[svn] / branches / dev-api-4 / xvidcore / src / motion / gmc.c Repository:
ViewVC logotype

View of /branches/dev-api-4/xvidcore/src/motion/gmc.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1077 - (download) (annotate)
Sat Jun 28 15:54:16 2003 UTC (20 years, 9 months ago) by chl
File size: 13704 byte(s)
3 warp point GME - first commit
/**************************************************************************
 *
 *	XVID MPEG-4 VIDEO CODEC
 *	GMC interpolation module
 *
 *	This program is free software; you can redistribute it and/or modify
 *	it under the terms of the GNU General Public License as published by
 *	the Free Software Foundation; either version 2 of the License, or
 *	(at your option) any later version.
 *
 *	This program is distributed in the hope that it will be useful,
 *	but WITHOUT ANY WARRANTY; without even the implied warranty of
 *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *	GNU General Public License for more details.
 *
 *	You should have received a copy of the GNU General Public License
 *	along with this program; if not, write to the Free Software
 *	Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *************************************************************************/

#include "../portab.h"
#include "../global.h"
#include "../encoder.h"
#include "gmc.h"
#include "motion_est.h"

#include <stdio.h>

/* These are mainly the new GMC routines by -Skal- (C) 2003 */

//////////////////////////////////////////////////////////
// Pts = 2 or 3 

// Warning! *src is the global frame pointer (that is: adress 
// of pixel 0,0), not the macroblock one. 
// Conversely, *dst is the macroblock top-left adress. 


void Predict_16x16_C(const NEW_GMC_DATA * const This,
                     uint8_t *dst, const uint8_t *src,
                     int dststride, int srcstride, int x, int y, int rounding)
{
  const int W   = This->sW;
  const int H   = This->sH;
  const int rho = 3 - This->accuracy;
  const int Rounder = ( (1<<7) - (rounding<<(2*rho)) ) << 16;

  const int dUx = This->dU[0];
  const int dVx = This->dV[0];
  const int dUy = This->dU[1];
  const int dVy = This->dV[1];

  int Uo = This->Uo + 16*(dUy*y + dUx*x);
  int Vo = This->Vo + 16*(dVy*y + dVx*x);

  int i, j;

  dst += 16;
  for (j=16; j>0; --j)
  {
    int U = Uo, V = Vo;
    Uo += dUy; Vo += dVy;
    for (i=-16; i<0; ++i)
    {
      unsigned int f0, f1, ri, rj;
      int Offset;

      int u = ( U >> 16 ) << rho;
      int v = ( V >> 16 ) << rho;
      U += dUx; V += dVx;

      ri = 16;
      if ((uint32_t)u<=(uint32_t)W) { ri = MTab[u&15]; Offset = u>>4;  }
      else if (u>W) Offset = W>>4;
      else Offset = -1;
	  
      rj = 16;
      if ((uint32_t)v<=(uint32_t)H) { rj = MTab[v&15]; Offset += (v>>4)*srcstride; }
      else if (v>H) Offset += (H>>4)*srcstride;
	  else Offset -= srcstride; 

      f0  = src[ Offset     +0 ];
      f0 |= src[ Offset     +1 ] << 16;
      f1  = src[ Offset+srcstride +0 ];
      f1 |= src[ Offset+srcstride +1 ] << 16;
      f0 = (ri*f0)>>16;
      f1 = (ri*f1) & 0x0fff0000;
      f0 |= f1; 
      f0 = ( rj*f0 + Rounder ) >> 24;

      dst[i] = (uint8_t)f0;
    }
    dst += dststride;
  }
}


void Predict_8x8_C(const NEW_GMC_DATA * const This,
                   uint8_t *uDst, const uint8_t *uSrc,
                   uint8_t *vDst, const uint8_t *vSrc,
                   int dststride, int srcstride, int x, int y, int rounding)
{
  const int W   = This->sW >> 1;
  const int H   = This->sH >> 1;
  const int rho = 3-This->accuracy;
  const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;

  const int32_t dUx = This->dU[0];
  const int32_t dVx = This->dV[0];
  const int32_t dUy = This->dU[1];
  const int32_t dVy = This->dV[1];

  int32_t Uo = This->Uco + 8*(dUy*y + dUx*x);
  int32_t Vo = This->Vco + 8*(dVy*y + dVx*x);

  int i, j;

  uDst += 8;
  vDst += 8;
  for (j=8; j>0; --j)
  {
    int32_t U = Uo, V = Vo;
    Uo += dUy; Vo += dVy;

    for (i=-8; i<0; ++i) 
    {
      int Offset;
      uint32_t f0, f1, ri, rj;
      int32_t u, v;

      u = ( U >> 16 ) << rho;
      v = ( V >> 16 ) << rho;
      U += dUx; V += dVx;

      if ((uint32_t)u<=(uint32_t)W) {
        ri = MTab[u&15];
        Offset = u>>4;
      }
      else {
        ri = 16;
        if (u>W) Offset = W>>4;
        else Offset = -1;
      }
      if ((uint32_t)v<=(uint32_t)H) {
        rj = MTab[v&15];
        Offset += (v>>4)*srcstride;
      }
      else {
        rj = 16;
        if (v>H) Offset += (H>>4)*srcstride;
		else Offset -= srcstride;
      }

      f0  = uSrc[ Offset        +0 ];
      f0 |= uSrc[ Offset        +1 ] << 16;
      f1  = uSrc[ Offset+srcstride +0 ];
      f1 |= uSrc[ Offset+srcstride +1 ] << 16;
      f0 = (ri*f0)>>16;
      f1 = (ri*f1) & 0x0fff0000;
      f0 |= f1; 
      f0 = ( rj*f0 + Rounder ) >> 24;

      uDst[i] = (uint8_t)f0;

      f0  = vSrc[ Offset        +0 ];
      f0 |= vSrc[ Offset        +1 ] << 16;
      f1  = vSrc[ Offset+srcstride +0 ];
      f1 |= vSrc[ Offset+srcstride +1 ] << 16;
      f0 = (ri*f0)>>16;  
      f1 = (ri*f1) & 0x0fff0000;
      f0 |= f1; 
      f0 = ( rj*f0 + Rounder ) >> 24;

      vDst[i] = (uint8_t)f0;
    }
    uDst += dststride;
    vDst += dststride;
  }
}


void get_average_mv_C(NEW_GMC_DATA *Dsp, VECTOR * const mv,
                      int x, int y, int qpel)
{
  int i, j;
  int vx = 0, vy = 0;
  int32_t uo = Dsp->Uo + 16*(Dsp->dU[1]*y + Dsp->dU[0]*x);
  int32_t vo = Dsp->Vo + 16*(Dsp->dV[1]*y + Dsp->dV[0]*x);
  for (j=16; j>0; --j)
  {
    int32_t U, V;
    U = uo; uo += Dsp->dU[1];
    V = vo; vo += Dsp->dV[1];
    for (i=16; i>0; --i)   
    {
      int32_t u,v;
      u = U >> 16; U += Dsp->dU[0]; vx += u; 
      v = V >> 16; V += Dsp->dV[0]; vy += v;
    }
  }
  vx -= (256*x+120) << (5+Dsp->accuracy);  // 120 = 15*16/2
  vy -= (256*y+120) << (5+Dsp->accuracy);

  mv->x = RSHIFT( vx, 8+Dsp->accuracy - qpel );
  mv->y = RSHIFT( vy, 8+Dsp->accuracy - qpel );
}

//////////////////////////////////////////////////////////
// simplified version for 1 warp point


void Predict_1pt_16x16_C(const NEW_GMC_DATA * const This,
                         uint8_t *Dst, const uint8_t *Src, 
                         int dststride, int srcstride, int x, int y, int rounding)
{
  const int W   = This->sW;
  const int H   = This->sH;
  const int rho = 3-This->accuracy;
  const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;


  int32_t uo = This->Uo + (x<<8);     // ((16*x)<<4)
  int32_t vo = This->Vo + (y<<8);
  const uint32_t ri = MTab[uo & 15];
  const uint32_t rj = MTab[vo & 15];
  int i, j;

  int32_t Offset;
  if ((uint32_t)vo<=(uint32_t)H) Offset  = (vo>>4)*srcstride;
  else if (vo>H)                 Offset  = ( H>>4)*srcstride;
  else                           Offset  =-16*srcstride;
  if ((uint32_t)uo<=(uint32_t)W) Offset += (uo>>4);
  else if (uo>W)                 Offset += ( W>>4);
  else                           Offset -= 16;

  Dst += 16;

  for(j=16; j>0; --j, Offset+=srcstride-16)
  {
    for(i=-16; i<0; ++i, ++Offset)
    {
      uint32_t f0, f1;
      f0  = Src[ Offset        +0 ];
      f0 |= Src[ Offset        +1 ] << 16;
      f1  = Src[ Offset+srcstride +0 ];
      f1 |= Src[ Offset+srcstride +1 ] << 16;
      f0 = (ri*f0)>>16;
      f1 = (ri*f1) & 0x0fff0000;
      f0 |= f1; 
      f0 = ( rj*f0 + Rounder ) >> 24;
      Dst[i] = (uint8_t)f0;
    }
    Dst += dststride;
  }
}   


void Predict_1pt_8x8_C(const NEW_GMC_DATA * const This,
                       uint8_t *uDst, const uint8_t *uSrc,
                       uint8_t *vDst, const uint8_t *vSrc,
                       int dststride, int srcstride, int x, int y, int rounding)
{
  const int W   = This->sW >> 1;
  const int H   = This->sH >> 1;
  const int rho = 3-This->accuracy;
  const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16;

  int32_t uo = This->Uco + (x<<7);
  int32_t vo = This->Vco + (y<<7);
  const uint32_t rri = MTab[uo & 15];
  const uint32_t rrj = MTab[vo & 15];
  int i, j;

  int32_t Offset;
  if ((uint32_t)vo<=(uint32_t)H) Offset  = (vo>>4)*srcstride;
  else if (vo>H)                 Offset  = ( H>>4)*srcstride;
  else                           Offset  =-8*srcstride;
  if ((uint32_t)uo<=(uint32_t)W) Offset += (uo>>4);
  else if (uo>W)                 Offset += ( W>>4);
  else                           Offset -= 8;

  uDst += 8;
  vDst += 8;
  for(j=8; j>0; --j, Offset+=srcstride-8)
  {
    for(i=-8; i<0; ++i, Offset++)
    {
      uint32_t f0, f1;
      f0  = uSrc[ Offset        +0 ]; 
      f0 |= uSrc[ Offset        +1 ] << 16;
      f1  = uSrc[ Offset+srcstride +0 ];
      f1 |= uSrc[ Offset+srcstride +1 ] << 16;
      f0 = (rri*f0)>>16;
      f1 = (rri*f1) & 0x0fff0000; 
      f0 |= f1; 
      f0 = ( rrj*f0 + Rounder ) >> 24;
      uDst[i] = (uint8_t)f0;   

      f0  = vSrc[ Offset        +0 ];   
      f0 |= vSrc[ Offset        +1 ] << 16;
      f1  = vSrc[ Offset+srcstride +0 ];
      f1 |= vSrc[ Offset+srcstride +1 ] << 16;
      f0 = (rri*f0)>>16;
      f1 = (rri*f1) & 0x0fff0000;
      f0 |= f1;
      f0 = ( rrj*f0 + Rounder ) >> 24;
      vDst[i] = (uint8_t)f0;
    }
    uDst += dststride;
    vDst += dststride;
  }
}


void get_average_mv_1pt_C(NEW_GMC_DATA *Dsp, VECTOR * const mv,
                          int x, int y, int qpel)
{
  mv->x = RSHIFT(Dsp->Uo<<qpel, 3);
  mv->y = RSHIFT(Dsp->Vo<<qpel, 3);
}

//////////////////////////////////////////////////////////


  // Warning! It's Accuracy being passed, not 'resolution'!

void generate_GMCparameters( int nb_pts, const int accuracy,
                                 const WARPPOINTS *const pts,
                                 const int width, const int height,
                                 NEW_GMC_DATA *const gmc)
{
  gmc->sW = width  << 4;
  gmc->sH = height << 4;
  gmc->accuracy  = accuracy;
  gmc->num_wp = nb_pts;

    // reduce the number of points, if possible
  if (nb_pts<3 || (pts->duv[2].x==-pts->duv[1].y && pts->duv[2].y==pts->duv[1].x)) {
    if (nb_pts<2 || (pts->duv[1].x==0 && pts->duv[1].y==0)) {
      if (nb_pts<1 || (pts->duv[0].x==0 && pts->duv[0].y==0)) {
        nb_pts = 0;
      }
      else nb_pts = 1;
    }
    else nb_pts = 2;
  }
  else nb_pts = 3;
  
  // now, nb_pts stores the actual number of points required for interpolation

  if (nb_pts<=1)
  {
    if (nb_pts==1) {
        // store as 4b fixed point
      gmc->Uo = pts->duv[0].x << accuracy;
      gmc->Vo = pts->duv[0].y << accuracy;
      gmc->Uco = ((pts->duv[0].x>>1) | (pts->duv[0].x&1)) << accuracy;     // DIV2RND()
      gmc->Vco = ((pts->duv[0].y>>1) | (pts->duv[0].y&1)) << accuracy;     // DIV2RND()
    }
    else {    // zero points?!
      gmc->Uo  = gmc->Vo  = 0;
      gmc->Uco = gmc->Vco = 0;
    }

    gmc->predict_16x16  = Predict_1pt_16x16_C;
    gmc->predict_8x8    = Predict_1pt_8x8_C;
    gmc->get_average_mv = get_average_mv_1pt_C;
  }
  else {      // 2 or 3 points
    const int rho   = 3 - accuracy;  // = {3,2,1,0} for Acc={0,1,2,3}
    int Alpha = log2bin(width-1);
    int Ws = 1 << Alpha;

    gmc->dU[0] = 16*Ws + RDIV( 8*Ws*pts->duv[1].x, width );   // dU/dx
    gmc->dV[0] =         RDIV( 8*Ws*pts->duv[1].y, width );   // dV/dx

/*   disabled, because possibly buggy? */

/* if (nb_pts==2) {
      gmc->dU[1] = -gmc->dV[0];  // -Sin
      gmc->dV[1] =  gmc->dU[0] ;  //  Cos
    }
    else */
	{
      const int Beta = log2bin(height-1);
      const int Hs = 1<<Beta;
      gmc->dU[1] =         RDIV( 8*Hs*pts->duv[2].x, height );   // dU/dy
      gmc->dV[1] = 16*Hs + RDIV( 8*Hs*pts->duv[2].y, height );   // dV/dy
      if (Beta>Alpha) {
        gmc->dU[0] <<= (Beta-Alpha);
        gmc->dV[0] <<= (Beta-Alpha);
        Alpha = Beta;
        Ws = Hs;
      }
      else {
        gmc->dU[1] <<= Alpha - Beta;
        gmc->dV[1] <<= Alpha - Beta;
      }
    }
      // upscale to 16b fixed-point
    gmc->dU[0] <<= (16-Alpha - rho);
    gmc->dU[1] <<= (16-Alpha - rho);
    gmc->dV[0] <<= (16-Alpha - rho);
    gmc->dV[1] <<= (16-Alpha - rho);

    gmc->Uo  = ( pts->duv[0].x   <<(16+ accuracy)) + (1<<15);
    gmc->Vo  = ( pts->duv[0].y   <<(16+ accuracy)) + (1<<15);
    gmc->Uco = ((pts->duv[0].x-1)<<(17+ accuracy)) + (1<<17);
    gmc->Vco = ((pts->duv[0].y-1)<<(17+ accuracy)) + (1<<17);
    gmc->Uco = (gmc->Uco + gmc->dU[0] + gmc->dU[1])>>2;
    gmc->Vco = (gmc->Vco + gmc->dV[0] + gmc->dV[1])>>2;

    gmc->predict_16x16  = Predict_16x16_C;
    gmc->predict_8x8    = Predict_8x8_C;
    gmc->get_average_mv = get_average_mv_C;
  }
}

//////////////////////////////////////////////////////////


/* quick and dirty routine to generate the full warped image (pGMC != NULL)
	or just all average Motion Vectors (pGMC == NULL) */

void
generate_GMCimage(	const NEW_GMC_DATA *const gmc_data, // [input] precalculated data
					const IMAGE *const pRef,		// [input]
					const int mb_width,
					const int mb_height,
					const int stride,
					const int stride2,
					const int fcode, 				// [input] some parameters...
  					const int32_t quarterpel,		// [input] for rounding avgMV
					const int reduced_resolution,	// [input] ignored
					const int32_t rounding,			// [input] for rounding image data
					MACROBLOCK *const pMBs, 		// [output] average motion vectors
					IMAGE *const pGMC)				// [output] full warped image
{

	unsigned int mj,mi;
	VECTOR avgMV;

	for (mj = 0; mj < (unsigned int)mb_height; mj++)
		for (mi = 0; mi < (unsigned int)mb_width; mi++) {
			const int mbnum = mj*mb_width+mi;
			if (pGMC)
			{
				gmc_data->predict_16x16(gmc_data, 
							pGMC->y + mj*16*stride + mi*16, pRef->y, 
							stride, stride, mi, mj, rounding);

				gmc_data->predict_8x8(gmc_data,
					pGMC->u + mj*8*stride2 + mi*8, pRef->u,
					pGMC->v + mj*8*stride2 + mi*8, pRef->v,
					stride2, stride2, mi, mj, rounding);
			}
			gmc_data->get_average_mv(gmc_data, &avgMV, mi, mj, quarterpel);

			pMBs[mbnum].amv.x = gmc_sanitize(avgMV.x, quarterpel, fcode);
			pMBs[mbnum].amv.y = gmc_sanitize(avgMV.y, quarterpel, fcode);

			pMBs[mbnum].mcsel = 0; /* until mode decision */
	}
}

No admin address has been configured
ViewVC Help
Powered by ViewVC 1.0.4