/************************************************************************** * * XVID MPEG-4 VIDEO CODEC * GMC interpolation module * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * *************************************************************************/ #include "../portab.h" #include "../global.h" #include "../encoder.h" #include "gmc.h" #include "motion_est.h" #include /* These are mainly the new GMC routines by -Skal- (C) 2003 */ ////////////////////////////////////////////////////////// // Pts = 2 or 3 // Warning! *src is the global frame pointer (that is: adress // of pixel 0,0), not the macroblock one. // Conversely, *dst is the macroblock top-left adress. void Predict_16x16_C(const NEW_GMC_DATA * const This, uint8_t *dst, const uint8_t *src, int dststride, int srcstride, int x, int y, int rounding) { const int W = This->sW; const int H = This->sH; const int rho = 3 - This->accuracy; const int Rounder = ( (1<<7) - (rounding<<(2*rho)) ) << 16; const int dUx = This->dU[0]; const int dVx = This->dV[0]; const int dUy = This->dU[1]; const int dVy = This->dV[1]; int Uo = This->Uo + 16*(dUy*y + dUx*x); int Vo = This->Vo + 16*(dVy*y + dVx*x); int i, j; dst += 16; for (j=16; j>0; --j) { int U = Uo, V = Vo; Uo += dUy; Vo += dVy; for (i=-16; i<0; ++i) { unsigned int f0, f1, ri, rj; int Offset; int u = ( U >> 16 ) << rho; int v = ( V >> 16 ) << rho; U += dUx; V += dVx; ri = 16; if ((uint32_t)u<=(uint32_t)W) { ri = MTab[u&15]; Offset = u>>4; } else if (u>W) Offset = W>>4; else Offset = -1; rj = 16; if ((uint32_t)v<=(uint32_t)H) { rj = MTab[v&15]; Offset += (v>>4)*srcstride; } else if (v>H) Offset += (H>>4)*srcstride; else Offset -= srcstride; f0 = src[ Offset +0 ]; f0 |= src[ Offset +1 ] << 16; f1 = src[ Offset+srcstride +0 ]; f1 |= src[ Offset+srcstride +1 ] << 16; f0 = (ri*f0)>>16; f1 = (ri*f1) & 0x0fff0000; f0 |= f1; f0 = ( rj*f0 + Rounder ) >> 24; dst[i] = (uint8_t)f0; } dst += dststride; } } void Predict_8x8_C(const NEW_GMC_DATA * const This, uint8_t *uDst, const uint8_t *uSrc, uint8_t *vDst, const uint8_t *vSrc, int dststride, int srcstride, int x, int y, int rounding) { const int W = This->sW >> 1; const int H = This->sH >> 1; const int rho = 3-This->accuracy; const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16; const int32_t dUx = This->dU[0]; const int32_t dVx = This->dV[0]; const int32_t dUy = This->dU[1]; const int32_t dVy = This->dV[1]; int32_t Uo = This->Uco + 8*(dUy*y + dUx*x); int32_t Vo = This->Vco + 8*(dVy*y + dVx*x); int i, j; uDst += 8; vDst += 8; for (j=8; j>0; --j) { int32_t U = Uo, V = Vo; Uo += dUy; Vo += dVy; for (i=-8; i<0; ++i) { int Offset; uint32_t f0, f1, ri, rj; int32_t u, v; u = ( U >> 16 ) << rho; v = ( V >> 16 ) << rho; U += dUx; V += dVx; if ((uint32_t)u<=(uint32_t)W) { ri = MTab[u&15]; Offset = u>>4; } else { ri = 16; if (u>W) Offset = W>>4; else Offset = -1; } if ((uint32_t)v<=(uint32_t)H) { rj = MTab[v&15]; Offset += (v>>4)*srcstride; } else { rj = 16; if (v>H) Offset += (H>>4)*srcstride; else Offset -= srcstride; } f0 = uSrc[ Offset +0 ]; f0 |= uSrc[ Offset +1 ] << 16; f1 = uSrc[ Offset+srcstride +0 ]; f1 |= uSrc[ Offset+srcstride +1 ] << 16; f0 = (ri*f0)>>16; f1 = (ri*f1) & 0x0fff0000; f0 |= f1; f0 = ( rj*f0 + Rounder ) >> 24; uDst[i] = (uint8_t)f0; f0 = vSrc[ Offset +0 ]; f0 |= vSrc[ Offset +1 ] << 16; f1 = vSrc[ Offset+srcstride +0 ]; f1 |= vSrc[ Offset+srcstride +1 ] << 16; f0 = (ri*f0)>>16; f1 = (ri*f1) & 0x0fff0000; f0 |= f1; f0 = ( rj*f0 + Rounder ) >> 24; vDst[i] = (uint8_t)f0; } uDst += dststride; vDst += dststride; } } void get_average_mv_C(NEW_GMC_DATA *Dsp, VECTOR * const mv, int x, int y, int qpel) { int i, j; int vx = 0, vy = 0; int32_t uo = Dsp->Uo + 16*(Dsp->dU[1]*y + Dsp->dU[0]*x); int32_t vo = Dsp->Vo + 16*(Dsp->dV[1]*y + Dsp->dV[0]*x); for (j=16; j>0; --j) { int32_t U, V; U = uo; uo += Dsp->dU[1]; V = vo; vo += Dsp->dV[1]; for (i=16; i>0; --i) { int32_t u,v; u = U >> 16; U += Dsp->dU[0]; vx += u; v = V >> 16; V += Dsp->dV[0]; vy += v; } } vx -= (256*x+120) << (5+Dsp->accuracy); // 120 = 15*16/2 vy -= (256*y+120) << (5+Dsp->accuracy); mv->x = RSHIFT( vx, 8+Dsp->accuracy - qpel ); mv->y = RSHIFT( vy, 8+Dsp->accuracy - qpel ); } ////////////////////////////////////////////////////////// // simplified version for 1 warp point void Predict_1pt_16x16_C(const NEW_GMC_DATA * const This, uint8_t *Dst, const uint8_t *Src, int dststride, int srcstride, int x, int y, int rounding) { const int W = This->sW; const int H = This->sH; const int rho = 3-This->accuracy; const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16; int32_t uo = This->Uo + (x<<8); // ((16*x)<<4) int32_t vo = This->Vo + (y<<8); const uint32_t ri = MTab[uo & 15]; const uint32_t rj = MTab[vo & 15]; int i, j; int32_t Offset; if ((uint32_t)vo<=(uint32_t)H) Offset = (vo>>4)*srcstride; else if (vo>H) Offset = ( H>>4)*srcstride; else Offset =-16*srcstride; if ((uint32_t)uo<=(uint32_t)W) Offset += (uo>>4); else if (uo>W) Offset += ( W>>4); else Offset -= 16; Dst += 16; for(j=16; j>0; --j, Offset+=srcstride-16) { for(i=-16; i<0; ++i, ++Offset) { uint32_t f0, f1; f0 = Src[ Offset +0 ]; f0 |= Src[ Offset +1 ] << 16; f1 = Src[ Offset+srcstride +0 ]; f1 |= Src[ Offset+srcstride +1 ] << 16; f0 = (ri*f0)>>16; f1 = (ri*f1) & 0x0fff0000; f0 |= f1; f0 = ( rj*f0 + Rounder ) >> 24; Dst[i] = (uint8_t)f0; } Dst += dststride; } } void Predict_1pt_8x8_C(const NEW_GMC_DATA * const This, uint8_t *uDst, const uint8_t *uSrc, uint8_t *vDst, const uint8_t *vSrc, int dststride, int srcstride, int x, int y, int rounding) { const int W = This->sW >> 1; const int H = This->sH >> 1; const int rho = 3-This->accuracy; const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16; int32_t uo = This->Uco + (x<<7); int32_t vo = This->Vco + (y<<7); const uint32_t rri = MTab[uo & 15]; const uint32_t rrj = MTab[vo & 15]; int i, j; int32_t Offset; if ((uint32_t)vo<=(uint32_t)H) Offset = (vo>>4)*srcstride; else if (vo>H) Offset = ( H>>4)*srcstride; else Offset =-8*srcstride; if ((uint32_t)uo<=(uint32_t)W) Offset += (uo>>4); else if (uo>W) Offset += ( W>>4); else Offset -= 8; uDst += 8; vDst += 8; for(j=8; j>0; --j, Offset+=srcstride-8) { for(i=-8; i<0; ++i, Offset++) { uint32_t f0, f1; f0 = uSrc[ Offset +0 ]; f0 |= uSrc[ Offset +1 ] << 16; f1 = uSrc[ Offset+srcstride +0 ]; f1 |= uSrc[ Offset+srcstride +1 ] << 16; f0 = (rri*f0)>>16; f1 = (rri*f1) & 0x0fff0000; f0 |= f1; f0 = ( rrj*f0 + Rounder ) >> 24; uDst[i] = (uint8_t)f0; f0 = vSrc[ Offset +0 ]; f0 |= vSrc[ Offset +1 ] << 16; f1 = vSrc[ Offset+srcstride +0 ]; f1 |= vSrc[ Offset+srcstride +1 ] << 16; f0 = (rri*f0)>>16; f1 = (rri*f1) & 0x0fff0000; f0 |= f1; f0 = ( rrj*f0 + Rounder ) >> 24; vDst[i] = (uint8_t)f0; } uDst += dststride; vDst += dststride; } } void get_average_mv_1pt_C(NEW_GMC_DATA *Dsp, VECTOR * const mv, int x, int y, int qpel) { mv->x = RSHIFT(Dsp->Uo<y = RSHIFT(Dsp->Vo<sW = width << 4; gmc->sH = height << 4; gmc->accuracy = accuracy; gmc->num_wp = nb_pts; // reduce the number of points, if possible if (nb_pts<3 || (pts->duv[2].x==-pts->duv[1].y && pts->duv[2].y==pts->duv[1].x)) { if (nb_pts<2 || (pts->duv[1].x==0 && pts->duv[1].y==0)) { if (nb_pts<1 || (pts->duv[0].x==0 && pts->duv[0].y==0)) { nb_pts = 0; } else nb_pts = 1; } else nb_pts = 2; } else nb_pts = 3; // now, nb_pts stores the actual number of points required for interpolation if (nb_pts<=1) { if (nb_pts==1) { // store as 4b fixed point gmc->Uo = pts->duv[0].x << accuracy; gmc->Vo = pts->duv[0].y << accuracy; gmc->Uco = ((pts->duv[0].x>>1) | (pts->duv[0].x&1)) << accuracy; // DIV2RND() gmc->Vco = ((pts->duv[0].y>>1) | (pts->duv[0].y&1)) << accuracy; // DIV2RND() } else { // zero points?! gmc->Uo = gmc->Vo = 0; gmc->Uco = gmc->Vco = 0; } gmc->predict_16x16 = Predict_1pt_16x16_C; gmc->predict_8x8 = Predict_1pt_8x8_C; gmc->get_average_mv = get_average_mv_1pt_C; } else { // 2 or 3 points const int rho = 3 - accuracy; // = {3,2,1,0} for Acc={0,1,2,3} int Alpha = log2bin(width-1); int Ws = 1 << Alpha; gmc->dU[0] = 16*Ws + RDIV( 8*Ws*pts->duv[1].x, width ); // dU/dx gmc->dV[0] = RDIV( 8*Ws*pts->duv[1].y, width ); // dV/dx /* disabled, because possibly buggy? */ /* if (nb_pts==2) { gmc->dU[1] = -gmc->dV[0]; // -Sin gmc->dV[1] = gmc->dU[0] ; // Cos } else */ { const int Beta = log2bin(height-1); const int Hs = 1<dU[1] = RDIV( 8*Hs*pts->duv[2].x, height ); // dU/dy gmc->dV[1] = 16*Hs + RDIV( 8*Hs*pts->duv[2].y, height ); // dV/dy if (Beta>Alpha) { gmc->dU[0] <<= (Beta-Alpha); gmc->dV[0] <<= (Beta-Alpha); Alpha = Beta; Ws = Hs; } else { gmc->dU[1] <<= Alpha - Beta; gmc->dV[1] <<= Alpha - Beta; } } // upscale to 16b fixed-point gmc->dU[0] <<= (16-Alpha - rho); gmc->dU[1] <<= (16-Alpha - rho); gmc->dV[0] <<= (16-Alpha - rho); gmc->dV[1] <<= (16-Alpha - rho); gmc->Uo = ( pts->duv[0].x <<(16+ accuracy)) + (1<<15); gmc->Vo = ( pts->duv[0].y <<(16+ accuracy)) + (1<<15); gmc->Uco = ((pts->duv[0].x-1)<<(17+ accuracy)) + (1<<17); gmc->Vco = ((pts->duv[0].y-1)<<(17+ accuracy)) + (1<<17); gmc->Uco = (gmc->Uco + gmc->dU[0] + gmc->dU[1])>>2; gmc->Vco = (gmc->Vco + gmc->dV[0] + gmc->dV[1])>>2; gmc->predict_16x16 = Predict_16x16_C; gmc->predict_8x8 = Predict_8x8_C; gmc->get_average_mv = get_average_mv_C; } } ////////////////////////////////////////////////////////// /* quick and dirty routine to generate the full warped image (pGMC != NULL) or just all average Motion Vectors (pGMC == NULL) */ void generate_GMCimage( const NEW_GMC_DATA *const gmc_data, // [input] precalculated data const IMAGE *const pRef, // [input] const int mb_width, const int mb_height, const int stride, const int stride2, const int fcode, // [input] some parameters... const int32_t quarterpel, // [input] for rounding avgMV const int reduced_resolution, // [input] ignored const int32_t rounding, // [input] for rounding image data MACROBLOCK *const pMBs, // [output] average motion vectors IMAGE *const pGMC) // [output] full warped image { unsigned int mj,mi; VECTOR avgMV; for (mj = 0; mj < (unsigned int)mb_height; mj++) for (mi = 0; mi < (unsigned int)mb_width; mi++) { const int mbnum = mj*mb_width+mi; if (pGMC) { gmc_data->predict_16x16(gmc_data, pGMC->y + mj*16*stride + mi*16, pRef->y, stride, stride, mi, mj, rounding); gmc_data->predict_8x8(gmc_data, pGMC->u + mj*8*stride2 + mi*8, pRef->u, pGMC->v + mj*8*stride2 + mi*8, pRef->v, stride2, stride2, mi, mj, rounding); } gmc_data->get_average_mv(gmc_data, &avgMV, mi, mj, quarterpel); pMBs[mbnum].amv.x = gmc_sanitize(avgMV.x, quarterpel, fcode); pMBs[mbnum].amv.y = gmc_sanitize(avgMV.y, quarterpel, fcode); pMBs[mbnum].mcsel = 0; /* until mode decision */ } }