/***************************************************************************** * * XVID MPEG-4 VIDEO CODEC * - Decoder Module - * * Copyright(C) 2002 MinChen * 2002-2003 Peter Ross * * This program is free software ; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation ; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY ; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program ; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: decoder.c,v 1.49.2.13 2003-10-01 23:23:00 edgomez Exp $ * ****************************************************************************/ #include #include #include #ifdef BFRAMES_DEC_DEBUG #define BFRAMES_DEC #endif #include "xvid.h" #include "portab.h" #include "global.h" #include "decoder.h" #include "bitstream/bitstream.h" #include "bitstream/mbcoding.h" #include "quant/quant_h263.h" #include "quant/quant_mpeg4.h" #include "dct/idct.h" #include "dct/fdct.h" #include "utils/mem_transfer.h" #include "image/interpolate8x8.h" #include "image/reduced.h" #include "image/font.h" #include "bitstream/mbcoding.h" #include "prediction/mbprediction.h" #include "utils/timer.h" #include "utils/emms.h" #include "motion/motion.h" #include "motion/gmc.h" #include "image/image.h" #include "image/colorspace.h" #include "utils/mem_align.h" int decoder_resize(DECODER * dec) { /* free existing */ image_destroy(&dec->cur, dec->edged_width, dec->edged_height); image_destroy(&dec->refn[0], dec->edged_width, dec->edged_height); image_destroy(&dec->refn[1], dec->edged_width, dec->edged_height); image_destroy(&dec->tmp, dec->edged_width, dec->edged_height); image_destroy(&dec->qtmp, dec->edged_width, dec->edged_height); image_destroy(&dec->gmc, dec->edged_width, dec->edged_height); if (dec->last_mbs) xvid_free(dec->last_mbs); if (dec->mbs) xvid_free(dec->mbs); /* realloc */ dec->mb_width = (dec->width + 15) / 16; dec->mb_height = (dec->height + 15) / 16; dec->edged_width = 16 * dec->mb_width + 2 * EDGE_SIZE; dec->edged_height = 16 * dec->mb_height + 2 * EDGE_SIZE; if (image_create(&dec->cur, dec->edged_width, dec->edged_height)) { xvid_free(dec); return XVID_ERR_MEMORY; } if (image_create(&dec->refn[0], dec->edged_width, dec->edged_height)) { image_destroy(&dec->cur, dec->edged_width, dec->edged_height); xvid_free(dec); return XVID_ERR_MEMORY; } /* Support B-frame to reference last 2 frame */ if (image_create(&dec->refn[1], dec->edged_width, dec->edged_height)) { image_destroy(&dec->cur, dec->edged_width, dec->edged_height); image_destroy(&dec->refn[0], dec->edged_width, dec->edged_height); xvid_free(dec); return XVID_ERR_MEMORY; } if (image_create(&dec->tmp, dec->edged_width, dec->edged_height)) { image_destroy(&dec->cur, dec->edged_width, dec->edged_height); image_destroy(&dec->refn[0], dec->edged_width, dec->edged_height); image_destroy(&dec->refn[1], dec->edged_width, dec->edged_height); xvid_free(dec); return XVID_ERR_MEMORY; } if (image_create(&dec->qtmp, dec->edged_width, dec->edged_height)) { image_destroy(&dec->cur, dec->edged_width, dec->edged_height); image_destroy(&dec->refn[0], dec->edged_width, dec->edged_height); image_destroy(&dec->refn[1], dec->edged_width, dec->edged_height); image_destroy(&dec->tmp, dec->edged_width, dec->edged_height); xvid_free(dec); return XVID_ERR_MEMORY; } if (image_create(&dec->gmc, dec->edged_width, dec->edged_height)) { image_destroy(&dec->qtmp, dec->edged_width, dec->edged_height); image_destroy(&dec->cur, dec->edged_width, dec->edged_height); image_destroy(&dec->refn[0], dec->edged_width, dec->edged_height); image_destroy(&dec->refn[1], dec->edged_width, dec->edged_height); image_destroy(&dec->tmp, dec->edged_width, dec->edged_height); xvid_free(dec); return XVID_ERR_MEMORY; } dec->mbs = xvid_malloc(sizeof(MACROBLOCK) * dec->mb_width * dec->mb_height, CACHE_LINE); if (dec->mbs == NULL) { image_destroy(&dec->cur, dec->edged_width, dec->edged_height); image_destroy(&dec->refn[0], dec->edged_width, dec->edged_height); image_destroy(&dec->refn[1], dec->edged_width, dec->edged_height); image_destroy(&dec->tmp, dec->edged_width, dec->edged_height); image_destroy(&dec->qtmp, dec->edged_width, dec->edged_height); xvid_free(dec); return XVID_ERR_MEMORY; } memset(dec->mbs, 0, sizeof(MACROBLOCK) * dec->mb_width * dec->mb_height); /* For skip MB flag */ dec->last_mbs = xvid_malloc(sizeof(MACROBLOCK) * dec->mb_width * dec->mb_height, CACHE_LINE); if (dec->last_mbs == NULL) { xvid_free(dec->mbs); image_destroy(&dec->cur, dec->edged_width, dec->edged_height); image_destroy(&dec->refn[0], dec->edged_width, dec->edged_height); image_destroy(&dec->refn[1], dec->edged_width, dec->edged_height); image_destroy(&dec->tmp, dec->edged_width, dec->edged_height); image_destroy(&dec->qtmp, dec->edged_width, dec->edged_height); xvid_free(dec); return XVID_ERR_MEMORY; } memset(dec->last_mbs, 0, sizeof(MACROBLOCK) * dec->mb_width * dec->mb_height); return 0; } int decoder_create(xvid_dec_create_t * create) { DECODER *dec; if (XVID_VERSION_MAJOR(create->version) != 1) /* v1.x.x */ return XVID_ERR_VERSION; dec = xvid_malloc(sizeof(DECODER), CACHE_LINE); if (dec == NULL) { return XVID_ERR_MEMORY; } memset(dec, 0, sizeof(DECODER)); create->handle = dec; dec->width = create->width; dec->height = create->height; image_null(&dec->cur); image_null(&dec->refn[0]); image_null(&dec->refn[1]); image_null(&dec->tmp); image_null(&dec->qtmp); /* image based GMC */ image_null(&dec->gmc); dec->mbs = NULL; dec->last_mbs = NULL; init_timer(); /* For B-frame support (used to save reference frame's time */ dec->frames = 0; dec->time = dec->time_base = dec->last_time_base = 0; dec->low_delay = 0; dec->packed_mode = 0; dec->fixed_dimensions = (dec->width > 0 && dec->height > 0); if (dec->fixed_dimensions) return decoder_resize(dec); else return 0; } int decoder_destroy(DECODER * dec) { xvid_free(dec->last_mbs); xvid_free(dec->mbs); /* image based GMC */ image_destroy(&dec->gmc, dec->edged_width, dec->edged_height); image_destroy(&dec->refn[0], dec->edged_width, dec->edged_height); image_destroy(&dec->refn[1], dec->edged_width, dec->edged_height); image_destroy(&dec->tmp, dec->edged_width, dec->edged_height); image_destroy(&dec->qtmp, dec->edged_width, dec->edged_height); image_destroy(&dec->cur, dec->edged_width, dec->edged_height); xvid_free(dec); write_timer(); return 0; } static const int32_t dquant_table[4] = { -1, -2, 1, 2 }; /* decode an intra macroblock */ void decoder_mbintra(DECODER * dec, MACROBLOCK * pMB, const uint32_t x_pos, const uint32_t y_pos, const uint32_t acpred_flag, const uint32_t cbp, Bitstream * bs, const uint32_t quant, const uint32_t intra_dc_threshold, const unsigned int bound, const int reduced_resolution) { DECLARE_ALIGNED_MATRIX(block, 6, 64, int16_t, CACHE_LINE); DECLARE_ALIGNED_MATRIX(data, 6, 64, int16_t, CACHE_LINE); uint32_t stride = dec->edged_width; uint32_t stride2 = stride / 2; uint32_t next_block = stride * 8; uint32_t i; uint32_t iQuant = pMB->quant; uint8_t *pY_Cur, *pU_Cur, *pV_Cur; if (reduced_resolution) { pY_Cur = dec->cur.y + (y_pos << 5) * stride + (x_pos << 5); pU_Cur = dec->cur.u + (y_pos << 4) * stride2 + (x_pos << 4); pV_Cur = dec->cur.v + (y_pos << 4) * stride2 + (x_pos << 4); }else{ pY_Cur = dec->cur.y + (y_pos << 4) * stride + (x_pos << 4); pU_Cur = dec->cur.u + (y_pos << 3) * stride2 + (x_pos << 3); pV_Cur = dec->cur.v + (y_pos << 3) * stride2 + (x_pos << 3); } memset(block, 0, 6 * 64 * sizeof(int16_t)); /* clear */ for (i = 0; i < 6; i++) { uint32_t iDcScaler = get_dc_scaler(iQuant, i < 4); int16_t predictors[8]; int start_coeff; start_timer(); predict_acdc(dec->mbs, x_pos, y_pos, dec->mb_width, i, &block[i * 64], iQuant, iDcScaler, predictors, bound); if (!acpred_flag) { pMB->acpred_directions[i] = 0; } stop_prediction_timer(); if (quant < intra_dc_threshold) { int dc_size; int dc_dif; dc_size = i < 4 ? get_dc_size_lum(bs) : get_dc_size_chrom(bs); dc_dif = dc_size ? get_dc_dif(bs, dc_size) : 0; if (dc_size > 8) { BitstreamSkip(bs, 1); /* marker */ } block[i * 64 + 0] = dc_dif; start_coeff = 1; DPRINTF(XVID_DEBUG_COEFF,"block[0] %i\n", dc_dif); } else { start_coeff = 0; } start_timer(); if (cbp & (1 << (5 - i))) /* coded */ { int direction = dec->alternate_vertical_scan ? 2 : pMB->acpred_directions[i]; get_intra_block(bs, &block[i * 64], direction, start_coeff); } stop_coding_timer(); start_timer(); add_acdc(pMB, i, &block[i * 64], iDcScaler, predictors); stop_prediction_timer(); start_timer(); if (dec->quant_type == 0) { dequant_intra(&data[i * 64], &block[i * 64], iQuant, iDcScaler); } else { dequant4_intra(&data[i * 64], &block[i * 64], iQuant, iDcScaler); } stop_iquant_timer(); start_timer(); idct(&data[i * 64]); stop_idct_timer(); } if (dec->interlacing && pMB->field_dct) { next_block = stride; stride *= 2; } start_timer(); if (reduced_resolution) { next_block*=2; copy_upsampled_8x8_16to8(pY_Cur, &data[0 * 64], stride); copy_upsampled_8x8_16to8(pY_Cur + 16, &data[1 * 64], stride); copy_upsampled_8x8_16to8(pY_Cur + next_block, &data[2 * 64], stride); copy_upsampled_8x8_16to8(pY_Cur + 16 + next_block, &data[3 * 64], stride); copy_upsampled_8x8_16to8(pU_Cur, &data[4 * 64], stride2); copy_upsampled_8x8_16to8(pV_Cur, &data[5 * 64], stride2); }else{ transfer_16to8copy(pY_Cur, &data[0 * 64], stride); transfer_16to8copy(pY_Cur + 8, &data[1 * 64], stride); transfer_16to8copy(pY_Cur + next_block, &data[2 * 64], stride); transfer_16to8copy(pY_Cur + 8 + next_block, &data[3 * 64], stride); transfer_16to8copy(pU_Cur, &data[4 * 64], stride2); transfer_16to8copy(pV_Cur, &data[5 * 64], stride2); } stop_transfer_timer(); } /* decode an inter macroblock */ void decoder_mbinter(DECODER * dec, const MACROBLOCK * pMB, const uint32_t x_pos, const uint32_t y_pos, const uint32_t fcode, const uint32_t cbp, Bitstream * bs, const uint32_t quant, const uint32_t rounding, const int reduced_resolution) { DECLARE_ALIGNED_MATRIX(block, 6, 64, int16_t, CACHE_LINE); DECLARE_ALIGNED_MATRIX(data, 6, 64, int16_t, CACHE_LINE); uint32_t stride = dec->edged_width; uint32_t stride2 = stride / 2; uint32_t next_block = stride * (reduced_resolution ? 16 : 8); uint32_t i; uint32_t iQuant = pMB->quant; uint8_t *pY_Cur, *pU_Cur, *pV_Cur; int uv_dx, uv_dy; VECTOR mv[4]; /* local copy of mvs */ if (reduced_resolution) { pY_Cur = dec->cur.y + (y_pos << 5) * stride + (x_pos << 5); pU_Cur = dec->cur.u + (y_pos << 4) * stride2 + (x_pos << 4); pV_Cur = dec->cur.v + (y_pos << 4) * stride2 + (x_pos << 4); for (i = 0; i < 4; i++) { mv[i].x = RRV_MV_SCALEUP(pMB->mvs[i].x); mv[i].y = RRV_MV_SCALEUP(pMB->mvs[i].y); } } else { pY_Cur = dec->cur.y + (y_pos << 4) * stride + (x_pos << 4); pU_Cur = dec->cur.u + (y_pos << 3) * stride2 + (x_pos << 3); pV_Cur = dec->cur.v + (y_pos << 3) * stride2 + (x_pos << 3); for (i = 0; i < 4; i++) mv[i] = pMB->mvs[i]; } if (pMB->mode == MODE_INTER || pMB->mode == MODE_INTER_Q) { uv_dx = mv[0].x / (1 + dec->quarterpel); uv_dy = mv[0].y / (1 + dec->quarterpel); uv_dx = (uv_dx >> 1) + roundtab_79[uv_dx & 0x3]; uv_dy = (uv_dy >> 1) + roundtab_79[uv_dy & 0x3]; start_timer(); if (reduced_resolution) { interpolate32x32_switch(dec->cur.y, dec->refn[0].y, 32*x_pos, 32*y_pos, mv[0].x, mv[0].y, stride, rounding); interpolate16x16_switch(dec->cur.u, dec->refn[0].u, 16 * x_pos, 16 * y_pos, uv_dx, uv_dy, stride2, rounding); interpolate16x16_switch(dec->cur.v, dec->refn[0].v, 16 * x_pos, 16 * y_pos, uv_dx, uv_dy, stride2, rounding); } else { if(dec->quarterpel) { interpolate16x16_quarterpel(dec->cur.y, dec->refn[0].y, dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos, 16*y_pos, mv[0].x, mv[0].y, stride, rounding); } else { interpolate16x16_switch(dec->cur.y, dec->refn[0].y, 16*x_pos, 16*y_pos, mv[0].x, mv[0].y, stride, rounding); } interpolate8x8_switch(dec->cur.u, dec->refn[0].u, 8 * x_pos, 8 * y_pos, uv_dx, uv_dy, stride2, rounding); interpolate8x8_switch(dec->cur.v, dec->refn[0].v, 8 * x_pos, 8 * y_pos, uv_dx, uv_dy, stride2, rounding); } stop_comp_timer(); } else { /* MODE_INTER4V */ int sum; if(dec->quarterpel) sum = (mv[0].x / 2) + (mv[1].x / 2) + (mv[2].x / 2) + (mv[3].x / 2); else sum = mv[0].x + mv[1].x + mv[2].x + mv[3].x; uv_dx = (sum >> 3) + roundtab_76[sum & 0xf]; if(dec->quarterpel) sum = (mv[0].y / 2) + (mv[1].y / 2) + (mv[2].y / 2) + (mv[3].y / 2); else sum = mv[0].y + mv[1].y + mv[2].y + mv[3].y; uv_dy = (sum >> 3) + roundtab_76[sum & 0xf]; start_timer(); if (reduced_resolution) { interpolate16x16_switch(dec->cur.y, dec->refn[0].y, 32*x_pos, 32*y_pos, mv[0].x, mv[0].y, stride, rounding); interpolate16x16_switch(dec->cur.y, dec->refn[0].y , 32*x_pos + 16, 32*y_pos, mv[1].x, mv[1].y, stride, rounding); interpolate16x16_switch(dec->cur.y, dec->refn[0].y , 32*x_pos, 32*y_pos + 16, mv[2].x, mv[2].y, stride, rounding); interpolate16x16_switch(dec->cur.y, dec->refn[0].y , 32*x_pos + 16, 32*y_pos + 16, mv[3].x, mv[3].y, stride, rounding); interpolate16x16_switch(dec->cur.u, dec->refn[0].u , 16 * x_pos, 16 * y_pos, uv_dx, uv_dy, stride2, rounding); interpolate16x16_switch(dec->cur.v, dec->refn[0].v , 16 * x_pos, 16 * y_pos, uv_dx, uv_dy, stride2, rounding); /* set_block(pY_Cur, stride, 32, 32, 127); */ } else { if(dec->quarterpel) { interpolate8x8_quarterpel(dec->cur.y, dec->refn[0].y , dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos, 16*y_pos, mv[0].x, mv[0].y, stride, rounding); interpolate8x8_quarterpel(dec->cur.y, dec->refn[0].y , dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos + 8, 16*y_pos, mv[1].x, mv[1].y, stride, rounding); interpolate8x8_quarterpel(dec->cur.y, dec->refn[0].y , dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos, 16*y_pos + 8, mv[2].x, mv[2].y, stride, rounding); interpolate8x8_quarterpel(dec->cur.y, dec->refn[0].y , dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos + 8, 16*y_pos + 8, mv[3].x, mv[3].y, stride, rounding); } else { interpolate8x8_switch(dec->cur.y, dec->refn[0].y , 16*x_pos, 16*y_pos, mv[0].x, mv[0].y, stride, rounding); interpolate8x8_switch(dec->cur.y, dec->refn[0].y , 16*x_pos + 8, 16*y_pos, mv[1].x, mv[1].y, stride, rounding); interpolate8x8_switch(dec->cur.y, dec->refn[0].y , 16*x_pos, 16*y_pos + 8, mv[2].x, mv[2].y, stride, rounding); interpolate8x8_switch(dec->cur.y, dec->refn[0].y , 16*x_pos + 8, 16*y_pos + 8, mv[3].x, mv[3].y, stride, rounding); } interpolate8x8_switch(dec->cur.u, dec->refn[0].u , 8 * x_pos, 8 * y_pos, uv_dx, uv_dy, stride2, rounding); interpolate8x8_switch(dec->cur.v, dec->refn[0].v , 8 * x_pos, 8 * y_pos, uv_dx, uv_dy, stride2, rounding); } stop_comp_timer(); } for (i = 0; i < 6; i++) { int direction = dec->alternate_vertical_scan ? 2 : 0; if (cbp & (1 << (5 - i))) /* coded */ { memset(&block[i * 64], 0, 64 * sizeof(int16_t)); /* clear */ start_timer(); get_inter_block(bs, &block[i * 64], direction); stop_coding_timer(); start_timer(); if (dec->quant_type == 0) { dequant_inter(&data[i * 64], &block[i * 64], iQuant); } else { dequant4_inter(&data[i * 64], &block[i * 64], iQuant); } stop_iquant_timer(); start_timer(); idct(&data[i * 64]); stop_idct_timer(); } } if (dec->interlacing && pMB->field_dct) { next_block = stride; stride *= 2; } start_timer(); if (reduced_resolution) { if (cbp & 32) add_upsampled_8x8_16to8(pY_Cur, &data[0 * 64], stride); if (cbp & 16) add_upsampled_8x8_16to8(pY_Cur + 16, &data[1 * 64], stride); if (cbp & 8) add_upsampled_8x8_16to8(pY_Cur + next_block, &data[2 * 64], stride); if (cbp & 4) add_upsampled_8x8_16to8(pY_Cur + 16 + next_block, &data[3 * 64], stride); if (cbp & 2) add_upsampled_8x8_16to8(pU_Cur, &data[4 * 64], stride2); if (cbp & 1) add_upsampled_8x8_16to8(pV_Cur, &data[5 * 64], stride2); } else { if (cbp & 32) transfer_16to8add(pY_Cur, &data[0 * 64], stride); if (cbp & 16) transfer_16to8add(pY_Cur + 8, &data[1 * 64], stride); if (cbp & 8) transfer_16to8add(pY_Cur + next_block, &data[2 * 64], stride); if (cbp & 4) transfer_16to8add(pY_Cur + 8 + next_block, &data[3 * 64], stride); if (cbp & 2) transfer_16to8add(pU_Cur, &data[4 * 64], stride2); if (cbp & 1) transfer_16to8add(pV_Cur, &data[5 * 64], stride2); } stop_transfer_timer(); } static void decoder_mbgmc(DECODER * dec, MACROBLOCK * const pMB, const uint32_t x_pos, const uint32_t y_pos, const uint32_t fcode, const uint32_t cbp, Bitstream * bs, const uint32_t quant, const uint32_t rounding, const int reduced_resolution) /* no reduced res support */ { DECLARE_ALIGNED_MATRIX(block, 6, 64, int16_t, CACHE_LINE); DECLARE_ALIGNED_MATRIX(data, 6, 64, int16_t, CACHE_LINE); const uint32_t stride = dec->edged_width; const uint32_t stride2 = stride / 2; const uint32_t next_block = stride * (reduced_resolution ? 16 : 8); uint32_t i; const uint32_t iQuant = pMB->quant; uint8_t *const pY_Cur=dec->cur.y + (y_pos << 4) * stride + (x_pos << 4); uint8_t *const pU_Cur=dec->cur.u + (y_pos << 3) * stride2 + (x_pos << 3); uint8_t *const pV_Cur=dec->cur.v + (y_pos << 3) * stride2 + (x_pos << 3); pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = pMB->amv; start_timer(); /* this is where the calculations are done */ { NEW_GMC_DATA * gmc_data = &dec->new_gmc_data; gmc_data->predict_16x16(gmc_data, dec->cur.y + y_pos*16*stride + x_pos*16, dec->refn[0].y, stride, stride, x_pos, y_pos, rounding); gmc_data->predict_8x8(gmc_data, dec->cur.u + y_pos*8*stride2 + x_pos*8, dec->refn[0].u, dec->cur.v + y_pos*8*stride2 + x_pos*8, dec->refn[0].v, stride2, stride2, x_pos, y_pos, rounding); gmc_data->get_average_mv(gmc_data, &pMB->amv, x_pos, y_pos, dec->quarterpel); pMB->amv.x = gmc_sanitize(pMB->amv.x, dec->quarterpel, fcode); pMB->amv.y = gmc_sanitize(pMB->amv.y, dec->quarterpel, fcode); } pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = pMB->amv; /* transfer16x16_copy(pY_Cur, dec->gmc.y + (y_pos << 4)*stride + (x_pos << 4), stride); transfer8x8_copy(pU_Cur, dec->gmc.u + (y_pos << 3)*stride2 + (x_pos << 3), stride2); transfer8x8_copy(pV_Cur, dec->gmc.v + (y_pos << 3)*stride2 + (x_pos << 3), stride2); */ stop_transfer_timer(); if (!cbp) return; for (i = 0; i < 6; i++) { int direction = dec->alternate_vertical_scan ? 2 : 0; if (cbp & (1 << (5 - i))) /* coded */ { memset(&block[i * 64], 0, 64 * sizeof(int16_t)); /* clear */ start_timer(); get_inter_block(bs, &block[i * 64], direction); stop_coding_timer(); start_timer(); if (dec->quant_type == 0) { dequant_inter(&data[i * 64], &block[i * 64], iQuant); } else { dequant4_inter(&data[i * 64], &block[i * 64], iQuant); } stop_iquant_timer(); start_timer(); idct(&data[i * 64]); stop_idct_timer(); } } /* interlace + GMC is this possible ??? */ /* if (dec->interlacing && pMB->field_dct) { next_block = stride; stride *= 2; } */ start_timer(); if (cbp & 32) transfer_16to8add(pY_Cur, &data[0 * 64], stride); if (cbp & 16) transfer_16to8add(pY_Cur + 8, &data[1 * 64], stride); if (cbp & 8) transfer_16to8add(pY_Cur + next_block, &data[2 * 64], stride); if (cbp & 4) transfer_16to8add(pY_Cur + 8 + next_block, &data[3 * 64], stride); if (cbp & 2) transfer_16to8add(pU_Cur, &data[4 * 64], stride2); if (cbp & 1) transfer_16to8add(pV_Cur, &data[5 * 64], stride2); stop_transfer_timer(); } void decoder_iframe(DECODER * dec, Bitstream * bs, int reduced_resolution, int quant, int intra_dc_threshold) { uint32_t bound; uint32_t x, y; uint32_t mb_width = dec->mb_width; uint32_t mb_height = dec->mb_height; if (reduced_resolution) { mb_width = (dec->width + 31) / 32; mb_height = (dec->height + 31) / 32; } bound = 0; for (y = 0; y < mb_height; y++) { for (x = 0; x < mb_width; x++) { MACROBLOCK *mb; uint32_t mcbpc; uint32_t cbpc; uint32_t acpred_flag; uint32_t cbpy; uint32_t cbp; while (BitstreamShowBits(bs, 9) == 1) BitstreamSkip(bs, 9); if (check_resync_marker(bs, 0)) { bound = read_video_packet_header(bs, dec, 0, &quant, NULL, NULL, &intra_dc_threshold); x = bound % mb_width; y = bound / mb_width; } mb = &dec->mbs[y * dec->mb_width + x]; DPRINTF(XVID_DEBUG_MB, "macroblock (%i,%i) %08x\n", x, y, BitstreamShowBits(bs, 32)); mcbpc = get_mcbpc_intra(bs); mb->mode = mcbpc & 7; cbpc = (mcbpc >> 4); acpred_flag = BitstreamGetBit(bs); cbpy = get_cbpy(bs, 1); cbp = (cbpy << 2) | cbpc; if (mb->mode == MODE_INTRA_Q) { quant += dquant_table[BitstreamGetBits(bs, 2)]; if (quant > 31) { quant = 31; } else if (quant < 1) { quant = 1; } } mb->quant = quant; mb->mvs[0].x = mb->mvs[0].y = mb->mvs[1].x = mb->mvs[1].y = mb->mvs[2].x = mb->mvs[2].y = mb->mvs[3].x = mb->mvs[3].y =0; if (dec->interlacing) { mb->field_dct = BitstreamGetBit(bs); DPRINTF(XVID_DEBUG_MB,"deci: field_dct: %i\n", mb->field_dct); } decoder_mbintra(dec, mb, x, y, acpred_flag, cbp, bs, quant, intra_dc_threshold, bound, reduced_resolution); } if(dec->out_frm) output_slice(&dec->cur, dec->edged_width,dec->width,dec->out_frm,0,y,mb_width); } } void get_motion_vector(DECODER * dec, Bitstream * bs, int x, int y, int k, VECTOR * ret_mv, int fcode, const int bound) { int scale_fac = 1 << (fcode - 1); int high = (32 * scale_fac) - 1; int low = ((-32) * scale_fac); int range = (64 * scale_fac); VECTOR pmv; VECTOR mv; pmv = get_pmv2(dec->mbs, dec->mb_width, bound, x, y, k); mv.x = get_mv(bs, fcode); mv.y = get_mv(bs, fcode); DPRINTF(XVID_DEBUG_MV,"mv_diff (%i,%i) pred (%i,%i) result (%i,%i)\n", mv.x, mv.y, pmv.x, pmv.y, mv.x+pmv.x, mv.y+pmv.y); mv.x += pmv.x; mv.y += pmv.y; if (mv.x < low) { mv.x += range; } else if (mv.x > high) { mv.x -= range; } if (mv.y < low) { mv.y += range; } else if (mv.y > high) { mv.y -= range; } ret_mv->x = mv.x; ret_mv->y = mv.y; } /* for P_VOP set gmc_warp to NULL */ void decoder_pframe(DECODER * dec, Bitstream * bs, int rounding, int reduced_resolution, int quant, int fcode, int intra_dc_threshold, const WARPPOINTS *const gmc_warp) { uint32_t x, y; uint32_t bound; int cp_mb, st_mb; uint32_t mb_width = dec->mb_width; uint32_t mb_height = dec->mb_height; if (reduced_resolution) { mb_width = (dec->width + 31) / 32; mb_height = (dec->height + 31) / 32; } start_timer(); image_setedges(&dec->refn[0], dec->edged_width, dec->edged_height, dec->width, dec->height); stop_edges_timer(); if (gmc_warp) { /* accuracy: 0==1/2, 1=1/4, 2=1/8, 3=1/16 */ /* { fprintf(stderr,"GMC parameters acc=%d(-> 1/%d), %d pts!!!\n", dec->sprite_warping_accuracy,(2<sprite_warping_accuracy), dec->sprite_warping_points); }*/ generate_GMCparameters( dec->sprite_warping_points, dec->sprite_warping_accuracy, gmc_warp, dec->width, dec->height, &dec->new_gmc_data); /* image warping is done block-based in decoder_mbgmc(), now */ } bound = 0; for (y = 0; y < mb_height; y++) { cp_mb = st_mb = 0; for (x = 0; x < mb_width; x++) { MACROBLOCK *mb; /* skip stuffing */ while (BitstreamShowBits(bs, 10) == 1) BitstreamSkip(bs, 10); if (check_resync_marker(bs, fcode - 1)) { bound = read_video_packet_header(bs, dec, fcode - 1, &quant, &fcode, NULL, &intra_dc_threshold); x = bound % mb_width; y = bound / mb_width; } mb = &dec->mbs[y * dec->mb_width + x]; DPRINTF(XVID_DEBUG_MB, "macroblock (%i,%i) %08x\n", x, y, BitstreamShowBits(bs, 32)); /* if (!(dec->mb_skip[y*dec->mb_width + x]=BitstreamGetBit(bs))) */ /* not_coded */ if (!(BitstreamGetBit(bs))) /* block _is_ coded */ { uint32_t mcbpc; uint32_t cbpc; uint32_t acpred_flag; uint32_t cbpy; uint32_t cbp; uint32_t intra; int mcsel = 0; /* mcsel: '0'=local motion, '1'=GMC */ cp_mb++; mcbpc = get_mcbpc_inter(bs); mb->mode = mcbpc & 7; cbpc = (mcbpc >> 4); DPRINTF(XVID_DEBUG_MB, "mode %i\n", mb->mode); DPRINTF(XVID_DEBUG_MB, "cbpc %i\n", cbpc); acpred_flag = 0; intra = (mb->mode == MODE_INTRA || mb->mode == MODE_INTRA_Q); if (gmc_warp && (mb->mode == MODE_INTER || mb->mode == MODE_INTER_Q)) mcsel = BitstreamGetBit(bs); if (intra) acpred_flag = BitstreamGetBit(bs); cbpy = get_cbpy(bs, intra); DPRINTF(XVID_DEBUG_MB, "cbpy %i mcsel %i \n", cbpy,mcsel); cbp = (cbpy << 2) | cbpc; if (mb->mode == MODE_INTER_Q || mb->mode == MODE_INTRA_Q) { int dquant = dquant_table[BitstreamGetBits(bs, 2)]; DPRINTF(XVID_DEBUG_MB, "dquant %i\n", dquant); quant += dquant; if (quant > 31) { quant = 31; } else if (quant < 1) { quant = 1; } DPRINTF(XVID_DEBUG_MB, "quant %i\n", quant); } mb->quant = quant; if (dec->interlacing) { if (cbp || intra) { mb->field_dct = BitstreamGetBit(bs); DPRINTF(XVID_DEBUG_MB,"decp: field_dct: %i\n", mb->field_dct); } if (mb->mode == MODE_INTER || mb->mode == MODE_INTER_Q) { mb->field_pred = BitstreamGetBit(bs); DPRINTF(XVID_DEBUG_MB, "decp: field_pred: %i\n", mb->field_pred); if (mb->field_pred) { mb->field_for_top = BitstreamGetBit(bs); DPRINTF(XVID_DEBUG_MB,"decp: field_for_top: %i\n", mb->field_for_top); mb->field_for_bot = BitstreamGetBit(bs); DPRINTF(XVID_DEBUG_MB,"decp: field_for_bot: %i\n", mb->field_for_bot); } } } if (mcsel) { decoder_mbgmc(dec, mb, x, y, fcode, cbp, bs, quant, rounding, reduced_resolution); continue; } else if (mb->mode == MODE_INTER || mb->mode == MODE_INTER_Q) { if (dec->interlacing && mb->field_pred) { get_motion_vector(dec, bs, x, y, 0, &mb->mvs[0], fcode, bound); get_motion_vector(dec, bs, x, y, 0, &mb->mvs[1], fcode, bound); } else { get_motion_vector(dec, bs, x, y, 0, &mb->mvs[0], fcode, bound); mb->mvs[1] = mb->mvs[2] = mb->mvs[3] = mb->mvs[0]; } } else if (mb->mode == MODE_INTER4V ) { get_motion_vector(dec, bs, x, y, 0, &mb->mvs[0], fcode, bound); get_motion_vector(dec, bs, x, y, 1, &mb->mvs[1], fcode, bound); get_motion_vector(dec, bs, x, y, 2, &mb->mvs[2], fcode, bound); get_motion_vector(dec, bs, x, y, 3, &mb->mvs[3], fcode, bound); } else /* MODE_INTRA, MODE_INTRA_Q */ { mb->mvs[0].x = mb->mvs[1].x = mb->mvs[2].x = mb->mvs[3].x = 0; mb->mvs[0].y = mb->mvs[1].y = mb->mvs[2].y = mb->mvs[3].y = 0; decoder_mbintra(dec, mb, x, y, acpred_flag, cbp, bs, quant, intra_dc_threshold, bound, reduced_resolution); continue; } decoder_mbinter(dec, mb, x, y, fcode, cbp, bs, quant, rounding, reduced_resolution); } else if (gmc_warp) /* a not coded S(GMC)-VOP macroblock */ { mb->mode = MODE_NOT_CODED_GMC; start_timer(); decoder_mbgmc(dec, mb, x, y, fcode, 0x00, bs, quant, rounding, reduced_resolution); stop_transfer_timer(); if(dec->out_frm && cp_mb > 0) { output_slice(&dec->cur, dec->edged_width,dec->width,dec->out_frm,st_mb,y,cp_mb); cp_mb = 0; } st_mb = x+1; } else /* not coded P_VOP macroblock */ { mb->mode = MODE_NOT_CODED; mb->mvs[0].x = mb->mvs[1].x = mb->mvs[2].x = mb->mvs[3].x = 0; mb->mvs[0].y = mb->mvs[1].y = mb->mvs[2].y = mb->mvs[3].y = 0; /* copy macroblock directly from ref to cur */ start_timer(); if (reduced_resolution) { transfer32x32_copy(dec->cur.y + (32*y)*dec->edged_width + (32*x), dec->refn[0].y + (32*y)*dec->edged_width + (32*x), dec->edged_width); transfer16x16_copy(dec->cur.u + (16*y)*dec->edged_width/2 + (16*x), dec->refn[0].u + (16*y)*dec->edged_width/2 + (16*x), dec->edged_width/2); transfer16x16_copy(dec->cur.v + (16*y)*dec->edged_width/2 + (16*x), dec->refn[0].v + (16*y)*dec->edged_width/2 + (16*x), dec->edged_width/2); } else { transfer16x16_copy(dec->cur.y + (16*y)*dec->edged_width + (16*x), dec->refn[0].y + (16*y)*dec->edged_width + (16*x), dec->edged_width); transfer8x8_copy(dec->cur.u + (8*y)*dec->edged_width/2 + (8*x), dec->refn[0].u + (8*y)*dec->edged_width/2 + (8*x), dec->edged_width/2); transfer8x8_copy(dec->cur.v + (8*y)*dec->edged_width/2 + (8*x), dec->refn[0].v + (8*y)*dec->edged_width/2 + (8*x), dec->edged_width/2); } stop_transfer_timer(); if(dec->out_frm && cp_mb > 0) { output_slice(&dec->cur, dec->edged_width,dec->width,dec->out_frm,st_mb,y,cp_mb); cp_mb = 0; } st_mb = x+1; } } if(dec->out_frm && cp_mb > 0) output_slice(&dec->cur, dec->edged_width,dec->width,dec->out_frm,st_mb,y,cp_mb); } } /* decode B-frame motion vector */ void get_b_motion_vector(DECODER * dec, Bitstream * bs, int x, int y, VECTOR * mv, int fcode, const VECTOR pmv) { int scale_fac = 1 << (fcode - 1); int high = (32 * scale_fac) - 1; int low = ((-32) * scale_fac); int range = (64 * scale_fac); int mv_x, mv_y; int pmv_x, pmv_y; pmv_x = pmv.x; pmv_y = pmv.y; mv_x = get_mv(bs, fcode); mv_y = get_mv(bs, fcode); mv_x += pmv_x; mv_y += pmv_y; if (mv_x < low) { mv_x += range; } else if (mv_x > high) { mv_x -= range; } if (mv_y < low) { mv_y += range; } else if (mv_y > high) { mv_y -= range; } mv->x = mv_x; mv->y = mv_y; } /* decode an B-frame forward & backward inter macroblock */ void decoder_bf_mbinter(DECODER * dec, const MACROBLOCK * pMB, const uint32_t x_pos, const uint32_t y_pos, const uint32_t cbp, Bitstream * bs, const uint32_t quant, const uint8_t ref) { DECLARE_ALIGNED_MATRIX(block, 6, 64, int16_t, CACHE_LINE); DECLARE_ALIGNED_MATRIX(data, 6, 64, int16_t, CACHE_LINE); uint32_t stride = dec->edged_width; uint32_t stride2 = stride / 2; uint32_t next_block = stride * 8; uint32_t i; uint32_t iQuant = pMB->quant; uint8_t *pY_Cur, *pU_Cur, *pV_Cur; int uv_dx, uv_dy; pY_Cur = dec->cur.y + (y_pos << 4) * stride + (x_pos << 4); pU_Cur = dec->cur.u + (y_pos << 3) * stride2 + (x_pos << 3); pV_Cur = dec->cur.v + (y_pos << 3) * stride2 + (x_pos << 3); if (!(pMB->mode == MODE_INTER || pMB->mode == MODE_INTER_Q)) { uv_dx = pMB->mvs[0].x; uv_dy = pMB->mvs[0].y; if (dec->quarterpel) { uv_dx /= 2; uv_dy /= 2; } uv_dx = (uv_dx >> 1) + roundtab_79[uv_dx & 0x3]; uv_dy = (uv_dy >> 1) + roundtab_79[uv_dy & 0x3]; } else { int sum; if(dec->quarterpel) sum = (pMB->mvs[0].x / 2) + (pMB->mvs[1].x / 2) + (pMB->mvs[2].x / 2) + (pMB->mvs[3].x / 2); else sum = pMB->mvs[0].x + pMB->mvs[1].x + pMB->mvs[2].x + pMB->mvs[3].x; uv_dx = (sum >> 3) + roundtab_76[sum & 0xf]; if(dec->quarterpel) sum = (pMB->mvs[0].y / 2) + (pMB->mvs[1].y / 2) + (pMB->mvs[2].y / 2) + (pMB->mvs[3].y / 2); else sum = pMB->mvs[0].y + pMB->mvs[1].y + pMB->mvs[2].y + pMB->mvs[3].y; uv_dy = (sum >> 3) + roundtab_76[sum & 0xf]; } start_timer(); if(dec->quarterpel) { interpolate16x16_quarterpel(dec->cur.y, dec->refn[ref].y, dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos, 16*y_pos, pMB->mvs[0].x, pMB->mvs[0].y, stride, 0); } else { interpolate8x8_switch(dec->cur.y, dec->refn[ref].y, 16*x_pos, 16*y_pos, pMB->mvs[0].x, pMB->mvs[0].y, stride, 0); interpolate8x8_switch(dec->cur.y, dec->refn[ref].y, 16*x_pos + 8, 16*y_pos, pMB->mvs[1].x, pMB->mvs[1].y, stride, 0); interpolate8x8_switch(dec->cur.y, dec->refn[ref].y, 16*x_pos, 16*y_pos + 8, pMB->mvs[2].x, pMB->mvs[2].y, stride, 0); interpolate8x8_switch(dec->cur.y, dec->refn[ref].y, 16*x_pos + 8, 16*y_pos + 8, pMB->mvs[3].x, pMB->mvs[3].y, stride, 0); } interpolate8x8_switch(dec->cur.u, dec->refn[ref].u, 8 * x_pos, 8 * y_pos, uv_dx, uv_dy, stride2, 0); interpolate8x8_switch(dec->cur.v, dec->refn[ref].v, 8 * x_pos, 8 * y_pos, uv_dx, uv_dy, stride2, 0); stop_comp_timer(); for (i = 0; i < 6; i++) { int direction = dec->alternate_vertical_scan ? 2 : 0; if (cbp & (1 << (5 - i))) /* coded */ { memset(&block[i * 64], 0, 64 * sizeof(int16_t)); /* clear */ start_timer(); get_inter_block(bs, &block[i * 64], direction); stop_coding_timer(); start_timer(); if (dec->quant_type == 0) { dequant_inter(&data[i * 64], &block[i * 64], iQuant); } else { dequant4_inter(&data[i * 64], &block[i * 64], iQuant); } stop_iquant_timer(); start_timer(); idct(&data[i * 64]); stop_idct_timer(); } } if (dec->interlacing && pMB->field_dct) { next_block = stride; stride *= 2; } start_timer(); if (cbp & 32) transfer_16to8add(pY_Cur, &data[0 * 64], stride); if (cbp & 16) transfer_16to8add(pY_Cur + 8, &data[1 * 64], stride); if (cbp & 8) transfer_16to8add(pY_Cur + next_block, &data[2 * 64], stride); if (cbp & 4) transfer_16to8add(pY_Cur + 8 + next_block, &data[3 * 64], stride); if (cbp & 2) transfer_16to8add(pU_Cur, &data[4 * 64], stride2); if (cbp & 1) transfer_16to8add(pV_Cur, &data[5 * 64], stride2); stop_transfer_timer(); } /* decode an B-frame direct & inter macroblock */ void decoder_bf_interpolate_mbinter(DECODER * dec, IMAGE forward, IMAGE backward, const MACROBLOCK * pMB, const uint32_t x_pos, const uint32_t y_pos, Bitstream * bs) { DECLARE_ALIGNED_MATRIX(block, 6, 64, int16_t, CACHE_LINE); DECLARE_ALIGNED_MATRIX(data, 6, 64, int16_t, CACHE_LINE); uint32_t stride = dec->edged_width; uint32_t stride2 = stride / 2; uint32_t next_block = stride * 8; uint32_t iQuant = pMB->quant; int uv_dx, uv_dy; int b_uv_dx, b_uv_dy; uint32_t i; uint8_t *pY_Cur, *pU_Cur, *pV_Cur; const uint32_t cbp = pMB->cbp; pY_Cur = dec->cur.y + (y_pos << 4) * stride + (x_pos << 4); pU_Cur = dec->cur.u + (y_pos << 3) * stride2 + (x_pos << 3); pV_Cur = dec->cur.v + (y_pos << 3) * stride2 + (x_pos << 3); if ((pMB->mode == MODE_INTER || pMB->mode == MODE_INTER_Q)) { uv_dx = pMB->mvs[0].x; uv_dy = pMB->mvs[0].y; b_uv_dx = pMB->b_mvs[0].x; b_uv_dy = pMB->b_mvs[0].y; if (dec->quarterpel) { uv_dx /= 2; uv_dy /= 2; b_uv_dx /= 2; b_uv_dy /= 2; } uv_dx = (uv_dx >> 1) + roundtab_79[uv_dx & 0x3]; uv_dy = (uv_dy >> 1) + roundtab_79[uv_dy & 0x3]; b_uv_dx = (b_uv_dx >> 1) + roundtab_79[b_uv_dx & 0x3]; b_uv_dy = (b_uv_dy >> 1) + roundtab_79[b_uv_dy & 0x3]; } else { int sum; if(dec->quarterpel) sum = (pMB->mvs[0].x / 2) + (pMB->mvs[1].x / 2) + (pMB->mvs[2].x / 2) + (pMB->mvs[3].x / 2); else sum = pMB->mvs[0].x + pMB->mvs[1].x + pMB->mvs[2].x + pMB->mvs[3].x; uv_dx = (sum >> 3) + roundtab_76[sum & 0xf]; if(dec->quarterpel) sum = (pMB->mvs[0].y / 2) + (pMB->mvs[1].y / 2) + (pMB->mvs[2].y / 2) + (pMB->mvs[3].y / 2); else sum = pMB->mvs[0].y + pMB->mvs[1].y + pMB->mvs[2].y + pMB->mvs[3].y; uv_dy = (sum >> 3) + roundtab_76[sum & 0xf]; if(dec->quarterpel) sum = (pMB->b_mvs[0].x / 2) + (pMB->b_mvs[1].x / 2) + (pMB->b_mvs[2].x / 2) + (pMB->b_mvs[3].x / 2); else sum = pMB->b_mvs[0].x + pMB->b_mvs[1].x + pMB->b_mvs[2].x + pMB->b_mvs[3].x; b_uv_dx = (sum >> 3) + roundtab_76[sum & 0xf]; if(dec->quarterpel) sum = (pMB->b_mvs[0].y / 2) + (pMB->b_mvs[1].y / 2) + (pMB->b_mvs[2].y / 2) + (pMB->b_mvs[3].y / 2); else sum = pMB->b_mvs[0].y + pMB->b_mvs[1].y + pMB->b_mvs[2].y + pMB->b_mvs[3].y; b_uv_dy = (sum >> 3) + roundtab_76[sum & 0xf]; } start_timer(); if(dec->quarterpel) { if((pMB->mode == MODE_INTER || pMB->mode == MODE_INTER_Q)) interpolate16x16_quarterpel(dec->cur.y, forward.y, dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos, 16*y_pos, pMB->mvs[0].x, pMB->mvs[0].y, stride, 0); else { interpolate8x8_quarterpel(dec->cur.y, forward.y, dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos, 16*y_pos, pMB->mvs[0].x, pMB->mvs[0].y, stride, 0); interpolate8x8_quarterpel(dec->cur.y, forward.y, dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos + 8, 16*y_pos, pMB->mvs[1].x, pMB->mvs[1].y, stride, 0); interpolate8x8_quarterpel(dec->cur.y, forward.y, dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos, 16*y_pos + 8, pMB->mvs[2].x, pMB->mvs[2].y, stride, 0); interpolate8x8_quarterpel(dec->cur.y, forward.y, dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos + 8, 16*y_pos + 8, pMB->mvs[3].x, pMB->mvs[3].y, stride, 0); } } else { interpolate8x8_switch(dec->cur.y, forward.y, 16 * x_pos, 16 * y_pos, pMB->mvs[0].x, pMB->mvs[0].y, stride, 0); interpolate8x8_switch(dec->cur.y, forward.y, 16 * x_pos + 8, 16 * y_pos, pMB->mvs[1].x, pMB->mvs[1].y, stride, 0); interpolate8x8_switch(dec->cur.y, forward.y, 16 * x_pos, 16 * y_pos + 8, pMB->mvs[2].x, pMB->mvs[2].y, stride, 0); interpolate8x8_switch(dec->cur.y, forward.y, 16 * x_pos + 8, 16 * y_pos + 8, pMB->mvs[3].x, pMB->mvs[3].y, stride, 0); } interpolate8x8_switch(dec->cur.u, forward.u, 8 * x_pos, 8 * y_pos, uv_dx, uv_dy, stride2, 0); interpolate8x8_switch(dec->cur.v, forward.v, 8 * x_pos, 8 * y_pos, uv_dx, uv_dy, stride2, 0); if(dec->quarterpel) { if((pMB->mode == MODE_INTER || pMB->mode == MODE_INTER_Q)) interpolate16x16_quarterpel(dec->tmp.y, backward.y, dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos, 16*y_pos, pMB->b_mvs[0].x, pMB->b_mvs[0].y, stride, 0); else { interpolate8x8_quarterpel(dec->tmp.y, backward.y, dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos, 16*y_pos, pMB->b_mvs[0].x, pMB->b_mvs[0].y, stride, 0); interpolate8x8_quarterpel(dec->tmp.y, backward.y, dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos + 8, 16*y_pos, pMB->b_mvs[1].x, pMB->b_mvs[1].y, stride, 0); interpolate8x8_quarterpel(dec->tmp.y, backward.y, dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos, 16*y_pos + 8, pMB->b_mvs[2].x, pMB->b_mvs[2].y, stride, 0); interpolate8x8_quarterpel(dec->tmp.y, backward.y, dec->qtmp.y, dec->qtmp.y + 64, dec->qtmp.y + 128, 16*x_pos + 8, 16*y_pos + 8, pMB->b_mvs[3].x, pMB->b_mvs[3].y, stride, 0); } } else { interpolate8x8_switch(dec->tmp.y, backward.y, 16 * x_pos, 16 * y_pos, pMB->b_mvs[0].x, pMB->b_mvs[0].y, stride, 0); interpolate8x8_switch(dec->tmp.y, backward.y, 16 * x_pos + 8, 16 * y_pos, pMB->b_mvs[1].x, pMB->b_mvs[1].y, stride, 0); interpolate8x8_switch(dec->tmp.y, backward.y, 16 * x_pos, 16 * y_pos + 8, pMB->b_mvs[2].x, pMB->b_mvs[2].y, stride, 0); interpolate8x8_switch(dec->tmp.y, backward.y, 16 * x_pos + 8, 16 * y_pos + 8, pMB->b_mvs[3].x, pMB->b_mvs[3].y, stride, 0); } interpolate8x8_switch(dec->tmp.u, backward.u, 8 * x_pos, 8 * y_pos, b_uv_dx, b_uv_dy, stride2, 0); interpolate8x8_switch(dec->tmp.v, backward.v, 8 * x_pos, 8 * y_pos, b_uv_dx, b_uv_dy, stride2, 0); interpolate8x8_avg2(dec->cur.y + (16 * y_pos * stride) + 16 * x_pos, dec->cur.y + (16 * y_pos * stride) + 16 * x_pos, dec->tmp.y + (16 * y_pos * stride) + 16 * x_pos, stride, 1, 8); interpolate8x8_avg2(dec->cur.y + (16 * y_pos * stride) + 16 * x_pos + 8, dec->cur.y + (16 * y_pos * stride) + 16 * x_pos + 8, dec->tmp.y + (16 * y_pos * stride) + 16 * x_pos + 8, stride, 1, 8); interpolate8x8_avg2(dec->cur.y + ((16 * y_pos + 8) * stride) + 16 * x_pos, dec->cur.y + ((16 * y_pos + 8) * stride) + 16 * x_pos, dec->tmp.y + ((16 * y_pos + 8) * stride) + 16 * x_pos, stride, 1, 8); interpolate8x8_avg2(dec->cur.y + ((16 * y_pos + 8) * stride) + 16 * x_pos + 8, dec->cur.y + ((16 * y_pos + 8) * stride) + 16 * x_pos + 8, dec->tmp.y + ((16 * y_pos + 8) * stride) + 16 * x_pos + 8, stride, 1, 8); interpolate8x8_avg2(dec->cur.u + (8 * y_pos * stride2) + 8 * x_pos, dec->cur.u + (8 * y_pos * stride2) + 8 * x_pos, dec->tmp.u + (8 * y_pos * stride2) + 8 * x_pos, stride2, 1, 8); interpolate8x8_avg2(dec->cur.v + (8 * y_pos * stride2) + 8 * x_pos, dec->cur.v + (8 * y_pos * stride2) + 8 * x_pos, dec->tmp.v + (8 * y_pos * stride2) + 8 * x_pos, stride2, 1, 8); stop_comp_timer(); for (i = 0; i < 6; i++) { int direction = dec->alternate_vertical_scan ? 2 : 0; if (cbp & (1 << (5 - i))) /* coded */ { memset(&block[i * 64], 0, 64 * sizeof(int16_t)); /* clear */ start_timer(); get_inter_block(bs, &block[i * 64], direction); stop_coding_timer(); start_timer(); if (dec->quant_type == 0) { dequant_inter(&data[i * 64], &block[i * 64], iQuant); } else { dequant4_inter(&data[i * 64], &block[i * 64], iQuant); } stop_iquant_timer(); start_timer(); idct(&data[i * 64]); stop_idct_timer(); } } if (dec->interlacing && pMB->field_dct) { next_block = stride; stride *= 2; } start_timer(); if (cbp & 32) transfer_16to8add(pY_Cur, &data[0 * 64], stride); if (cbp & 16) transfer_16to8add(pY_Cur + 8, &data[1 * 64], stride); if (cbp & 8) transfer_16to8add(pY_Cur + next_block, &data[2 * 64], stride); if (cbp & 4) transfer_16to8add(pY_Cur + 8 + next_block, &data[3 * 64], stride); if (cbp & 2) transfer_16to8add(pU_Cur, &data[4 * 64], stride2); if (cbp & 1) transfer_16to8add(pV_Cur, &data[5 * 64], stride2); stop_transfer_timer(); } /* for decode B-frame dbquant */ int32_t __inline get_dbquant(Bitstream * bs) { if (!BitstreamGetBit(bs)) /* '0' */ return (0); else if (!BitstreamGetBit(bs)) /* '10' */ return (-2); else /* '11' */ return (2); } /* * For decode B-frame mb_type * bit ret_value * 1 0 * 01 1 * 001 2 * 0001 3 */ int32_t __inline get_mbtype(Bitstream * bs) { int32_t mb_type; for (mb_type = 0; mb_type <= 3; mb_type++) { if (BitstreamGetBit(bs)) break; } if (mb_type <= 3) return (mb_type); else return (-1); } void decoder_bframe(DECODER * dec, Bitstream * bs, int quant, int fcode_forward, int fcode_backward) { uint32_t x, y; VECTOR mv; const VECTOR zeromv = {0,0}; #ifdef BFRAMES_DEC_DEBUG FILE *fp; static char first=0; #define BFRAME_DEBUG if (!first && fp){ \ fprintf(fp,"Y=%3d X=%3d MB=%2d CBP=%02X\n",y,x,mb->mb_type,mb->cbp); \ } #endif start_timer(); image_setedges(&dec->refn[0], dec->edged_width, dec->edged_height, dec->width, dec->height); image_setedges(&dec->refn[1], dec->edged_width, dec->edged_height, dec->width, dec->height); stop_edges_timer(); #ifdef BFRAMES_DEC_DEBUG if (!first){ fp=fopen("C:\\XVIDDBG.TXT","w"); } #endif for (y = 0; y < dec->mb_height; y++) { /* Initialize Pred Motion Vector */ dec->p_fmv = dec->p_bmv = zeromv; for (x = 0; x < dec->mb_width; x++) { MACROBLOCK *mb = &dec->mbs[y * dec->mb_width + x]; MACROBLOCK *last_mb = &dec->last_mbs[y * dec->mb_width + x]; mv = mb->b_mvs[0] = mb->b_mvs[1] = mb->b_mvs[2] = mb->b_mvs[3] = mb->mvs[0] = mb->mvs[1] = mb->mvs[2] = mb->mvs[3] = zeromv; /* * skip if the co-located P_VOP macroblock is not coded * if not codec in co-located S_VOP macroblock is _not_ * automatically skipped */ if (last_mb->mode == MODE_NOT_CODED) { /* DEBUG2("Skip MB in B-frame at (X,Y)=!",x,y); */ mb->cbp = 0; #ifdef BFRAMES_DEC_DEBUG mb->mb_type = MODE_NOT_CODED; BFRAME_DEBUG #endif mb->mb_type = MODE_FORWARD; mb->quant = last_mb->quant; /* mb->mvs[1].x = mb->mvs[2].x = mb->mvs[3].x = mb->mvs[0].x; mb->mvs[1].y = mb->mvs[2].y = mb->mvs[3].y = mb->mvs[0].y; */ decoder_bf_mbinter(dec, mb, x, y, mb->cbp, bs, mb->quant, 1); continue; } if (!BitstreamGetBit(bs)) { /* modb=='0' */ const uint8_t modb2 = BitstreamGetBit(bs); mb->mb_type = get_mbtype(bs); if (!modb2) { /* modb=='00' */ mb->cbp = BitstreamGetBits(bs, 6); } else { mb->cbp = 0; } if (mb->mb_type && mb->cbp) { quant += get_dbquant(bs); if (quant > 31) { quant = 31; } else if (quant < 1) { quant = 1; } } } else { mb->mb_type = MODE_DIRECT_NONE_MV; mb->cbp = 0; } mb->quant = quant; mb->mode = MODE_INTER4V; /* DEBUG1("Switch bm_type=",mb->mb_type); */ #ifdef BFRAMES_DEC_DEBUG BFRAME_DEBUG #endif switch (mb->mb_type) { case MODE_DIRECT: get_b_motion_vector(dec, bs, x, y, &mv, 1, zeromv); case MODE_DIRECT_NONE_MV: { const int64_t TRB = dec->time_pp - dec->time_bp, TRD = dec->time_pp; int i; for (i = 0; i < 4; i++) { mb->mvs[i].x = (int32_t) ((TRB * last_mb->mvs[i].x) / TRD + mv.x); mb->b_mvs[i].x = (int32_t) ((mv.x == 0) ? ((TRB - TRD) * last_mb->mvs[i].x) / TRD : mb->mvs[i].x - last_mb->mvs[i].x); mb->mvs[i].y = (int32_t) ((TRB * last_mb->mvs[i].y) / TRD + mv.y); mb->b_mvs[i].y = (int32_t) ((mv.y == 0) ? ((TRB - TRD) * last_mb->mvs[i].y) / TRD : mb->mvs[i].y - last_mb->mvs[i].y); } /* DEBUG("B-frame Direct!\n"); */ } decoder_bf_interpolate_mbinter(dec, dec->refn[1], dec->refn[0], mb, x, y, bs); break; case MODE_INTERPOLATE: get_b_motion_vector(dec, bs, x, y, &mb->mvs[0], fcode_forward, dec->p_fmv); dec->p_fmv = mb->mvs[1] = mb->mvs[2] = mb->mvs[3] = mb->mvs[0]; get_b_motion_vector(dec, bs, x, y, &mb->b_mvs[0], fcode_backward, dec->p_bmv); dec->p_bmv = mb->b_mvs[1] = mb->b_mvs[2] = mb->b_mvs[3] = mb->b_mvs[0]; decoder_bf_interpolate_mbinter(dec, dec->refn[1], dec->refn[0], mb, x, y, bs); /* DEBUG("B-frame Bidir!\n"); */ break; case MODE_BACKWARD: get_b_motion_vector(dec, bs, x, y, &mb->mvs[0], fcode_backward, dec->p_bmv); dec->p_bmv = mb->mvs[1] = mb->mvs[2] = mb->mvs[3] = mb->mvs[0]; mb->mode = MODE_INTER; decoder_bf_mbinter(dec, mb, x, y, mb->cbp, bs, quant, 0); /* DEBUG("B-frame Backward!\n"); */ break; case MODE_FORWARD: get_b_motion_vector(dec, bs, x, y, &mb->mvs[0], fcode_forward, dec->p_fmv); dec->p_fmv = mb->mvs[1] = mb->mvs[2] = mb->mvs[3] = mb->mvs[0]; mb->mode = MODE_INTER; decoder_bf_mbinter(dec, mb, x, y, mb->cbp, bs, quant, 1); /* DEBUG("B-frame Forward!\n"); */ break; default: DPRINTF(XVID_DEBUG_ERROR,"Not support B-frame mb_type = %i\n", mb->mb_type); } } /* End of for */ } #ifdef BFRAMES_DEC_DEBUG if (!first){ first=1; if (fp) fclose(fp); } #endif } /* perform post processing if necessary, and output the image */ void decoder_output(DECODER * dec, IMAGE * img, MACROBLOCK * mbs, xvid_dec_frame_t * frame, xvid_dec_stats_t * stats, int coding_type) { image_output(img, dec->width, dec->height, dec->edged_width, (uint8_t**)frame->output.plane, frame->output.stride, frame->output.csp, dec->interlacing); if (stats) { stats->type = coding2type(coding_type); stats->data.vop.time_base = (int)dec->time_base; stats->data.vop.time_increment = 0; /* XXX: todo */ } } int decoder_decode(DECODER * dec, xvid_dec_frame_t * frame, xvid_dec_stats_t * stats) { Bitstream bs; uint32_t rounding; uint32_t reduced_resolution; uint32_t quant; uint32_t fcode_forward; uint32_t fcode_backward; uint32_t intra_dc_threshold; WARPPOINTS gmc_warp; int coding_type; int success, output, seen_something; if (XVID_VERSION_MAJOR(frame->version) != 1 || (stats && XVID_VERSION_MAJOR(stats->version) != 1)) /* v1.x.x */ return XVID_ERR_VERSION; start_global_timer(); dec->low_delay_default = (frame->general & XVID_LOWDELAY); if ((frame->general & XVID_DISCONTINUITY)) dec->frames = 0; dec->out_frm = (frame->output.csp == XVID_CSP_SLICE) ? &frame->output : NULL; if (frame->length < 0) /* decoder flush */ { int ret; /* if not decoding "low_delay/packed", and this isn't low_delay and we have a reference frame, then outout the reference frame */ if (!(dec->low_delay_default && dec->packed_mode) && !dec->low_delay && dec->frames>0) { decoder_output(dec, &dec->refn[0], dec->last_mbs, frame, stats, dec->last_coding_type); dec->frames = 0; ret = 0; }else{ if (stats) stats->type = XVID_TYPE_NOTHING; ret = XVID_ERR_END; } emms(); stop_global_timer(); return ret; } BitstreamInit(&bs, frame->bitstream, frame->length); /* XXX: 0x7f is only valid whilst decoding vfw xvid/divx5 avi's */ if(dec->low_delay_default && frame->length == 1 && BitstreamShowBits(&bs, 8) == 0x7f) { image_output(&dec->refn[0], dec->width, dec->height, dec->edged_width, (uint8_t**)frame->output.plane, frame->output.stride, frame->output.csp, dec->interlacing); if (stats) stats->type = XVID_TYPE_NOTHING; emms(); return 1; /* one byte consumed */ } success = 0; output = 0; seen_something = 0; repeat: coding_type = BitstreamReadHeaders(&bs, dec, &rounding, &reduced_resolution, &quant, &fcode_forward, &fcode_backward, &intra_dc_threshold, &gmc_warp); DPRINTF(XVID_DEBUG_HEADER, "coding_type=%i, packed=%i, time=%lli, time_pp=%i, time_bp=%i\n", coding_type, dec->packed_mode, dec->time, dec->time_pp, dec->time_bp); if (coding_type == -1) /* nothing */ { if (success) goto done; if (stats) stats->type = XVID_TYPE_NOTHING; emms(); return BitstreamPos(&bs)/8; } if (coding_type == -2 || coding_type == -3) /* vol and/or resize */ { if (coding_type == -3) decoder_resize(dec); if (stats) { stats->type = XVID_TYPE_VOL; stats->data.vol.general = 0; /*XXX: if (dec->interlacing) stats->data.vol.general |= ++INTERLACING; */ stats->data.vol.width = dec->width; stats->data.vol.height = dec->height; stats->data.vol.par = dec->aspect_ratio; stats->data.vol.par_width = dec->par_width; stats->data.vol.par_height = dec->par_height; emms(); return BitstreamPos(&bs)/8; /* number of bytes consumed */ } goto repeat; } dec->p_bmv.x = dec->p_bmv.y = dec->p_fmv.y = dec->p_fmv.y = 0; /* init pred vector to 0 */ /* packed_mode: special-N_VOP treament */ if (dec->packed_mode && coding_type == N_VOP) { if (dec->low_delay_default && dec->frames > 0) { decoder_output(dec, &dec->refn[0], dec->last_mbs, frame, stats, dec->last_coding_type); output = 1; } /* ignore otherwise */ } else if (coding_type != B_VOP) { switch(coding_type) { case I_VOP : decoder_iframe(dec, &bs, reduced_resolution, quant, intra_dc_threshold); break; case P_VOP : decoder_pframe(dec, &bs, rounding, reduced_resolution, quant, fcode_forward, intra_dc_threshold, NULL); break; case S_VOP : decoder_pframe(dec, &bs, rounding, reduced_resolution, quant, fcode_forward, intra_dc_threshold, &gmc_warp); break; case N_VOP : /* XXX: not_coded vops are not used for forward prediction */ /* we should not swap(last_mbs,mbs) */ image_copy(&dec->cur, &dec->refn[0], dec->edged_width, dec->height); break; } if (reduced_resolution) { image_deblock_rrv(&dec->cur, dec->edged_width, dec->mbs, (dec->width + 31) / 32, (dec->height + 31) / 32, dec->mb_width, 16, 0); } /* note: for packed_mode, output is performed when the special-N_VOP is decoded */ if (!(dec->low_delay_default && dec->packed_mode)) { if (dec->low_delay) { decoder_output(dec, &dec->cur, dec->mbs, frame, stats, coding_type); output = 1; } else if (dec->frames > 0) /* is the reference frame valid? */ { /* output the reference frame */ decoder_output(dec, &dec->refn[0], dec->last_mbs, frame, stats, dec->last_coding_type); output = 1; } } image_swap(&dec->refn[0], &dec->refn[1]); image_swap(&dec->cur, &dec->refn[0]); SWAP(MACROBLOCK *, dec->mbs, dec->last_mbs); dec->last_reduced_resolution = reduced_resolution; dec->last_coding_type = coding_type; dec->frames++; seen_something = 1; }else{ /* B_VOP */ if (dec->low_delay) { DPRINTF(XVID_DEBUG_ERROR, "warning: bvop found in low_delay==1 stream\n"); dec->low_delay = 1; } if (dec->frames < 2) { /* attemping to decode a bvop without atleast 2 reference frames */ image_printf(&dec->cur, dec->edged_width, dec->height, 16, 16, "broken b-frame, mising ref frames"); }else if (dec->time_pp <= dec->time_bp) { /* this occurs when dx50_bvop_compatibility==0 sequences are decoded in vfw. */ image_printf(&dec->cur, dec->edged_width, dec->height, 16, 16, "broken b-frame, tpp=%i tbp=%i", dec->time_pp, dec->time_bp); }else{ decoder_bframe(dec, &bs, quant, fcode_forward, fcode_backward); } decoder_output(dec, &dec->cur, dec->mbs, frame, stats, coding_type); output = 1; dec->frames++; } BitstreamByteAlign(&bs); /* low_delay_default mode: repeat in packed_mode */ if (dec->low_delay_default && dec->packed_mode && output == 0 && success == 0) { success = 1; goto repeat; } done : /* low_delay_default mode: if we've gotten here without outputting anything, then output the recently decoded frame, or print an error message */ if (dec->low_delay_default && output == 0) { if (dec->packed_mode && seen_something) { /* output the recently decoded frame */ decoder_output(dec, &dec->refn[0], dec->last_mbs, frame, stats, dec->last_coding_type); } else { image_clear(&dec->cur, dec->width, dec->height, dec->edged_width, 0, 128, 128); image_printf(&dec->cur, dec->edged_width, dec->height, 16, 16, "warning: nothing to output"); image_printf(&dec->cur, dec->edged_width, dec->height, 16, 64, "bframe decoder lag"); decoder_output(dec, &dec->cur, NULL, frame, stats, P_VOP); if (stats) stats->type = XVID_TYPE_NOTHING; } } emms(); stop_global_timer(); return BitstreamPos(&bs) / 8; /* number of bytes consumed */ }