; i<0; ++i) {
			unsigned int f0, f1, ri = 16, rj = 16;
			int Offset;
			int u = ( U >> 16 ) << rho;
			int v = ( V >> 16 ) << rho;

			U += dUx; V += dVx;

			if (u > 0 && u <= W) { ri = MTab[u&15]; Offset = u>>4;	}
			else if (u > W) Offset = W>>4;
			else Offset = -1;
 
			if (v > 0 && v <= H) { rj = MTab[v&15]; Offset += (v>>4)*srcstride; }
			else if (v > H) Offset += (H>>4)*srcstride;
			else Offset -= srcstride;

			f0	= src[Offset + 0];
			f0 |= src[Offset + 1] << 16;
			f1	= src[Offset + srcstride + 0];
			f1 |= src[Offset + srcstride + 1] << 16;
			f0 = (ri*f0)>>16;
			f1 = (ri*f1) & 0x0fff0000;
			f0 |= f1;
			f0 = (rj*f0 + Rounder) >> 24;

			dst[i] = (uint8_t)f0;
		}
		dst += dststride;
	}
}

void Predict_8x8_C(const NEW_GMC_DATA * const This,
					 uint8_t *uDst, const uint8_t *uSrc,
					 uint8_t *vDst, const uint8_t *vSrc,
					 int dststride, int srcstride, int x, int y, int rounding)
{
	const int W	 = This->sW >> 1;
	const int H	 = This->sH >> 1;
	const int rho = 3-This->accuracy;
	const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;

	const int32_t dUx = This->dU[0];
	const int32_t dVx = This->dV[0];
	const int32_t dUy = This->dU[1];
	const int32_t dVy = This->dV[1];

	int32_t Uo = This->Uco + 8*(dUy*y + dUx*x);
	int32_t Vo = This->Vco + 8*(dVy*y + dVx*x);

	int i, j;

	uDst += 8;
	vDst += 8;
	for (j=8; j>0; --j) {
		int32_t U = Uo, V = Vo;
		Uo += dUy; Vo += dVy;

		for (i=-8; i<0; ++i) {
			int Offset;
			uint32_t f0, f1, ri, rj;
			int32_t u, v;

			u = ( U >> 16 ) << rho;
			v = ( V >> 16 ) << rho;
			U += dUx; V += dVx;

			if (u > 0 && u <= W) {
				ri = MTab[u&15];
				Offset = u>>4;
			} else {
				ri = 16;
				if (u>W) Offset = W>>4;
				else Offset = -1;
			}
			
			if (v > 0 && v <= H) {
				rj = MTab[v&15];
				Offset += (v>>4)*srcstride;
			} else {
				rj = 16;
				if (v>H) Offset += (H>>4)*srcstride;
				else Offset -= srcstride;
			}

			f0	= uSrc[Offset + 0];
			f0 |= uSrc[Offset + 1] << 16;
			f1	= uSrc[Offset + srcstride + 0];
			f1 |= uSrc[Offset + srcstride + 1] << 16;
			f0 = (ri*f0)>>16;
			f1 = (ri*f1) & 0x0fff0000;
			f0 |= f1;
			f0 = (rj*f0 + Rounder) >> 24;

			uDst[i] = (uint8_t)f0;

			f0	= vSrc[Offset + 0];
			f0 |= vSrc[Offset + 1] << 16;
			f1	= vSrc[Offset + srcstride + 0];
			f1 |= vSrc[Offset + srcstride + 1] << 16;
			f0 = (ri*f0)>>16; 
			f1 = (ri*f1) & 0x0fff0000;
			f0 |= f1; 
			f0 = (rj*f0 + Rounder) >> 24;

			vDst[i] = (uint8_t)f0;
		}
		uDst += dststride;
		vDst += dststride;
	}
}

void get_average_mv_C(const NEW_GMC_DATA * const Dsp, VECTOR * const mv,
						int x, int y, int qpel)
{
	int i, j;
	int vx = 0, vy = 0;
	int32_t uo = Dsp->Uo + 16*(Dsp->dU[1]*y + Dsp->dU[0]*x);
	int32_t vo = Dsp->Vo + 16*(Dsp->dV[1]*y + Dsp->dV[0]*x);
	for (j=16; j>0; --j)
	{
	int32_t U, V;
	U = uo; uo += Dsp->dU[1];
	V = vo; vo += Dsp->dV[1];
	for (i=16; i>0; --i)	 
	{
		int32_t u,v;
		u = U >> 16; U += Dsp->dU[0]; vx += u; 
		v = V >> 16; V += Dsp->dV[0]; vy += v;
	}
	}
	vx -= (256*x+120) << (5+Dsp->accuracy);	// 120 = 15*16/2
	vy -= (256*y+120) << (5+Dsp->accuracy);

	mv->x = RSHIFT( vx, 8+Dsp->accuracy - qpel );
	mv->y = RSHIFT( vy, 8+Dsp->accuracy - qpel );
}

//////////////////////////////////////////////////////////
// simplified version for 1 warp point

void Predict_1pt_16x16_C(const NEW_GMC_DATA * const This,
						 uint8_t *Dst, const uint8_t *Src, 
						 int dststride, int srcstride, int x, int y, int rounding)
{
	const int W	 = This->sW;
	const int H	 = This->sH;
	const int rho = 3-This->accuracy;
	const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;


	int32_t uo = This->Uo + (x<<8);	 // ((16*x)<<4)
	int32_t vo = This->Vo + (y<<8);
	const uint32_t ri = MTab[uo & 15];
	const uint32_t rj = MTab[vo & 15];
	int i, j;

	int32_t Offset;
	if ((uint32_t)vo<=(uint32_t)H) Offset	= (vo>>4)*srcstride;
	else if (vo>H)				 Offset	= ( H>>4)*srcstride;
	else							 Offset	=-16*srcstride;
	if ((uint32_t)uo<=(uint32_t)W) Offset += (uo>>4);
	else if (uo>W)				 Offset += ( W>>4);
	else							 Offset -= 16;

	Dst += 16;

	for(j=16; j>0; --j, Offset+=srcstride-16)
	{
	for(i=-16; i<0; ++i, ++Offset)
	{
		uint32_t f0, f1;
		f0	= Src[ Offset		+0 ];
		f0 |= Src[ Offset		+1 ] << 16;
		f1	= Src[ Offset+srcstride +0 ];
		f1 |= Src[ Offset+srcstride +1 ] << 16;
		f0 = (ri*f0)>>16;
		f1 = (ri*f1) & 0x0fff0000;
		f0 |= f1; 
		f0 = ( rj*f0 + Rounder ) >> 24;
		Dst[i] = (uint8_t)f0;
	}
	Dst += dststride;
	}
}	 

void Predict_1pt_8x8_C(const NEW_GMC_DATA * const This,
						 uint8_t *uDst, const uint8_t *uSrc,
						 uint8_t *vDst, const uint8_t *vSrc,
						 int dststride, int srcstride, int x, int y, int rounding)
{
	const int W	 = This->sW >> 1;
	const int H	 = This->sH >> 1;
	const int rho = 3-This->accuracy;
	const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;

	int32_t uo = This->Uco + (x<<7);
	int32_t vo = This->Vco + (y<<7);
	const uint32_t rri = MTab[uo & 15];
	const uint32_t rrj = MTab[vo & 15];
	int i, j;

	int32_t Offset;
	if ((uint32_t)vo<=(uint32_t)H) Offset = (vo>>4)*srcstride;
	else if (vo>H) Offset = ( H>>4)*srcstride;
	else Offset =-8*srcstride;
	if ((uint32_t)uo<=(uint32_t)W) Offset += (uo>>4);
	else if (uo>W) Offset += (W>>4);
	else Offset -= 8;

	uDst += 8;
	vDst += 8;
	for(j=8; j>0; --j, Offset+=srcstride-8)
	{
	for(i=-8; i<0; ++i, Offset++)
	{
		uint32_t f0, f1;
		f0	= uSrc[ Offset + 0 ]; 
		f0 |= uSrc[ Offset + 1 ] << 16;
		f1	= uSrc[ Offset + srcstride + 0 ];
		f1 |= uSrc[ Offset + srcstride + 1 ] << 16;
		f0 = (rri*f0)>>16;
		f1 = (rri*f1) & 0x0fff0000; 
		f0 |= f1; 
		f0 = ( rrj*f0 + Rounder ) >> 24;
		uDst[i] = (uint8_t)f0;	 

		f0	= vSrc[ Offset + 0 ];	 
		f0 |= vSrc[ Offset + 1 ] << 16;
		f1	= vSrc[ Offset + srcstride + 0 ];
		f1 |= vSrc[ Offset + srcstride + 1 ] << 16;
		f0 = (rri*f0)>>16;
		f1 = (rri*f1) & 0x0fff0000;
		f0 |= f1;
		f0 = ( rrj*f0 + Rounder ) >> 24;
		vDst[i] = (uint8_t)f0;
	}
	uDst += dststride;
	vDst += dststride;
	}
}

void get_average_mv_1pt_C(const NEW_GMC_DATA * const Dsp, VECTOR * const mv,
							int x, int y, int qpel)
{
	mv->x = RSHIFT(Dsp->Uo<<qpel, 3);
	mv->y = RSHIFT(Dsp->Vo<<qpel, 3);
}

//////////////////////////////////////////////////////////


	// Warning! It's Accuracy being passed, not 'resolution'!

void generate_GMCparameters( int nb_pts, const int accuracy,
								 const WARPPOINTS *const pts,
								 const int width, const int height,
								 NEW_GMC_DATA *const gmc)
{
	gmc->sW = width	<< 4;
	gmc->sH = height << 4;
	gmc->accuracy = accuracy;
	gmc->num_wp = nb_pts;

	// reduce the number of points, if possible
	if (nb_pts<3 || (pts->duv[2].x==-pts->duv[1].y && pts->duv[2].y==pts->duv[1].x)) {
	if (nb_pts<2 || (pts->duv[1].x==0 && pts->duv[1].y==0)) {
		if (nb_pts<1 || (pts->duv[0].x==0 && pts->duv[0].y==0)) {
		nb_pts = 0;
		}
		else nb_pts = 1;
	}
	else nb_pts = 2;
	}
	else nb_pts = 3;
	
	// now, nb_pts stores the actual number of points required for interpolation

	if (nb_pts<=1)
	{
	if (nb_pts==1) {
		// store as 4b fixed point
		gmc->Uo = pts->duv[0].x << accuracy;
		gmc->Vo = pts->duv[0].y << accuracy;
		gmc->Uco = ((pts->duv[0].x>>1) | (pts->duv[0].x&1)) << accuracy;	 // DIV2RND()
		gmc->Vco = ((pts->duv[0].y>>1) | (pts->duv[0].y&1)) << accuracy;	 // DIV2RND()
	}
	else {	// zero points?!
		gmc->Uo	= gmc->Vo	= 0;
		gmc->Uco = gmc->Vco = 0;
	}

	gmc->predict_16x16	= Predict_1pt_16x16_C;
	gmc->predict_8x8	= Predict_1pt_8x8_C;
	gmc->get_average_mv = get_average_mv_1pt_C;
	}
	else {		// 2 or 3 points
	const int rho	 = 3 - accuracy;	// = {3,2,1,0} for Acc={0,1,2,3}
	int Alpha = log2bin(width-1);
	int Ws = 1 << Alpha;

	gmc->dU[0] = 16*Ws + RDIV( 8*Ws*pts->duv[1].x, width );	 // dU/dx
	gmc->dV[0] =		 RDIV( 8*Ws*pts->duv[1].y, width );	 // dV/dx

/*	 disabled, because possibly buggy? */

/* if (nb_pts==2) {
		gmc->dU[1] = -gmc->dV[0];	// -Sin
		gmc->dV[1] =	gmc->dU[0] ;	//	Cos
	}
	else */
	{
		const int Beta = log2bin(height-1);
		const int Hs = 1<<Beta;
		gmc->dU[1] =		 RDIV( 8*Hs*pts->duv[2].x, height );	 // dU/dy
		gmc->dV[1] = 16*Hs + RDIV( 8*Hs*pts->duv[2].y, height );	 // dV/dy
		if (Beta>Alpha) {
		gmc->dU[0] <<= (Beta-Alpha);
		gmc->dV[0] <<= (Beta-Alpha);
		Alpha = Beta;
		Ws = Hs;
		}
		else {
		gmc->dU[1] <<= Alpha - Beta;
		gmc->dV[1] <<= Alpha - Beta;
		}
	}
		// upscale to 16b fixed-point
	gmc->dU[0] <<= (16-Alpha - rho);
	gmc->dU[1] <<= (16-Alpha - rho);
	gmc->dV[0] <<= (16-Alpha - rho);
	gmc->dV[1] <<= (16-Alpha - rho);

	gmc->Uo	= ( pts->duv[0].x	 <<(16+ accuracy)) + (1<<15);
	gmc->Vo	= ( pts->duv[0].y	 <<(16+ accuracy)) + (1<<15);
	gmc->Uco = ((pts->duv[0].x-1)<<(17+ accuracy)) + (1<<17);
	gmc->Vco = ((pts->duv[0].y-1)<<(17+ accuracy)) + (1<<17);
	gmc->Uco = (gmc->Uco + gmc->dU[0] + gmc->dU[1])>>2;
	gmc->Vco = (gmc->Vco + gmc->dV[0] + gmc->dV[1])>>2;

	gmc->predict_16x16	= Predict_16x16_C;
	gmc->predict_8x8	= Predict_8x8_C;
	gmc->get_average_mv = get_average_mv_C;
	}
}

//////////////////////////////////////////////////////////

/* quick and dirty routine to generate the full warped image (pGMC != NULL)
	or just all average Motion Vectors (pGMC == NULL) */

void
generate_GMCimage(	const NEW_GMC_DATA *const gmc_data, // [input] precalculated data
					const IMAGE *const pRef,		// [input]
					const int mb_width,
					const int mb_height,
					const int stride,
					const int stride2,
					const int fcode, 				// [input] some parameters...
						const int32_t quarterpel,		// [input] for rounding avgMV
					const int reduced_resolution,	// [input] ignored
					const int32_t rounding,			// [input] for rounding image data
					MACROBLOCK *const pMBs, 		// [output] average motion vectors
					IMAGE *const pGMC)				// [output] full warped image
{

	unsigned int mj,mi;
	VECTOR avgMV;

	for (mj = 0; mj < (unsigned int)mb_height; mj++)
		for (mi = 0; mi < (unsigned int)mb_width; mi++) {
			const int mbnum = mj*mb_width+mi;
			if (pGMC)
			{
				gmc_data->predict_16x16(gmc_data, 
							pGMC->y + mj*16*stride + mi*16, pRef->y, 
							stride, stride, mi, mj, rounding);

				gmc_data->predict_8x8(gmc_data,
					pGMC->u + mj*8*stride2 + mi*8, pRef->u,
					pGMC->v + mj*8*stride2 + mi*8, pRef->v,
					stride2, stride2, mi, mj, rounding);
			}
			gmc_data->get_average_mv(gmc_data, &avgMV, mi, mj, quarterpel);

			pMBs[mbnum].amv.x = gmc_sanitize(avgMV.x, quarterpel, fcode);
			pMBs[mbnum].amv.y = gmc_sanitize(avgMV.y, quarterpel, fcode);

			pMBs[mbnum].mcsel = 0; /* until mode decision */
	}
}

No admin address has been configured
ViewVC Help
Powered by ViewVC 1.0.4