/***************************************************************************** * * XVID MPEG-4 VIDEO CODEC * - Motion Estimation for P- and S- VOPs - * * Copyright(C) 2002 Christoph Lampert * 2002 Michael Militzer * 2002-2003 Radoslaw Czyz * * This program is free software ; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation ; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY ; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program ; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: estimation_pvop.c,v 1.1.2.12 2003-12-18 17:49:28 Isibaar Exp $ * ****************************************************************************/ #include #include #include #include /* memcpy */ #include "../encoder.h" #include "../prediction/mbprediction.h" #include "../global.h" #include "../utils/timer.h" #include "../image/interpolate8x8.h" #include "estimation.h" #include "motion.h" #include "sad.h" #include "motion_inlines.h" static const int xvid_me_lambda_vec8[32] = { 0 ,(int)(1.00235 * NEIGH_TEND_8X8 + 0.5), (int)(1.15582 + NEIGH_TEND_8X8 + 0.5), (int)(1.31976*NEIGH_TEND_8X8 + 0.5), (int)(1.49591*NEIGH_TEND_8X8 + 0.5), (int)(1.68601*NEIGH_TEND_8X8 + 0.5), (int)(1.89187*NEIGH_TEND_8X8 + 0.5), (int)(2.11542*NEIGH_TEND_8X8 + 0.5), (int)(2.35878*NEIGH_TEND_8X8 + 0.5), (int)(2.62429*NEIGH_TEND_8X8 + 0.5), (int)(2.91455*NEIGH_TEND_8X8 + 0.5), (int)(3.23253*NEIGH_TEND_8X8 + 0.5), (int)(3.58158*NEIGH_TEND_8X8 + 0.5), (int)(3.96555*NEIGH_TEND_8X8 + 0.5), (int)(4.38887*NEIGH_TEND_8X8 + 0.5), (int)(4.85673*NEIGH_TEND_8X8 + 0.5), (int)(5.37519*NEIGH_TEND_8X8 + 0.5), (int)(5.95144*NEIGH_TEND_8X8 + 0.5), (int)(6.59408*NEIGH_TEND_8X8 + 0.5), (int)(7.31349*NEIGH_TEND_8X8 + 0.5), (int)(8.12242*NEIGH_TEND_8X8 + 0.5), (int)(9.03669*NEIGH_TEND_8X8 + 0.5), (int)(10.0763*NEIGH_TEND_8X8 + 0.5), (int)(11.2669*NEIGH_TEND_8X8 + 0.5), (int)(12.6426*NEIGH_TEND_8X8 + 0.5), (int)(14.2493*NEIGH_TEND_8X8 + 0.5), (int)(16.1512*NEIGH_TEND_8X8 + 0.5), (int)(18.442*NEIGH_TEND_8X8 + 0.5), (int)(21.2656*NEIGH_TEND_8X8 + 0.5), (int)(24.8580*NEIGH_TEND_8X8 + 0.5), (int)(29.6436*NEIGH_TEND_8X8 + 0.5), (int)(36.4949*NEIGH_TEND_8X8 + 0.5) }; static void CheckCandidate16(const int x, const int y, SearchData * const data, const unsigned int Direction) { const uint8_t * Reference; int32_t sad; uint32_t t; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; Reference = GetReference(x, y, data); sad = sad16v(data->Cur, Reference, data->iEdgedWidth, data->temp); t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel, 0); sad += (data->lambda16 * t * sad)>>10; data->temp[0] += (data->lambda8 * t * (data->temp[0] + NEIGH_8X8_BIAS))>>10; if (data->chroma) { if (sad >= data->iMinSAD[0]) goto no16; sad += xvid_me_ChromaSAD((x >> 1) + roundtab_79[x & 0x3], (y >> 1) + roundtab_79[y & 0x3], data); } if (sad < data->iMinSAD[0]) { data->iMinSAD[0] = sad; data->currentMV[0].x = x; data->currentMV[0].y = y; data->dir = Direction; } no16: if (data->temp[0] < data->iMinSAD[1]) { data->iMinSAD[1] = data->temp[0]; data->currentMV[1].x = x; data->currentMV[1].y = y; } if (data->temp[1] < data->iMinSAD[2]) { data->iMinSAD[2] = data->temp[1]; data->currentMV[2].x = x; data->currentMV[2].y = y; } if (data->temp[2] < data->iMinSAD[3]) { data->iMinSAD[3] = data->temp[2]; data->currentMV[3].x = x; data->currentMV[3].y = y; } if (data->temp[3] < data->iMinSAD[4]) { data->iMinSAD[4] = data->temp[3]; data->currentMV[4].x = x; data->currentMV[4].y = y; } } static void CheckCandidate16_qpel(const int x, const int y, SearchData * const data, const unsigned int Direction) { const uint8_t *Reference; int32_t sad; uint32_t t; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; Reference = xvid_me_interpolate16x16qpel(x, y, 0, data); sad = sad16v(data->Cur, Reference, data->iEdgedWidth, data->temp); t = d_mv_bits(x, y, data->predMV, data->iFcode, 0, 0); sad += (data->lambda16 * t * sad)>>10; data->temp[0] += (data->lambda8 * t * (data->temp[0] + NEIGH_8X8_BIAS))>>10; if (data->chroma && (sad < data->iMinSAD[0] || sad < data->iMinSAD2) ) sad += xvid_me_ChromaSAD(((x/2) >> 1) + roundtab_79[(x/2) & 0x3], ((y/2) >> 1) + roundtab_79[(y/2) & 0x3], data); if (data->temp[0] < data->iMinSAD[1]) { data->iMinSAD[1] = data->temp[0]; data->currentQMV[1].x = x; data->currentQMV[1].y = y; } if (data->temp[1] < data->iMinSAD[2]) { data->iMinSAD[2] = data->temp[1]; data->currentQMV[2].x = x; data->currentQMV[2].y = y; } if (data->temp[2] < data->iMinSAD[3]) { data->iMinSAD[3] = data->temp[2]; data->currentQMV[3].x = x; data->currentQMV[3].y = y; } if (data->temp[3] < data->iMinSAD[4]) { data->iMinSAD[4] = data->temp[3]; data->currentQMV[4].x = x; data->currentQMV[4].y = y; } if (sad < data->iMinSAD[0]) { data->iMinSAD2 = *(data->iMinSAD); data->currentQMV2.x = data->currentQMV->x; data->currentQMV2.y = data->currentQMV->y; data->iMinSAD[0] = sad; data->currentQMV[0].x = x; data->currentQMV[0].y = y; } else if (sad < data->iMinSAD2) { data->iMinSAD2 = sad; data->currentQMV2.x = x; data->currentQMV2.y = y; } } static void CheckCandidate8(const int x, const int y, SearchData * const data, const unsigned int Direction) { int32_t sad; uint32_t t; const uint8_t * Reference; VECTOR * current; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; if (!data->qpel_precision) { Reference = GetReference(x, y, data); current = data->currentMV; } else { /* x and y are in 1/4 precision */ Reference = xvid_me_interpolate8x8qpel(x, y, 0, 0, data); current = data->currentQMV; } sad = sad8(data->Cur, Reference, data->iEdgedWidth); t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0); sad += (data->lambda8 * t * (sad+NEIGH_8X8_BIAS))>>10; if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; current->x = x; current->y = y; data->dir = Direction; } } static void CheckCandidate8_qpel(const int x, const int y, SearchData * const data, const unsigned int Direction) { int32_t sad; uint32_t t; const uint8_t * Reference; VECTOR * current; if ( (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; /* x and y are in 1/4 precision */ Reference = xvid_me_interpolate8x8qpel(x, y, 0, 0, data); current = data->currentQMV; sad = sad8(data->Cur, Reference, data->iEdgedWidth); t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0); sad += (data->lambda8 * t * (sad+NEIGH_8X8_BIAS))>>10; if (sad < *(data->iMinSAD)) { data->iMinSAD2 = *(data->iMinSAD); data->currentQMV2.x = data->currentQMV->x; data->currentQMV2.y = data->currentQMV->y; *(data->iMinSAD) = sad; data->currentQMV->x = x; data->currentQMV->y = y; data->dir = Direction; } else if (sad < data->iMinSAD2) { data->iMinSAD2 = sad; data->currentQMV2.x = x; data->currentQMV2.y = y; } } static void CheckCandidate32(const int x, const int y, SearchData * const data, const unsigned int Direction) { uint32_t t; const uint8_t * Reference; int sad; if ( (!(x&1) && x !=0) || (!(y&1) && y !=0) || /* non-zero even value */ (x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; Reference = GetReference(x, y, data); t = d_mv_bits(x, y, data->predMV, data->iFcode, 0, 1); sad = sad32v_c(data->Cur, Reference, data->iEdgedWidth, data->temp); sad += (data->lambda16 * t * sad) >> 10; data->temp[0] += (data->lambda8 * t * (data->temp[0] + NEIGH_8X8_BIAS))>>10; if (sad < data->iMinSAD[0]) { data->iMinSAD[0] = sad; data->currentMV[0].x = x; data->currentMV[0].y = y; data->dir = Direction; } if (data->temp[0] < data->iMinSAD[1]) { data->iMinSAD[1] = data->temp[0]; data->currentMV[1].x = x; data->currentMV[1].y = y; } if (data->temp[1] < data->iMinSAD[2]) { data->iMinSAD[2] = data->temp[1]; data->currentMV[2].x = x; data->currentMV[2].y = y; } if (data->temp[2] < data->iMinSAD[3]) { data->iMinSAD[3] = data->temp[2]; data->currentMV[3].x = x; data->currentMV[3].y = y; } if (data->temp[3] < data->iMinSAD[4]) { data->iMinSAD[4] = data->temp[3]; data->currentMV[4].x = x; data->currentMV[4].y = y; } } int xvid_me_SkipDecisionP(const IMAGE * current, const IMAGE * reference, const int x, const int y, const uint32_t stride, const uint32_t iQuant, int rrv) { int offset = (x + y*stride)*8; if(!rrv) { uint32_t sadC = sad8(current->u + offset, reference->u + offset, stride); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0; sadC += sad8(current->v + offset, reference->v + offset, stride); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0; return 1; } else { uint32_t sadC = sad16(current->u + 2*offset, reference->u + 2*offset, stride, 256*4096); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0; sadC += sad16(current->v + 2*offset, reference->v + 2*offset, stride, 256*4096); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0; return 1; } } /* * pmv are filled with: * [0]: Median (or whatever is correct in a special case) * [1]: left neighbour * [2]: top neighbour * [3]: topright neighbour * psad are filled with: * [0]: minimum of [1] to [3] * [1]: left neighbour's SAD (NB:[1] to [3] are actually not needed) * [2]: top neighbour's SAD * [3]: topright neighbour's SAD */ static __inline void get_pmvdata2(const MACROBLOCK * const mbs, const int mb_width, const int bound, const int x, const int y, VECTOR * const pmv, int32_t * const psad) { int lx, ly, lz; /* left */ int tx, ty, tz; /* top */ int rx, ry, rz; /* top-right */ int lpos, tpos, rpos; int num_cand = 0, last_cand = 1; lx = x - 1; ly = y; lz = 1; tx = x; ty = y - 1; tz = 2; rx = x + 1; ry = y - 1; rz = 2; lpos = lx + ly * mb_width; rpos = rx + ry * mb_width; tpos = tx + ty * mb_width; if (lpos >= bound && lx >= 0) { num_cand++; last_cand = 1; pmv[1] = mbs[lpos].mvs[lz]; psad[1] = mbs[lpos].sad8[lz]; } else { pmv[1] = zeroMV; psad[1] = MV_MAX_ERROR; } if (tpos >= bound) { num_cand++; last_cand = 2; pmv[2]= mbs[tpos].mvs[tz]; psad[2] = mbs[tpos].sad8[tz]; } else { pmv[2] = zeroMV; psad[2] = MV_MAX_ERROR; } if (rpos >= bound && rx < mb_width) { num_cand++; last_cand = 3; pmv[3] = mbs[rpos].mvs[rz]; psad[3] = mbs[rpos].sad8[rz]; } else { pmv[3] = zeroMV; psad[3] = MV_MAX_ERROR; } /* original pmvdata() compatibility hack */ if (x == 0 && y == 0) { pmv[0] = pmv[1] = pmv[2] = pmv[3] = zeroMV; psad[0] = 0; psad[1] = psad[2] = psad[3] = MV_MAX_ERROR; return; } /* if only one valid candidate preictor, the invalid candiates are set to the canidate */ if (num_cand == 1) { pmv[0] = pmv[last_cand]; psad[0] = psad[last_cand]; return; } if ((MVequal(pmv[1], pmv[2])) && (MVequal(pmv[1], pmv[3]))) { pmv[0] = pmv[1]; psad[0] = MIN(MIN(psad[1], psad[2]), psad[3]); return; } /* set median, minimum */ pmv[0].x = MIN(MAX(pmv[1].x, pmv[2].x), MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); pmv[0].y = MIN(MAX(pmv[1].y, pmv[2].y), MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); psad[0] = MIN(MIN(psad[1], psad[2]), psad[3]); } static void ModeDecision_SAD(SearchData * const Data, MACROBLOCK * const pMB, const MACROBLOCK * const pMBs, const int x, const int y, const MBParam * const pParam, const uint32_t MotionFlags, const uint32_t VopFlags, const uint32_t VolFlags, const IMAGE * const pCurrent, const IMAGE * const pRef, const IMAGE * const vGMC, const int coding_type) { int mode = MODE_INTER; int mcsel = 0; int inter4v = (VopFlags & XVID_VOP_INTER4V) && (pMB->dquant == 0); const uint32_t iQuant = pMB->quant; const int skip_possible = (coding_type == P_VOP) && (pMB->dquant == 0); int sad; int InterBias = MV16_INTER_BIAS; pMB->mcsel = 0; if (inter4v == 0 || Data->iMinSAD[0] < Data->iMinSAD[1] + Data->iMinSAD[2] + Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant) { mode = MODE_INTER; sad = Data->iMinSAD[0]; } else { mode = MODE_INTER4V; sad = Data->iMinSAD[1] + Data->iMinSAD[2] + Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant; Data->iMinSAD[0] = sad; } /* final skip decision, a.k.a. "the vector you found, really that good?" */ if (skip_possible && (pMB->sad16 < (int)iQuant * MAX_SAD00_FOR_SKIP)) if ( (100*sad)/(pMB->sad16+1) > FINAL_SKIP_THRESH) if (Data->chroma || xvid_me_SkipDecisionP(pCurrent, pRef, x, y, Data->iEdgedWidth/2, iQuant, Data->rrv)) { mode = MODE_NOT_CODED; sad = 0; } /* mcsel */ if (coding_type == S_VOP) { int32_t iSAD = sad16(Data->Cur, vGMC->y + 16*y*Data->iEdgedWidth + 16*x, Data->iEdgedWidth, 65536); if (Data->chroma) { iSAD += sad8(Data->CurU, vGMC->u + 8*y*(Data->iEdgedWidth/2) + 8*x, Data->iEdgedWidth/2); iSAD += sad8(Data->CurV, vGMC->v + 8*y*(Data->iEdgedWidth/2) + 8*x, Data->iEdgedWidth/2); } if (iSAD <= sad) { /* mode decision GMC */ mode = MODE_INTER; mcsel = 1; sad = iSAD; } } /* intra decision */ if (iQuant > 10) InterBias += 60 * (iQuant - 10); /* to make high quants work */ if (y != 0) if ((pMB - pParam->mb_width)->mode == MODE_INTRA ) InterBias -= 80; if (x != 0) if ((pMB - 1)->mode == MODE_INTRA ) InterBias -= 80; if (Data->chroma) InterBias += 50; /* dev8(chroma) ??? <-- yes, we need dev8 (no big difference though) */ if (Data->rrv) InterBias *= 4; if (InterBias < sad) { int32_t deviation; if (!Data->rrv) deviation = dev16(Data->Cur, Data->iEdgedWidth); else deviation = dev16(Data->Cur, Data->iEdgedWidth) + /* dev32() */ dev16(Data->Cur+16, Data->iEdgedWidth) + dev16(Data->Cur + 16*Data->iEdgedWidth, Data->iEdgedWidth) + dev16(Data->Cur+16+16*Data->iEdgedWidth, Data->iEdgedWidth); if (deviation < (sad - InterBias)) mode = MODE_INTRA; } pMB->cbp = 63; pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = sad; if (Data->rrv) { Data->currentMV[0].x = RRV_MV_SCALEDOWN(Data->currentMV[0].x); Data->currentMV[0].y = RRV_MV_SCALEDOWN(Data->currentMV[0].y); } if (mode == MODE_INTER && mcsel == 0) { pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = Data->currentMV[0]; if(Data->qpel) { pMB->qmvs[0] = pMB->qmvs[1] = pMB->qmvs[2] = pMB->qmvs[3] = Data->currentQMV[0]; pMB->pmvs[0].x = Data->currentQMV[0].x - Data->predMV.x; pMB->pmvs[0].y = Data->currentQMV[0].y - Data->predMV.y; } else { pMB->pmvs[0].x = Data->currentMV[0].x - Data->predMV.x; pMB->pmvs[0].y = Data->currentMV[0].y - Data->predMV.y; } } else if (mode == MODE_INTER ) { /* but mcsel == 1 */ pMB->mcsel = 1; if (Data->qpel) { pMB->qmvs[0] = pMB->qmvs[1] = pMB->qmvs[2] = pMB->qmvs[3] = pMB->amv; pMB->mvs[0].x = pMB->mvs[1].x = pMB->mvs[2].x = pMB->mvs[3].x = pMB->amv.x/2; pMB->mvs[0].y = pMB->mvs[1].y = pMB->mvs[2].y = pMB->mvs[3].y = pMB->amv.y/2; } else pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = pMB->amv; } else if (mode == MODE_INTER4V) ; /* anything here? */ else /* INTRA, NOT_CODED */ ZeroMacroblockP(pMB, 0); pMB->mode = mode; } static __inline void PreparePredictionsP(VECTOR * const pmv, int x, int y, int iWcount, int iHcount, const MACROBLOCK * const prevMB, int rrv) { /* this function depends on get_pmvdata which means that it sucks. It should get the predictions by itself */ if (rrv) { iWcount /= 2; iHcount /= 2; } if ( (y != 0) && (x < (iWcount-1)) ) { /* [5] top-right neighbour */ pmv[5].x = EVEN(pmv[3].x); pmv[5].y = EVEN(pmv[3].y); } else pmv[5].x = pmv[5].y = 0; if (x != 0) { pmv[3].x = EVEN(pmv[1].x); pmv[3].y = EVEN(pmv[1].y); }/* pmv[3] is left neighbour */ else pmv[3].x = pmv[3].y = 0; if (y != 0) { pmv[4].x = EVEN(pmv[2].x); pmv[4].y = EVEN(pmv[2].y); }/* [4] top neighbour */ else pmv[4].x = pmv[4].y = 0; /* [1] median prediction */ pmv[1].x = EVEN(pmv[0].x); pmv[1].y = EVEN(pmv[0].y); pmv[0].x = pmv[0].y = 0; /* [0] is zero; not used in the loop (checked before) but needed here for make_mask */ pmv[2].x = EVEN(prevMB->mvs[0].x); /* [2] is last frame */ pmv[2].y = EVEN(prevMB->mvs[0].y); if ((x < iWcount-1) && (y < iHcount-1)) { pmv[6].x = EVEN((prevMB+1+iWcount)->mvs[0].x); /* [6] right-down neighbour in last frame */ pmv[6].y = EVEN((prevMB+1+iWcount)->mvs[0].y); } else pmv[6].x = pmv[6].y = 0; if (rrv) { int i; for (i = 0; i < 7; i++) { pmv[i].x = RRV_MV_SCALEUP(pmv[i].x); pmv[i].y = RRV_MV_SCALEUP(pmv[i].y); } } } static void Search8(SearchData * const OldData, const int x, const int y, const uint32_t MotionFlags, const MBParam * const pParam, MACROBLOCK * const pMB, const MACROBLOCK * const pMBs, const int block, SearchData * const Data) { int i = 0; CheckFunc * CheckCandidate; *Data->iMinSAD = *(OldData->iMinSAD + 1 + block); *Data->currentMV = *(OldData->currentMV + 1 + block); *Data->currentQMV = *(OldData->currentQMV + 1 + block); if(Data->qpel) { Data->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x/2, y/2, block); if (block != 0) i = d_mv_bits( Data->currentQMV->x, Data->currentQMV->y, Data->predMV, Data->iFcode, 0, 0); } else { Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x/2, y/2, block); if (block != 0) i = d_mv_bits( Data->currentMV->x, Data->currentMV->y, Data->predMV, Data->iFcode, 0, Data->rrv); } *(Data->iMinSAD) += (Data->lambda8 * i * (*Data->iMinSAD + NEIGH_8X8_BIAS))>>10; if (MotionFlags & (XVID_ME_EXTSEARCH8|XVID_ME_HALFPELREFINE8|XVID_ME_QUARTERPELREFINE8)) { if (Data->rrv) i = 16; else i = 8; Data->RefP[0] = OldData->RefP[0] + i * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->RefP[1] = OldData->RefP[1] + i * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->RefP[2] = OldData->RefP[2] + i * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->RefP[3] = OldData->RefP[3] + i * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->Cur = OldData->Cur + i * ((block&1) + Data->iEdgedWidth*(block>>1)); Data->qpel_precision = 0; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 3, pParam->width, pParam->height, Data->iFcode - Data->qpel, 1, Data->rrv); if (!Data->rrv) CheckCandidate = CheckCandidate8; else CheckCandidate = CheckCandidate16no4v; if (MotionFlags & XVID_ME_EXTSEARCH8 && (!(MotionFlags & XVID_ME_EXTSEARCH_RD))) { int32_t temp_sad = *(Data->iMinSAD); /* store current MinSAD */ MainSearchFunc *MainSearchPtr; if (MotionFlags & XVID_ME_USESQUARES8) MainSearchPtr = xvid_me_SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND8) MainSearchPtr = xvid_me_AdvDiamondSearch; else MainSearchPtr = xvid_me_DiamondSearch; MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, 255, CheckCandidate); if(*(Data->iMinSAD) < temp_sad) { Data->currentQMV->x = 2 * Data->currentMV->x; /* update our qpel vector */ Data->currentQMV->y = 2 * Data->currentMV->y; } } if (MotionFlags & XVID_ME_HALFPELREFINE8) { int32_t temp_sad = *(Data->iMinSAD); /* store current MinSAD */ xvid_me_SubpelRefine(Data, CheckCandidate); /* perform halfpel refine of current best vector */ if(*(Data->iMinSAD) < temp_sad) { /* we have found a better match */ Data->currentQMV->x = 2 * Data->currentMV->x; /* update our qpel vector */ Data->currentQMV->y = 2 * Data->currentMV->y; } } if ((Data->qpel && MotionFlags & XVID_ME_QUARTERPELREFINE8)) { Data->qpel_precision = 1; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 3, pParam->width, pParam->height, Data->iFcode, 2, 0); if((MotionFlags & XVID_ME_FASTREFINE16) && (!Data->rrv)) SubpelRefine_Fast(Data, CheckCandidate8_qpel); else xvid_me_SubpelRefine(Data, CheckCandidate); } } if (Data->rrv) { Data->currentMV->x = RRV_MV_SCALEDOWN(Data->currentMV->x); Data->currentMV->y = RRV_MV_SCALEDOWN(Data->currentMV->y); } if(Data->qpel) { pMB->pmvs[block].x = Data->currentQMV->x - Data->predMV.x; pMB->pmvs[block].y = Data->currentQMV->y - Data->predMV.y; pMB->qmvs[block] = *Data->currentQMV; } else { pMB->pmvs[block].x = Data->currentMV->x - Data->predMV.x; pMB->pmvs[block].y = Data->currentMV->y - Data->predMV.y; } *(OldData->iMinSAD + 1 + block) = *Data->iMinSAD; *(OldData->currentMV + 1 + block) = *Data->currentMV; *(OldData->currentQMV + 1 + block) = *Data->currentQMV; pMB->mvs[block] = *Data->currentMV; pMB->sad8[block] = 4 * *Data->iMinSAD; } static void SearchP(const IMAGE * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const uint32_t VopFlags, SearchData * const Data, const MBParam * const pParam, const MACROBLOCK * const pMBs, const MACROBLOCK * const prevMBs, MACROBLOCK * const pMB) { int i, threshA; VECTOR pmv[7]; int inter4v = (VopFlags & XVID_VOP_INTER4V) && (pMB->dquant == 0); CheckFunc * CheckCandidate; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 4, pParam->width, pParam->height, Data->iFcode - Data->qpel, 1, Data->rrv); get_pmvdata2(pMBs, pParam->mb_width, 0, x, y, pmv, Data->temp); Data->chromaX = Data->chromaY = 0; /* chroma-sad cache */ i = Data->rrv ? 2 : 1; Data->Cur = pCur->y + (x + y * Data->iEdgedWidth) * 16*i; Data->CurV = pCur->v + (x + y * (Data->iEdgedWidth/2)) * 8*i; Data->CurU = pCur->u + (x + y * (Data->iEdgedWidth/2)) * 8*i; Data->RefP[0] = pRef->y + (x + Data->iEdgedWidth*y) * 16*i; Data->RefP[2] = pRefH + (x + Data->iEdgedWidth*y) * 16*i; Data->RefP[1] = pRefV + (x + Data->iEdgedWidth*y) * 16*i; Data->RefP[3] = pRefHV + (x + Data->iEdgedWidth*y) * 16*i; Data->RefP[4] = pRef->u + (x + y * (Data->iEdgedWidth/2)) * 8*i; Data->RefP[5] = pRef->v + (x + y * (Data->iEdgedWidth/2)) * 8*i; Data->lambda16 = xvid_me_lambda_vec16[pMB->quant]; Data->lambda8 = xvid_me_lambda_vec8[pMB->quant]; Data->qpel_precision = 0; Data->dir = 0; memset(Data->currentMV, 0, 5*sizeof(VECTOR)); if (Data->qpel) Data->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, 0); else Data->predMV = pmv[0]; i = d_mv_bits(0, 0, Data->predMV, Data->iFcode, 0, 0); Data->iMinSAD[0] = pMB->sad16 + ((Data->lambda16 * i * pMB->sad16)>>10); Data->iMinSAD[1] = pMB->sad8[0] + ((Data->lambda8 * i * (pMB->sad8[0]+NEIGH_8X8_BIAS)) >> 10); Data->iMinSAD[2] = pMB->sad8[1]; Data->iMinSAD[3] = pMB->sad8[2]; Data->iMinSAD[4] = pMB->sad8[3]; if ((!(VopFlags & XVID_VOP_MODEDECISION_RD)) && (x | y)) { threshA = Data->temp[0]; /* that's where we keep this SAD atm */ if (threshA < 512) threshA = 512; else if (threshA > 1024) threshA = 1024; } else threshA = 512; PreparePredictionsP(pmv, x, y, pParam->mb_width, pParam->mb_height, prevMBs + x + y * pParam->mb_width, Data->rrv); if (!Data->rrv) { if (inter4v) CheckCandidate = CheckCandidate16; else CheckCandidate = CheckCandidate16no4v; /* for extra speed */ } else CheckCandidate = CheckCandidate32; /* main loop. checking all predictions (but first, which is 0,0 and has been checked in MotionEstimation())*/ for (i = 1; i < 7; i++) if (!vector_repeats(pmv, i)) { CheckCandidate(pmv[i].x, pmv[i].y, Data, i); if (Data->iMinSAD[0] <= threshA) { i++; break; } } if ((Data->iMinSAD[0] <= threshA) || (MVequal(Data->currentMV[0], (prevMBs+x+y*pParam->mb_width)->mvs[0]) && (Data->iMinSAD[0] < (prevMBs+x+y*pParam->mb_width)->sad16))) inter4v = 0; else { MainSearchFunc * MainSearchPtr; int mask = make_mask(pmv, i, Data->dir); /* all vectors pmv[0..i-1] have been checked */ if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = xvid_me_SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = xvid_me_AdvDiamondSearch; else MainSearchPtr = xvid_me_DiamondSearch; MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, mask, CheckCandidate); /* extended search, diamond starting in 0,0 and in prediction. note that this search is/might be done in halfpel positions, which makes it more different than the diamond above */ if (MotionFlags & XVID_ME_EXTSEARCH16) { int32_t bSAD; VECTOR startMV = Data->predMV, backupMV = Data->currentMV[0]; if (Data->qpel) { startMV.x /= 2; startMV.y /= 2; } else if (Data->rrv) { startMV.x = RRV_MV_SCALEUP(startMV.x); startMV.y = RRV_MV_SCALEUP(startMV.y); } if (!(MVequal(startMV, backupMV))) { bSAD = Data->iMinSAD[0]; Data->iMinSAD[0] = MV_MAX_ERROR; CheckCandidate(startMV.x, startMV.y, Data, 255); xvid_me_DiamondSearch(startMV.x, startMV.y, Data, 255, CheckCandidate); if (bSAD < Data->iMinSAD[0]) { Data->currentMV[0] = backupMV; Data->iMinSAD[0] = bSAD; } } backupMV = Data->currentMV[0]; startMV.x = startMV.y = 1; if (!(MVequal(startMV, backupMV))) { bSAD = Data->iMinSAD[0]; Data->iMinSAD[0] = MV_MAX_ERROR; CheckCandidate(startMV.x, startMV.y, Data, 255); xvid_me_DiamondSearch(startMV.x, startMV.y, Data, 255, CheckCandidate); if (bSAD < Data->iMinSAD[0]) { Data->currentMV[0] = backupMV; Data->iMinSAD[0] = bSAD; } } } } if (MotionFlags & XVID_ME_HALFPELREFINE16) xvid_me_SubpelRefine(Data, CheckCandidate); for(i = 0; i < 5; i++) { Data->currentQMV[i].x = 2 * Data->currentMV[i].x; /* initialize qpel vectors */ Data->currentQMV[i].y = 2 * Data->currentMV[i].y; } if (Data->qpel) { get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 4, pParam->width, pParam->height, Data->iFcode, 2, 0); Data->qpel_precision = 1; if (MotionFlags & XVID_ME_QUARTERPELREFINE16) { if(MotionFlags & XVID_ME_FASTREFINE16) SubpelRefine_Fast(Data, CheckCandidate16_qpel); else xvid_me_SubpelRefine(Data, CheckCandidate16_qpel); } } if (Data->iMinSAD[0] < (int32_t)pMB->quant * 30*((MotionFlags & XVID_ME_FASTREFINE16) ? 8 : 1)) inter4v = 0; if (inter4v) { SearchData Data8; memcpy(&Data8, Data, sizeof(SearchData)); /* quick copy of common data */ Search8(Data, 2*x, 2*y, MotionFlags, pParam, pMB, pMBs, 0, &Data8); Search8(Data, 2*x + 1, 2*y, MotionFlags, pParam, pMB, pMBs, 1, &Data8); Search8(Data, 2*x, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 2, &Data8); Search8(Data, 2*x + 1, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 3, &Data8); if ((Data->chroma) && (!(VopFlags & XVID_VOP_MODEDECISION_RD))) { /* chroma is only used for comparsion to INTER. if the comparsion will be done in BITS domain, it will not be used */ int sumx = 0, sumy = 0; if (Data->qpel) for (i = 1; i < 5; i++) { sumx += Data->currentQMV[i].x/2; sumy += Data->currentQMV[i].y/2; } else for (i = 1; i < 5; i++) { sumx += Data->currentMV[i].x; sumy += Data->currentMV[i].y; } Data->iMinSAD[1] += xvid_me_ChromaSAD((sumx >> 3) + roundtab_76[sumx & 0xf], (sumy >> 3) + roundtab_76[sumy & 0xf], Data); } } else Data->iMinSAD[1] = 4096*256; } static __inline uint32_t MakeGoodMotionFlags(const uint32_t MotionFlags, const uint32_t VopFlags, const uint32_t VolFlags) { uint32_t Flags = MotionFlags; if (!(VopFlags & XVID_VOP_MODEDECISION_RD)) Flags &= ~(XVID_ME_QUARTERPELREFINE16_RD+XVID_ME_QUARTERPELREFINE8_RD+XVID_ME_HALFPELREFINE16_RD+XVID_ME_HALFPELREFINE8_RD+XVID_ME_EXTSEARCH_RD); if (Flags & XVID_ME_EXTSEARCH_RD) Flags |= XVID_ME_HALFPELREFINE16_RD; if (Flags & XVID_ME_EXTSEARCH_RD && MotionFlags & XVID_ME_EXTSEARCH8) Flags |= XVID_ME_HALFPELREFINE8_RD; if (Flags & XVID_ME_HALFPELREFINE16_RD) Flags |= XVID_ME_QUARTERPELREFINE16_RD; if (Flags & XVID_ME_HALFPELREFINE8_RD) { Flags |= XVID_ME_QUARTERPELREFINE8_RD; Flags &= ~XVID_ME_HALFPELREFINE8; } if (Flags & XVID_ME_QUARTERPELREFINE8_RD) Flags &= ~XVID_ME_QUARTERPELREFINE8; if (!(VolFlags & XVID_VOL_QUARTERPEL)) Flags &= ~(XVID_ME_QUARTERPELREFINE16+XVID_ME_QUARTERPELREFINE8+XVID_ME_QUARTERPELREFINE16_RD+XVID_ME_QUARTERPELREFINE8_RD); if (!(VopFlags & XVID_VOP_HALFPEL)) Flags &= ~(XVID_ME_EXTSEARCH16+XVID_ME_HALFPELREFINE16+XVID_ME_HALFPELREFINE8+XVID_ME_HALFPELREFINE16_RD+XVID_ME_HALFPELREFINE8_RD); if ((VopFlags & XVID_VOP_GREYSCALE) || (VopFlags & XVID_VOP_REDUCED)) Flags &= ~(XVID_ME_CHROMA_PVOP + XVID_ME_CHROMA_BVOP); return Flags; } bool MotionEstimation(MBParam * const pParam, FRAMEINFO * const current, FRAMEINFO * const reference, const IMAGE * const pRefH, const IMAGE * const pRefV, const IMAGE * const pRefHV, const IMAGE * const pGMC, const uint32_t iLimit) { MACROBLOCK *const pMBs = current->mbs; const IMAGE *const pCurrent = ¤t->image; const IMAGE *const pRef = &reference->image; uint32_t mb_width = pParam->mb_width; uint32_t mb_height = pParam->mb_height; const uint32_t iEdgedWidth = pParam->edged_width; const uint32_t MotionFlags = MakeGoodMotionFlags(current->motion_flags, current->vop_flags, current->vol_flags); int stat_thresh = 0; uint32_t x, y; uint32_t iIntra = 0; int32_t sad00; int skip_thresh = INITIAL_SKIP_THRESH * \ (current->vop_flags & XVID_VOP_REDUCED ? 4:1) * \ (current->vop_flags & XVID_VOP_MODEDECISION_RD ? 2:1); /* some pre-initialized thingies for SearchP */ DECLARE_ALIGNED_MATRIX(dct_space, 3, 64, int16_t, CACHE_LINE); SearchData Data; memset(&Data, 0, sizeof(SearchData)); Data.iEdgedWidth = iEdgedWidth; Data.iFcode = current->fcode; Data.rounding = pParam->m_rounding_type; Data.qpel = (current->vol_flags & XVID_VOL_QUARTERPEL ? 1:0); Data.chroma = MotionFlags & XVID_ME_CHROMA_PVOP; Data.rrv = (current->vop_flags & XVID_VOP_REDUCED) ? 1:0; Data.dctSpace = dct_space; Data.quant_type = !(pParam->vol_flags & XVID_VOL_MPEGQUANT); Data.mpeg_quant_matrices = pParam->mpeg_quant_matrices; Data.iMinSAD2 = 0; if ((current->vop_flags & XVID_VOP_REDUCED)) { mb_width = (pParam->width + 31) / 32; mb_height = (pParam->height + 31) / 32; Data.qpel = 0; } Data.RefQ = pRefV->u; /* a good place, also used in MC (for similar purpose) */ if (sadInit) (*sadInit) (); for (y = 0; y < mb_height; y++) { for (x = 0; x < mb_width; x++) { MACROBLOCK *pMB = &pMBs[x + y * pParam->mb_width]; MACROBLOCK *prevMB = &reference->mbs[x + y * pParam->mb_width]; if (!Data.rrv) pMB->sad16 = sad16v(pCurrent->y + (x + y * iEdgedWidth) * 16, pRef->y + (x + y * iEdgedWidth) * 16, pParam->edged_width, pMB->sad8 ); else pMB->sad16 = sad32v_c(pCurrent->y + (x + y * iEdgedWidth) * 32, pRef->y + (x + y * iEdgedWidth) * 32, pParam->edged_width, pMB->sad8 ); if (Data.chroma) { Data.chromaSAD = sad8(pCurrent->u + x*8 + y*(iEdgedWidth/2)*8, pRef->u + x*8 + y*(iEdgedWidth/2)*8, iEdgedWidth/2) + sad8(pCurrent->v + (x + y*(iEdgedWidth/2))*8, pRef->v + (x + y*(iEdgedWidth/2))*8, iEdgedWidth/2); pMB->sad16 += Data.chromaSAD; } sad00 = pMB->sad16; /* initial skip decision */ /* no early skip for GMC (global vector = skip vector is unknown!) */ if (current->coding_type != S_VOP) { /* no fast SKIP for S(GMC)-VOPs */ if (pMB->dquant == 0 && sad00 < pMB->quant * skip_thresh) if (Data.chroma || xvid_me_SkipDecisionP(pCurrent, pRef, x, y, iEdgedWidth/2, pMB->quant, Data.rrv)) { ZeroMacroblockP(pMB, sad00); pMB->mode = MODE_NOT_CODED; continue; } } if(MotionFlags & XVID_ME_DETECT_STATIC_MOTION) { if(x > 0 && y > 0 && x < pParam->mb_width) { if(MVequal((&pMBs[(x-1) + y * pParam->mb_width])->mvs[0], zeroMV) && MVequal((&pMBs[x + (y-1) * pParam->mb_width])->mvs[0], zeroMV) && MVequal((&pMBs[(x+1) + (y-1) * pParam->mb_width])->mvs[0], zeroMV) && MVequal(prevMB->mvs[0], zeroMV)) { stat_thresh = MAX((&pMBs[(x-1) + y * pParam->mb_width])->sad16, MAX((&pMBs[x + (y-1) * pParam->mb_width])->sad16, MAX((&pMBs[(x+1) + (y-1) * pParam->mb_width])->sad16, prevMB->sad16))); } else { stat_thresh = MIN((&pMBs[(x-1) + y * pParam->mb_width])->sad16, MIN((&pMBs[x + (y-1) * pParam->mb_width])->sad16, MIN((&pMBs[(x+1) + (y-1) * pParam->mb_width])->sad16, prevMB->sad16))); } } } /* favorize (0,0) vector for cartoons */ if ((current->vop_flags & XVID_VOP_CARTOON) && ((sad00 < pMB->quant * 4 * skip_thresh) || (sad00 < stat_thresh))) { ZeroMacroblockP(pMB, sad00); continue; } SearchP(pRef, pRefH->y, pRefV->y, pRefHV->y, pCurrent, x, y, MotionFlags, current->vop_flags, &Data, pParam, pMBs, reference->mbs, pMB); if (current->vop_flags & XVID_VOP_MODEDECISION_RD) xvid_me_ModeDecision_RD(&Data, pMB, pMBs, x, y, pParam, MotionFlags, current->vop_flags, current->vol_flags, pCurrent, pRef, pGMC, current->coding_type); else if (current->vop_flags & XVID_VOP_FAST_MODEDECISION_RD) xvid_me_ModeDecision_Fast(&Data, pMB, pMBs, x, y, pParam, MotionFlags, current->vop_flags, current->vol_flags, pCurrent, pRef, pGMC, current->coding_type); else ModeDecision_SAD(&Data, pMB, pMBs, x, y, pParam, MotionFlags, current->vop_flags, current->vol_flags, pCurrent, pRef, pGMC, current->coding_type); if (pMB->mode == MODE_INTRA) if (++iIntra > iLimit) return 1; } } return 0; }