/************************************************************************** * * XVID MPEG-4 VIDEO CODEC * image stuff * * This program is an implementation of a part of one or more MPEG-4 * Video tools as specified in ISO/IEC 14496-2 standard. Those intending * to use this software module in hardware or software products are * advised that its use may infringe existing patents or copyrights, and * any such use would be at such party's own risk. The original * developer of this software module and his/her company, and subsequent * editors and their companies, will have no liability for use of this * software or modifications or derivatives thereof. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * *************************************************************************/ /************************************************************************** * * History: * * 05.10.2002 support for interpolated images in qpel mode - Isibaar * 01.05.2002 BFRAME image-based u,v interpolation * 22.04.2002 added some B-frame support * 14.04.2002 added image_dump_yuvpgm(), added image_mad() * XVID_CSP_USER input support * 09.04.2002 PSNR calculations - Isibaar * 06.04.2002 removed interlaced edging from U,V blocks (as per spec) * 26.03.2002 interlacing support (field-based edging in set_edges) * 26.01.2002 rgb555, rgb565 * 07.01.2001 commented u,v interpolation (not required for uv-block-based) * 23.12.2001 removed #ifdefs, added function pointers + init_common() * 22.12.2001 cpu #ifdefs * 19.12.2001 image_dump(); useful for debugging * 6.12.2001 inital version; (c)2001 peter ross * *************************************************************************/ #include #include // memcpy, memset #include #include "../portab.h" #include "../global.h" // XVID_CSP_XXX's #include "../xvid.h" // XVID_CSP_XXX's #include "image.h" #include "colorspace.h" #include "interpolate8x8.h" #include "reduced.h" #include "../utils/mem_align.h" #include "font.h" // XXX: remove later #define SAFETY 64 #define EDGE_SIZE2 (EDGE_SIZE/2) int32_t image_create(IMAGE * image, uint32_t edged_width, uint32_t edged_height) { const uint32_t edged_width2 = edged_width / 2; const uint32_t edged_height2 = edged_height / 2; uint32_t i; image->y = xvid_malloc(edged_width * (edged_height + 1) + SAFETY, CACHE_LINE); if (image->y == NULL) { return -1; } for (i = 0; i < edged_width * edged_height + SAFETY; i++) { image->y[i] = 0; } image->u = xvid_malloc(edged_width2 * edged_height2 + SAFETY, CACHE_LINE); if (image->u == NULL) { xvid_free(image->y); return -1; } image->v = xvid_malloc(edged_width2 * edged_height2 + SAFETY, CACHE_LINE); if (image->v == NULL) { xvid_free(image->u); xvid_free(image->y); return -1; } image->y += EDGE_SIZE * edged_width + EDGE_SIZE; image->u += EDGE_SIZE2 * edged_width2 + EDGE_SIZE2; image->v += EDGE_SIZE2 * edged_width2 + EDGE_SIZE2; return 0; } void image_destroy(IMAGE * image, uint32_t edged_width, uint32_t edged_height) { const uint32_t edged_width2 = edged_width / 2; if (image->y) { xvid_free(image->y - (EDGE_SIZE * edged_width + EDGE_SIZE)); } if (image->u) { xvid_free(image->u - (EDGE_SIZE2 * edged_width2 + EDGE_SIZE2)); } if (image->v) { xvid_free(image->v - (EDGE_SIZE2 * edged_width2 + EDGE_SIZE2)); } } void image_swap(IMAGE * image1, IMAGE * image2) { SWAP(uint8_t*, image1->y, image2->y); SWAP(uint8_t*, image1->u, image2->u); SWAP(uint8_t*, image1->v, image2->v); } void image_copy(IMAGE * image1, IMAGE * image2, uint32_t edged_width, uint32_t height) { memcpy(image1->y, image2->y, edged_width * height); memcpy(image1->u, image2->u, edged_width * height / 4); memcpy(image1->v, image2->v, edged_width * height / 4); } void image_setedges(IMAGE * image, uint32_t edged_width, uint32_t edged_height, uint32_t width, uint32_t height) { const uint32_t edged_width2 = edged_width / 2; const uint32_t width2 = width / 2; uint32_t i; uint8_t *dst; uint8_t *src; dst = image->y - (EDGE_SIZE + EDGE_SIZE * edged_width); src = image->y; for (i = 0; i < EDGE_SIZE; i++) { memset(dst, *src, EDGE_SIZE); memcpy(dst + EDGE_SIZE, src, width); memset(dst + edged_width - EDGE_SIZE, *(src + width - 1), EDGE_SIZE); dst += edged_width; } for (i = 0; i < height; i++) { memset(dst, *src, EDGE_SIZE); memset(dst + edged_width - EDGE_SIZE, src[width - 1], EDGE_SIZE); dst += edged_width; src += edged_width; } src -= edged_width; for (i = 0; i < EDGE_SIZE; i++) { memset(dst, *src, EDGE_SIZE); memcpy(dst + EDGE_SIZE, src, width); memset(dst + edged_width - EDGE_SIZE, *(src + width - 1), EDGE_SIZE); dst += edged_width; } //U dst = image->u - (EDGE_SIZE2 + EDGE_SIZE2 * edged_width2); src = image->u; for (i = 0; i < EDGE_SIZE2; i++) { memset(dst, *src, EDGE_SIZE2); memcpy(dst + EDGE_SIZE2, src, width2); memset(dst + edged_width2 - EDGE_SIZE2, *(src + width2 - 1), EDGE_SIZE2); dst += edged_width2; } for (i = 0; i < height / 2; i++) { memset(dst, *src, EDGE_SIZE2); memset(dst + edged_width2 - EDGE_SIZE2, src[width2 - 1], EDGE_SIZE2); dst += edged_width2; src += edged_width2; } src -= edged_width2; for (i = 0; i < EDGE_SIZE2; i++) { memset(dst, *src, EDGE_SIZE2); memcpy(dst + EDGE_SIZE2, src, width2); memset(dst + edged_width2 - EDGE_SIZE2, *(src + width2 - 1), EDGE_SIZE2); dst += edged_width2; } // V dst = image->v - (EDGE_SIZE2 + EDGE_SIZE2 * edged_width2); src = image->v; for (i = 0; i < EDGE_SIZE2; i++) { memset(dst, *src, EDGE_SIZE2); memcpy(dst + EDGE_SIZE2, src, width2); memset(dst + edged_width2 - EDGE_SIZE2, *(src + width2 - 1), EDGE_SIZE2); dst += edged_width2; } for (i = 0; i < height / 2; i++) { memset(dst, *src, EDGE_SIZE2); memset(dst + edged_width2 - EDGE_SIZE2, src[width2 - 1], EDGE_SIZE2); dst += edged_width2; src += edged_width2; } src -= edged_width2; for (i = 0; i < EDGE_SIZE2; i++) { memset(dst, *src, EDGE_SIZE2); memcpy(dst + EDGE_SIZE2, src, width2); memset(dst + edged_width2 - EDGE_SIZE2, *(src + width2 - 1), EDGE_SIZE2); dst += edged_width2; } } // bframe encoding requires image-based u,v interpolation void image_interpolate(const IMAGE * refn, IMAGE * refh, IMAGE * refv, IMAGE * refhv, uint32_t edged_width, uint32_t edged_height, uint32_t quarterpel, uint32_t rounding) { const uint32_t offset = EDGE_SIZE2 * (edged_width + 1); // we only interpolate half of the edge area const uint32_t stride_add = 7 * edged_width; /* #ifdef BFRAMES const uint32_t edged_width2 = edged_width / 2; const uint32_t edged_height2 = edged_height / 2; const uint32_t offset2 = EDGE_SIZE2 * (edged_width2 + 1); const uint32_t stride_add2 = 7 * edged_width2; #endif */ uint8_t *n_ptr, *h_ptr, *v_ptr, *hv_ptr; uint32_t x, y; n_ptr = refn->y; h_ptr = refh->y; v_ptr = refv->y; hv_ptr = refhv->y; n_ptr -= offset; h_ptr -= offset; v_ptr -= offset; hv_ptr -= offset; if(quarterpel) { for (y = 0; y < (edged_height - EDGE_SIZE); y += 8) { for (x = 0; x < (edged_width - EDGE_SIZE); x += 8) { interpolate8x8_6tap_lowpass_h(h_ptr, n_ptr, edged_width, rounding); interpolate8x8_6tap_lowpass_v(v_ptr, n_ptr, edged_width, rounding); n_ptr += 8; h_ptr += 8; v_ptr += 8; } n_ptr += EDGE_SIZE; h_ptr += EDGE_SIZE; v_ptr += EDGE_SIZE; h_ptr += stride_add; v_ptr += stride_add; n_ptr += stride_add; } h_ptr = refh->y; h_ptr -= offset; for (y = 0; y < (edged_height - EDGE_SIZE); y = y + 8) { for (x = 0; x < (edged_width - EDGE_SIZE); x = x + 8) { interpolate8x8_6tap_lowpass_v(hv_ptr, h_ptr, edged_width, rounding); hv_ptr += 8; h_ptr += 8; } hv_ptr += EDGE_SIZE; h_ptr += EDGE_SIZE; hv_ptr += stride_add; h_ptr += stride_add; } } else { for (y = 0; y < (edged_height - EDGE_SIZE); y += 8) { for (x = 0; x < (edged_width - EDGE_SIZE); x += 8) { interpolate8x8_halfpel_h(h_ptr, n_ptr, edged_width, rounding); interpolate8x8_halfpel_v(v_ptr, n_ptr, edged_width, rounding); interpolate8x8_halfpel_hv(hv_ptr, n_ptr, edged_width, rounding); n_ptr += 8; h_ptr += 8; v_ptr += 8; hv_ptr += 8; } h_ptr += EDGE_SIZE; v_ptr += EDGE_SIZE; hv_ptr += EDGE_SIZE; n_ptr += EDGE_SIZE; h_ptr += stride_add; v_ptr += stride_add; hv_ptr += stride_add; n_ptr += stride_add; } } /* #ifdef BFRAMES n_ptr = refn->u; h_ptr = refh->u; v_ptr = refv->u; hv_ptr = refhv->u; n_ptr -= offset2; h_ptr -= offset2; v_ptr -= offset2; hv_ptr -= offset2; for (y = 0; y < edged_height2; y += 8) { for (x = 0; x < edged_width2; x += 8) { interpolate8x8_halfpel_h(h_ptr, n_ptr, edged_width2, rounding); interpolate8x8_halfpel_v(v_ptr, n_ptr, edged_width2, rounding); interpolate8x8_halfpel_hv(hv_ptr, n_ptr, edged_width2, rounding); n_ptr += 8; h_ptr += 8; v_ptr += 8; hv_ptr += 8; } h_ptr += stride_add2; v_ptr += stride_add2; hv_ptr += stride_add2; n_ptr += stride_add2; } n_ptr = refn->v; h_ptr = refh->v; v_ptr = refv->v; hv_ptr = refhv->v; n_ptr -= offset2; h_ptr -= offset2; v_ptr -= offset2; hv_ptr -= offset2; for (y = 0; y < edged_height2; y = y + 8) { for (x = 0; x < edged_width2; x = x + 8) { interpolate8x8_halfpel_h(h_ptr, n_ptr, edged_width2, rounding); interpolate8x8_halfpel_v(v_ptr, n_ptr, edged_width2, rounding); interpolate8x8_halfpel_hv(hv_ptr, n_ptr, edged_width2, rounding); n_ptr += 8; h_ptr += 8; v_ptr += 8; hv_ptr += 8; } h_ptr += stride_add2; v_ptr += stride_add2; hv_ptr += stride_add2; n_ptr += stride_add2; } #endif */ /* interpolate_halfpel_h( refh->y - offset, refn->y - offset, edged_width, edged_height, rounding); interpolate_halfpel_v( refv->y - offset, refn->y - offset, edged_width, edged_height, rounding); interpolate_halfpel_hv( refhv->y - offset, refn->y - offset, edged_width, edged_height, rounding); */ /* uv-image-based compensation offset = EDGE_SIZE2 * (edged_width / 2 + 1); interpolate_halfpel_h( refh->u - offset, refn->u - offset, edged_width / 2, edged_height / 2, rounding); interpolate_halfpel_v( refv->u - offset, refn->u - offset, edged_width / 2, edged_height / 2, rounding); interpolate_halfpel_hv( refhv->u - offset, refn->u - offset, edged_width / 2, edged_height / 2, rounding); interpolate_halfpel_h( refh->v - offset, refn->v - offset, edged_width / 2, edged_height / 2, rounding); interpolate_halfpel_v( refv->v - offset, refn->v - offset, edged_width / 2, edged_height / 2, rounding); interpolate_halfpel_hv( refhv->v - offset, refn->v - offset, edged_width / 2, edged_height / 2, rounding); */ } /* chroma optimize filter, invented by mf a chroma pixel is average from the surrounding pixels, when the correpsonding luma pixels are pure black or white. */ void image_chroma_optimize(IMAGE * img, int width, int height, int edged_width) { int x,y; int pixels = 0; for (y = 1; y < height/2 - 1; y++) for (x = 1; x < width/2 - 1; x++) { #define IS_PURE(a) ((a)<=16||(a)>=235) #define IMG_Y(Y,X) img->y[(Y)*edged_width + (X)] #define IMG_U(Y,X) img->u[(Y)*edged_width/2 + (X)] #define IMG_V(Y,X) img->v[(Y)*edged_width/2 + (X)] if (IS_PURE(IMG_Y(y*2 ,x*2 )) && IS_PURE(IMG_Y(y*2 ,x*2+1)) && IS_PURE(IMG_Y(y*2+1,x*2 )) && IS_PURE(IMG_Y(y*2+1,x*2+1))) { IMG_U(y,x) = (IMG_U(y,x-1) + IMG_U(y-1, x) + IMG_U(y, x+1) + IMG_U(y+1, x)) / 4; IMG_V(y,x) = (IMG_V(y,x-1) + IMG_V(y-1, x) + IMG_V(y, x+1) + IMG_V(y+1, x)) / 4; pixels++; } #undef IS_PURE #undef IMG_Y #undef IMG_U #undef IMG_V } DPRINTF(XVID_DEBUG_DEBUG,"chroma_optimized_pixels = %i/%i", pixels, width*height/4); } /* perform safe packed colorspace conversion, by splitting the image up into an optimized area (pixel width divisible by 16), and two unoptimized/plain-c areas (pixel width divisible by 2) */ static void safe_packed_conv(uint8_t * x_ptr, int x_stride, uint8_t * y_ptr, uint8_t * u_ptr, uint8_t * v_ptr, int y_stride, int uv_stride, int width, int height, int vflip, packedFunc * func_opt, packedFunc func_c, int size) { int width_opt, width_c; if (func_opt != func_c && x_stride < size*((width+15)/16)*16) { width_opt = width & (~15); width_c = width - width_opt; } else { width_opt = width; width_c = 0; } func_opt(x_ptr, x_stride, y_ptr, u_ptr, v_ptr, y_stride, uv_stride, width_opt, height, vflip); if (width_c) { func_c(x_ptr + size*width_opt, x_stride, y_ptr + width_opt, u_ptr + width_opt/2, v_ptr + width_opt/2, y_stride, uv_stride, width_c, height, vflip); } } int image_input(IMAGE * image, uint32_t width, int height, uint32_t edged_width, uint8_t * src[4], int src_stride[4], int csp, int interlacing) { const int edged_width2 = edged_width/2; const int width2 = width/2; const int height2 = height/2; //const int height_signed = (csp & XVID_CSP_VFLIP) ? -height : height; switch (csp & ~XVID_CSP_VFLIP) { case XVID_CSP_RGB555: safe_packed_conv( src[0], src_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?rgb555i_to_yv12 :rgb555_to_yv12, interlacing?rgb555i_to_yv12_c:rgb555_to_yv12_c, 2); break; case XVID_CSP_RGB565: safe_packed_conv( src[0], src_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?rgb565i_to_yv12 :rgb565_to_yv12, interlacing?rgb565i_to_yv12_c:rgb565_to_yv12_c, 2); break; case XVID_CSP_BGR: safe_packed_conv( src[0], src_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?bgri_to_yv12 :bgr_to_yv12, interlacing?bgri_to_yv12_c:bgr_to_yv12_c, 3); break; case XVID_CSP_BGRA: safe_packed_conv( src[0], src_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?bgrai_to_yv12 :bgra_to_yv12, interlacing?bgrai_to_yv12_c:bgra_to_yv12_c, 4); break; case XVID_CSP_ABGR : safe_packed_conv( src[0], src_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?abgri_to_yv12 :abgr_to_yv12, interlacing?abgri_to_yv12_c:abgr_to_yv12_c, 4); break; case XVID_CSP_RGBA : safe_packed_conv( src[0], src_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?rgbai_to_yv12 :rgba_to_yv12, interlacing?rgbai_to_yv12_c:rgba_to_yv12_c, 4); break; case XVID_CSP_YUY2: safe_packed_conv( src[0], src_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?yuyvi_to_yv12 :yuyv_to_yv12, interlacing?yuyvi_to_yv12_c:yuyv_to_yv12_c, 2); break; case XVID_CSP_YVYU: /* u/v swapped */ safe_packed_conv( src[0], src_stride[0], image->y, image->v, image->y, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?yuyvi_to_yv12 :yuyv_to_yv12, interlacing?yuyvi_to_yv12_c:yuyv_to_yv12_c, 2); break; case XVID_CSP_UYVY: safe_packed_conv( src[0], src_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?uyvyi_to_yv12 :uyvy_to_yv12, interlacing?uyvyi_to_yv12_c:uyvy_to_yv12_c, 2); break; case XVID_CSP_I420: yv12_to_yv12(image->y, image->u, image->v, edged_width, edged_width2, src[0], src[0] + src_stride[0]*height, src[0] + src_stride[0]*height + (src_stride[0]/2)*height2, src_stride[0], src_stride[0]/2, width, height, (csp & XVID_CSP_VFLIP)); break ; case XVID_CSP_YV12: /* u/v swapped */ yv12_to_yv12(image->y, image->v, image->u, edged_width, edged_width2, src[0], src[0] + src_stride[0]*height, src[0] + src_stride[0]*height + (src_stride[0]/2)*height2, src_stride[0], src_stride[0]/2, width, height, (csp & XVID_CSP_VFLIP)); break; case XVID_CSP_USER: /*XXX: support for different u & v strides */ yv12_to_yv12(image->y, image->u, image->v, edged_width, edged_width2, src[0], src[1], src[2], src_stride[0], src_stride[1], width, height, (csp & XVID_CSP_VFLIP)); break; case XVID_CSP_NULL: break; default : return -1; } /* pad out image when the width and/or height is not a multiple of 16 */ if (width & 15) { int i; int pad_width = 16 - (width&15); for (i = 0; i < height; i++) { memset(image->y + i*edged_width + width, *(image->y + i*edged_width + width - 1), pad_width); } for (i = 0; i < height/2; i++) { memset(image->u + i*edged_width2 + width2, *(image->u + i*edged_width2 + width2 - 1),pad_width/2); memset(image->v + i*edged_width2 + width2, *(image->v + i*edged_width2 + width2 - 1),pad_width/2); } } if (height & 15) { int pad_height = 16 - (height&15); int length = ((width+15)/16)*16; int i; for (i = 0; i < pad_height; i++) { memcpy(image->y + (height+i)*edged_width, image->y + (height-1)*edged_width,length); } for (i = 0; i < pad_height/2; i++) { memcpy(image->u + (height2+i)*edged_width2, image->u + (height2-1)*edged_width2,length/2); memcpy(image->v + (height2+i)*edged_width2, image->v + (height2-1)*edged_width2,length/2); } } /* if (interlacing) image_printf(image, edged_width, height, 5,5, "[i]"); image_dump_yuvpgm(image, edged_width, ((width+15)/16)*16, ((height+15)/16)*16, "\\encode.pgm"); */ return 0; } int image_output(IMAGE * image, uint32_t width, int height, uint32_t edged_width, uint8_t * dst[4], uint32_t dst_stride[4], int csp, int interlacing) { const int edged_width2 = edged_width/2; int height2 = height/2; /* if (interlacing) image_printf(image, edged_width, height, 5,100, "[i]=%i,%i",width,height); image_dump_yuvpgm(image, edged_width, width, height, "\\decode.pgm"); */ switch (csp & ~XVID_CSP_VFLIP) { case XVID_CSP_RGB555: safe_packed_conv( dst[0], dst_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?yv12_to_rgb555i :yv12_to_rgb555, interlacing?yv12_to_rgb555i_c:yv12_to_rgb555_c, 2); return 0; case XVID_CSP_RGB565: safe_packed_conv( dst[0], dst_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?yv12_to_rgb565i :yv12_to_rgb565, interlacing?yv12_to_rgb565i_c:yv12_to_rgb565_c, 2); return 0; case XVID_CSP_BGR: safe_packed_conv( dst[0], dst_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?yv12_to_bgri :yv12_to_bgr, interlacing?yv12_to_bgri_c:yv12_to_bgr_c, 3); return 0; case XVID_CSP_BGRA: safe_packed_conv( dst[0], dst_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?yv12_to_bgrai :yv12_to_bgra, interlacing?yv12_to_bgrai_c:yv12_to_bgra_c, 4); return 0; case XVID_CSP_ABGR: safe_packed_conv( dst[0], dst_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?yv12_to_abgri :yv12_to_abgr, interlacing?yv12_to_abgri_c:yv12_to_abgr_c, 4); return 0; case XVID_CSP_RGBA: safe_packed_conv( dst[0], dst_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?yv12_to_rgbai :yv12_to_rgba, interlacing?yv12_to_rgbai_c:yv12_to_rgba_c, 4); return 0; case XVID_CSP_YUY2: safe_packed_conv( dst[0], dst_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?yv12_to_yuyvi :yv12_to_yuyv, interlacing?yv12_to_yuyvi_c:yv12_to_yuyv_c, 2); return 0; case XVID_CSP_YVYU: // u,v swapped safe_packed_conv( dst[0], dst_stride[0], image->y, image->v, image->u, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?yv12_to_yuyvi :yv12_to_yuyv, interlacing?yv12_to_yuyvi_c:yv12_to_yuyv_c, 2); return 0; case XVID_CSP_UYVY: safe_packed_conv( dst[0], dst_stride[0], image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP), interlacing?yv12_to_uyvyi :yv12_to_uyvy, interlacing?yv12_to_uyvyi_c:yv12_to_uyvy_c, 2); return 0; case XVID_CSP_I420: yv12_to_yv12(dst[0], dst[0] + dst_stride[0]*height, dst[0] + dst_stride[0]*height + (dst_stride[0]/2)*height2, dst_stride[0], dst_stride[0]/2, image->y, image->u, image->v, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP)); return 0; case XVID_CSP_YV12: // u,v swapped yv12_to_yv12(dst[0], dst[0] + dst_stride[0]*height, dst[0] + dst_stride[0]*height + (dst_stride[0]/2)*height2, dst_stride[0], dst_stride[0]/2, image->y, image->v, image->u, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP)); return 0; case XVID_CSP_USER : // u,v swapped yv12_to_yv12(dst[0], dst[1], dst[2], dst_stride[0], dst_stride[1], /* v: dst_stride[2] */ image->y, image->v, image->u, edged_width, edged_width2, width, height, (csp & XVID_CSP_VFLIP)); return 0; case XVID_CSP_INTERNAL : dst[0] = image->y; dst[1] = image->u; dst[2] = image->v; dst_stride[0] = edged_width; dst_stride[1] = edged_width/2; dst_stride[2] = edged_width/2; return 0; case XVID_CSP_NULL: case XVID_CSP_SLICE: return 0; } return -1; } float image_psnr(IMAGE * orig_image, IMAGE * recon_image, uint16_t stride, uint16_t width, uint16_t height) { int32_t diff, x, y, quad = 0; uint8_t *orig = orig_image->y; uint8_t *recon = recon_image->y; float psnr_y; for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { diff = *(orig + x) - *(recon + x); quad += diff * diff; } orig += stride; recon += stride; } psnr_y = (float) quad / (float) (width * height); if (psnr_y) { psnr_y = (float) (255 * 255) / psnr_y; psnr_y = 10 * (float) log10(psnr_y); } else psnr_y = (float) 99.99; return psnr_y; } float sse_to_PSNR(long sse, int pixels) { if (sse==0) return 99.99F; return 48.131F - 10*(float)log10((float)sse/(float)(pixels)); // log10(255*255)=4.8131 } long plane_sse(uint8_t * orig, uint8_t * recon, uint16_t stride, uint16_t width, uint16_t height) { int diff, x, y; long sse=0; for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { diff = *(orig + x) - *(recon + x); sse += diff * diff; } orig += stride; recon += stride; } return sse; } /* #include #include int image_dump_pgm(uint8_t * bmp, uint32_t width, uint32_t height, char * filename) { FILE * f; char hdr[1024]; f = fopen(filename, "wb"); if ( f == NULL) { return -1; } sprintf(hdr, "P5\n#xvid\n%i %i\n255\n", width, height); fwrite(hdr, strlen(hdr), 1, f); fwrite(bmp, width, height, f); fclose(f); return 0; } // dump image+edges to yuv pgm files int image_dump(IMAGE * image, uint32_t edged_width, uint32_t edged_height, char * path, int number) { char filename[1024]; sprintf(filename, "%s_%i_%c.pgm", path, number, 'y'); image_dump_pgm( image->y - (EDGE_SIZE * edged_width + EDGE_SIZE), edged_width, edged_height, filename); sprintf(filename, "%s_%i_%c.pgm", path, number, 'u'); image_dump_pgm( image->u - (EDGE_SIZE2 * edged_width / 2 + EDGE_SIZE2), edged_width / 2, edged_height / 2, filename); sprintf(filename, "%s_%i_%c.pgm", path, number, 'v'); image_dump_pgm( image->v - (EDGE_SIZE2 * edged_width / 2 + EDGE_SIZE2), edged_width / 2, edged_height / 2, filename); return 0; } */ /* dump image to yuvpgm file */ #include int image_dump_yuvpgm(const IMAGE * image, const uint32_t edged_width, const uint32_t width, const uint32_t height, char *filename) { FILE *f; char hdr[1024]; uint32_t i; uint8_t *bmp1; uint8_t *bmp2; f = fopen(filename, "wb"); if (f == NULL) { return -1; } sprintf(hdr, "P5\n#xvid\n%i %i\n255\n", width, (3 * height) / 2); fwrite(hdr, strlen(hdr), 1, f); bmp1 = image->y; for (i = 0; i < height; i++) { fwrite(bmp1, width, 1, f); bmp1 += edged_width; } bmp1 = image->u; bmp2 = image->v; for (i = 0; i < height / 2; i++) { fwrite(bmp1, width / 2, 1, f); fwrite(bmp2, width / 2, 1, f); bmp1 += edged_width / 2; bmp2 += edged_width / 2; } fclose(f); return 0; } float image_mad(const IMAGE * img1, const IMAGE * img2, uint32_t stride, uint32_t width, uint32_t height) { const uint32_t stride2 = stride / 2; const uint32_t width2 = width / 2; const uint32_t height2 = height / 2; uint32_t x, y; uint32_t sum = 0; for (y = 0; y < height; y++) for (x = 0; x < width; x++) sum += abs(img1->y[x + y * stride] - img2->y[x + y * stride]); for (y = 0; y < height2; y++) for (x = 0; x < width2; x++) sum += abs(img1->u[x + y * stride2] - img2->u[x + y * stride2]); for (y = 0; y < height2; y++) for (x = 0; x < width2; x++) sum += abs(img1->v[x + y * stride2] - img2->v[x + y * stride2]); return (float) sum / (width * height * 3 / 2); } void output_slice(IMAGE * cur, int std, int width, xvid_image_t* out_frm, int mbx, int mby,int mbl) { uint8_t *dY,*dU,*dV,*sY,*sU,*sV; int std2 = std >> 1; int w = mbl << 4, w2,i; if(w > width) w = width; w2 = w >> 1; dY = (uint8_t*)out_frm->plane[0] + (mby << 4) * out_frm->stride[0] + (mbx << 4); dU = (uint8_t*)out_frm->plane[1] + (mby << 3) * out_frm->stride[1] + (mbx << 3); dV = (uint8_t*)out_frm->plane[2] + (mby << 3) * out_frm->stride[2] + (mbx << 3); sY = cur->y + (mby << 4) * std + (mbx << 4); sU = cur->u + (mby << 3) * std2 + (mbx << 3); sV = cur->v + (mby << 3) * std2 + (mbx << 3); for(i = 0 ; i < 16 ; i++) { memcpy(dY,sY,w); dY += out_frm->stride[0]; sY += std; } for(i = 0 ; i < 8 ; i++) { memcpy(dU,sU,w2); dU += out_frm->stride[1]; sU += std2; } for(i = 0 ; i < 8 ; i++) { memcpy(dV,sV,w2); dV += out_frm->stride[2]; sV += std2; } } void image_clear(IMAGE * img, int width, int height, int edged_width, int y, int u, int v) { uint8_t * p; int i; p = img->y; for (i = 0; i < height; i++) { memset(p, y, width); p += edged_width; } p = img->u; for (i = 0; i < height/2; i++) { memset(p, u, width/2); p += edged_width/2; } p = img->v; for (i = 0; i < height/2; i++) { memset(p, v, width/2); p += edged_width/2; } } /* reduced resolution deblocking filter block = block size (16=rrv, 8=full resolution) flags = XVID_DEC_YDEBLOCK|XVID_DEC_UVDEBLOCK */ void image_deblock_rrv(IMAGE * img, int edged_width, const MACROBLOCK * mbs, int mb_width, int mb_height, int mb_stride, int block, int flags) { const int edged_width2 = edged_width /2; const int nblocks = block / 8; /* skals code uses 8pixel block uints */ int i,j; /* luma: j,i in block units */ for (j = 1; j < mb_height*2; j++) /* horizontal deblocking */ for (i = 0; i < mb_width*2; i++) { if (mbs[(j-1)/2*mb_stride + (i/2)].mode != MODE_NOT_CODED || mbs[(j+0)/2*mb_stride + (i/2)].mode != MODE_NOT_CODED) { hfilter_31(img->y + (j*block - 1)*edged_width + i*block, img->y + (j*block + 0)*edged_width + i*block, nblocks); } } for (j = 0; j < mb_height*2; j++) /* vertical deblocking */ for (i = 1; i < mb_width*2; i++) { if (mbs[(j/2)*mb_stride + (i-1)/2].mode != MODE_NOT_CODED || mbs[(j/2)*mb_stride + (i+0)/2].mode != MODE_NOT_CODED) { vfilter_31(img->y + (j*block)*edged_width + i*block - 1, img->y + (j*block)*edged_width + i*block + 0, edged_width, nblocks); } } /* chroma */ for (j = 1; j < mb_height; j++) /* horizontal deblocking */ for (i = 0; i < mb_width; i++) { if (mbs[(j-1)*mb_stride + i].mode != MODE_NOT_CODED || mbs[(j+0)*mb_stride + i].mode != MODE_NOT_CODED) { hfilter_31(img->u + (j*block - 1)*edged_width2 + i*block, img->u + (j*block + 0)*edged_width2 + i*block, nblocks); hfilter_31(img->v + (j*block - 1)*edged_width2 + i*block, img->v + (j*block + 0)*edged_width2 + i*block, nblocks); } } for (j = 0; j < mb_height; j++) /* vertical deblocking */ for (i = 1; i < mb_width; i++) { if (mbs[j*mb_stride + i - 1].mode != MODE_NOT_CODED || mbs[j*mb_stride + i + 0].mode != MODE_NOT_CODED) { vfilter_31(img->u + (j*block)*edged_width2 + i*block - 1, img->u + (j*block)*edged_width2 + i*block + 0, edged_width2, nblocks); vfilter_31(img->v + (j*block)*edged_width2 + i*block - 1, img->v + (j*block)*edged_width2 + i*block + 0, edged_width2, nblocks); } } }