/************************************************************************** * * XVID MPEG-4 VIDEO CODEC * motion estimation * * This program is an implementation of a part of one or more MPEG-4 * Video tools as specified in ISO/IEC 14496-2 standard. Those intending * to use this software module in hardware or software products are * advised that its use may infringe existing patents or copyrights, and * any such use would be at such party's own risk. The original * developer of this software module and his/her company, and subsequent * editors and their companies, will have no liability for use of this * software or modifications or derivatives thereof. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * *************************************************************************/ #include #include #include #include "../encoder.h" #include "../utils/mbfunctions.h" #include "../prediction/mbprediction.h" #include "../global.h" #include "../utils/timer.h" #include "../image/interpolate8x8.h" #include "motion_est.h" #include "motion.h" #include "sad.h" #include "../utils/emms.h" #define INITIAL_SKIP_THRESH (10) #define FINAL_SKIP_THRESH (50) #define MAX_SAD00_FOR_SKIP (20) #define MAX_CHROMA_SAD_FOR_SKIP (22) #define SKIP_THRESH_B (25) #define CHECK_CANDIDATE(X,Y,D) { \ (*CheckCandidate)((const int)(X),(const int)(Y), (D), &iDirection, data ); } #define GET_REFERENCE(X, Y, REF) { \ switch ( ((X&1)<<1) + (Y&1) ) \ { \ case 0 : REF = data->Ref + (X)/2 + ((Y)/2)*(data->iEdgedWidth); break; \ case 1 : REF = data->RefV + (X)/2 + (((Y)-1)/2)*(data->iEdgedWidth); break; \ case 2 : REF = data->RefH + ((X)-1)/2 + ((Y)/2)*(data->iEdgedWidth); break; \ default : REF = data->RefHV + ((X)-1)/2 + (((Y)-1)/2)*(data->iEdgedWidth); break; \ } \ } #define iDiamondSize 2 static __inline int d_mv_bits(int x, int y, const uint32_t iFcode) { int xb, yb; if (x == 0) xb = 1; else { if (x < 0) x = -x; x += (1 << (iFcode - 1)) - 1; x >>= (iFcode - 1); if (x > 32) x = 32; xb = mvtab[x] + iFcode; } if (y == 0) yb = 1; else { if (y < 0) y = -y; y += (1 << (iFcode - 1)) - 1; y >>= (iFcode - 1); if (y > 32) y = 32; yb = mvtab[y] + iFcode; } return xb + yb; } /* CHECK_CANDIATE FUNCTIONS START */ static void CheckCandidate16(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int t; const uint8_t * Reference; if (( x > data->max_dx) || ( x < data->min_dx) || ( y > data->max_dy) || (y < data->min_dy)) return; switch ( ((x&1)<<1) + (y&1) ) { case 0 : Reference = data->Ref + x/2 + (y/2)*(data->iEdgedWidth); break; case 1 : Reference = data->RefV + x/2 + ((y-1)/2)*(data->iEdgedWidth); break; case 2 : Reference = data->RefH + (x-1)/2 + (y/2)*(data->iEdgedWidth); break; default : Reference = data->RefHV + (x-1)/2 + ((y-1)/2)*(data->iEdgedWidth); break; } data->temp[0] = sad16v(data->Cur, Reference, data->iEdgedWidth, data->temp + 1); t = d_mv_bits(x - data->predMV.x, y - data->predMV.y, data->iFcode); data->temp[0] += lambda_vec16[data->iQuant] * t; data->temp[1] += lambda_vec8[data->iQuant] * t; if (data->temp[0] < data->iMinSAD[0]) { data->iMinSAD[0] = data->temp[0]; data->currentMV[0].x = x; data->currentMV[0].y = y; *dir = Direction; } if (data->temp[1] < data->iMinSAD[1]) { data->iMinSAD[1] = data->temp[1]; data->currentMV[1].x = x; data->currentMV[1].y = y; } if (data->temp[2] < data->iMinSAD[2]) { data->iMinSAD[2] = data->temp[2]; data->currentMV[2].x = x; data->currentMV[2].y = y; } if (data->temp[3] < data->iMinSAD[3]) { data->iMinSAD[3] = data->temp[3]; data->currentMV[3].x = x; data->currentMV[3].y = y; } if (data->temp[4] < data->iMinSAD[4]) { data->iMinSAD[4] = data->temp[4]; data->currentMV[4].x = x; data->currentMV[4].y = y; } } static void CheckCandidate16no4v(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int32_t sad; const uint8_t * Reference; if (( x > data->max_dx) || ( x < data->min_dx) || ( y > data->max_dy) || (y < data->min_dy)) return; switch ( ((x&1)<<1) + (y&1) ) { case 0 : Reference = data->Ref + x/2 + (y/2)*(data->iEdgedWidth); break; case 1 : Reference = data->RefV + x/2 + ((y-1)/2)*(data->iEdgedWidth); break; case 2 : Reference = data->RefH + (x-1)/2 + (y/2)*(data->iEdgedWidth); break; default : Reference = data->RefHV + (x-1)/2 + ((y-1)/2)*(data->iEdgedWidth); break; } sad = lambda_vec16[data->iQuant] * d_mv_bits(x - data->predMV.x, y - data->predMV.y, data->iFcode); sad += sad16(data->Cur, Reference, data->iEdgedWidth, MV_MAX_ERROR); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV[0].x = x; data->currentMV[0].y = y; *dir = Direction; } } static void CheckCandidate16_qpel(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) // CheckCandidate16 variant which expects x and y in quarter pixel resolution // Important: This is no general usable routine! x and y must be +/-1 (qpel resolution!) // around currentMV! { int t; uint8_t * Reference = (uint8_t *) data->RefQ; const uint8_t *ref1, *ref2, *ref3, *ref4; VECTOR halfpelMV = *(data->currentMV); int32_t iEdgedWidth = data->iEdgedWidth; uint32_t rounding = data->rounding; if (( x > data->max_dx) || ( x < data->min_dx) || ( y > data->max_dy) || (y < data->min_dy)) return; switch( ((x&1)<<1) + (y&1) ) { case 0: // pure halfpel position - shouldn't happen during a refinement step GET_REFERENCE(halfpelMV.x, halfpelMV.y, (const uint8_t *) Reference); break; case 1: // x halfpel, y qpel - top or bottom during qpel refinement GET_REFERENCE(halfpelMV.x, halfpelMV.y, ref1); GET_REFERENCE(halfpelMV.x, y - halfpelMV.y, ref2); interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding); interpolate8x8_avg2(Reference+8, ref1+8, ref2+8, iEdgedWidth, rounding); interpolate8x8_avg2(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, iEdgedWidth, rounding); interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding); break; case 2: // x qpel, y halfpel - left or right during qpel refinement GET_REFERENCE(halfpelMV.x, halfpelMV.y, ref1); GET_REFERENCE(x - halfpelMV.x, halfpelMV.y, ref2); interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding); interpolate8x8_avg2(Reference+8, ref1+8, ref2+8, iEdgedWidth, rounding); interpolate8x8_avg2(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, iEdgedWidth, rounding); interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding); break; default: // x and y in qpel resolution - the "corners" (top left/right and // bottom left/right) during qpel refinement GET_REFERENCE(halfpelMV.x, halfpelMV.y, ref1); GET_REFERENCE(halfpelMV.x, y - halfpelMV.y, ref2); GET_REFERENCE(x - halfpelMV.x, halfpelMV.y, ref3); GET_REFERENCE(x - halfpelMV.x, y - halfpelMV.y, ref4); interpolate8x8_avg4(Reference, ref1, ref2, ref3, ref4, iEdgedWidth, rounding); interpolate8x8_avg4(Reference+8, ref1+8, ref2+8, ref3+8, ref4+8, iEdgedWidth, rounding); interpolate8x8_avg4(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, ref3+8*iEdgedWidth, ref4+8*iEdgedWidth, iEdgedWidth, rounding); interpolate8x8_avg4(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, ref3+8*iEdgedWidth+8, ref4+8*iEdgedWidth+8, iEdgedWidth, rounding); break; } data->temp[0] = sad16v(data->Cur, Reference, data->iEdgedWidth, data->temp+1); t = d_mv_bits(x - data->predQMV.x, y - data->predQMV.y, data->iFcode); data->temp[0] += lambda_vec16[data->iQuant] * t; data->temp[1] += lambda_vec8[data->iQuant] * t; if (data->temp[0] < data->iMinSAD[0]) { data->iMinSAD[0] = data->temp[0]; data->currentQMV[0].x = x; data->currentQMV[0].y = y; /* *dir = Direction;*/ } if (data->temp[1] < data->iMinSAD[1]) { data->iMinSAD[1] = data->temp[1]; data->currentQMV[1].x = x; data->currentQMV[1].y = y; } if (data->temp[2] < data->iMinSAD[2]) { data->iMinSAD[2] = data->temp[2]; data->currentQMV[2].x = x; data->currentQMV[2].y = y; } if (data->temp[3] < data->iMinSAD[3]) { data->iMinSAD[3] = data->temp[3]; data->currentQMV[3].x = x; data->currentQMV[3].y = y; } if (data->temp[4] < data->iMinSAD[4]) { data->iMinSAD[4] = data->temp[4]; data->currentQMV[4].x = x; data->currentQMV[4].y = y; } } static void CheckCandidate16no4v_qpel(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) // CheckCandidate16no4v variant which expects x and y in quarter pixel resolution // Important: This is no general usable routine! x and y must be +/-1 (qpel resolution!) // around currentMV! { int32_t sad; uint8_t * Reference = (uint8_t *) data->RefQ; const uint8_t *ref1, *ref2, *ref3, *ref4; VECTOR halfpelMV = *(data->currentMV); int32_t iEdgedWidth = data->iEdgedWidth; uint32_t rounding = data->rounding; if (( x > data->max_dx) || ( x < data->min_dx) || ( y > data->max_dy) || (y < data->min_dy)) return; switch( ((x&1)<<1) + (y&1) ) { case 0: // pure halfpel position - shouldn't happen during a refinement step GET_REFERENCE(halfpelMV.x, halfpelMV.y, (const uint8_t *) Reference); break; case 1: // x halfpel, y qpel - top or bottom during qpel refinement GET_REFERENCE(halfpelMV.x, halfpelMV.y, ref1); GET_REFERENCE(halfpelMV.x, y - halfpelMV.y, ref2); interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding); interpolate8x8_avg2(Reference+8, ref1+8, ref2+8, iEdgedWidth, rounding); interpolate8x8_avg2(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, iEdgedWidth, rounding); interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding); break; case 2: // x qpel, y halfpel - left or right during qpel refinement GET_REFERENCE(halfpelMV.x, halfpelMV.y, ref1); GET_REFERENCE(x - halfpelMV.x, halfpelMV.y, ref2); interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding); interpolate8x8_avg2(Reference+8, ref1+8, ref2+8, iEdgedWidth, rounding); interpolate8x8_avg2(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, iEdgedWidth, rounding); interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding); break; default: // x and y in qpel resolution - the "corners" (top left/right and // bottom left/right) during qpel refinement GET_REFERENCE(halfpelMV.x, halfpelMV.y, ref1); GET_REFERENCE(halfpelMV.x, y - halfpelMV.y, ref2); GET_REFERENCE(x - halfpelMV.x, halfpelMV.y, ref3); GET_REFERENCE(x - halfpelMV.x, y - halfpelMV.y, ref4); interpolate8x8_avg4(Reference, ref1, ref2, ref3, ref4, iEdgedWidth, rounding); interpolate8x8_avg4(Reference+8, ref1+8, ref2+8, ref3+8, ref4+8, iEdgedWidth, rounding); interpolate8x8_avg4(Reference+8*iEdgedWidth, ref1+8*iEdgedWidth, ref2+8*iEdgedWidth, ref3+8*iEdgedWidth, ref4+8*iEdgedWidth, iEdgedWidth, rounding); interpolate8x8_avg4(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, ref3+8*iEdgedWidth+8, ref4+8*iEdgedWidth+8, iEdgedWidth, rounding); break; } sad = lambda_vec16[data->iQuant] * d_mv_bits(x - data->predQMV.x, y - data->predQMV.y, data->iFcode); sad += sad16(data->Cur, Reference, data->iEdgedWidth, MV_MAX_ERROR); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentQMV[0].x = x; data->currentQMV[0].y = y; // *dir = Direction; } } static void CheckCandidate16no4vI(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int32_t sad; if (( x > data->max_dx) || ( x < data->min_dx) || ( y > data->max_dy) || (y < data->min_dy)) return; sad = lambda_vec16[data->iQuant] * d_mv_bits(x - data->predMV.x, y - data->predMV.y, data->iFcode); sad += sad16(data->Cur, data->Ref + x/2 + (y/2)*(data->iEdgedWidth), data->iEdgedWidth, 256*4096); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV[0].x = x; data->currentMV[0].y = y; *dir = Direction; } } static void CheckCandidateInt(const int xf, const int yf, const int Direction, int * const dir, const SearchData * const data) { int32_t sad; const int xb = data->currentMV[1].x; const int yb = data->currentMV[1].y; const uint8_t *ReferenceF, *ReferenceB; if (( xf > data->max_dx) || ( xf < data->min_dx) || ( yf > data->max_dy) || (yf < data->min_dy)) return; switch ( ((xf&1)<<1) + (yf&1) ) { case 0 : ReferenceF = data->Ref + xf/2 + (yf/2)*(data->iEdgedWidth); break; case 1 : ReferenceF = data->RefV + xf/2 + ((yf-1)/2)*(data->iEdgedWidth); break; case 2 : ReferenceF = data->RefH + (xf-1)/2 + (yf/2)*(data->iEdgedWidth); break; default : ReferenceF = data->RefHV + (xf-1)/2 + ((yf-1)/2)*(data->iEdgedWidth); break; } switch ( ((xb&1)<<1) + (yb&1) ) { case 0 : ReferenceB = data->bRef + xb/2 + (yb/2)*(data->iEdgedWidth); break; case 1 : ReferenceB = data->bRefV + xb/2 + ((yb-1)/2)*(data->iEdgedWidth); break; case 2 : ReferenceB = data->bRefH + (xb-1)/2 + (yb/2)*(data->iEdgedWidth); break; default : ReferenceB = data->bRefHV + (xb-1)/2 + ((yb-1)/2)*(data->iEdgedWidth); break; } sad = lambda_vec16[data->iQuant] * ( d_mv_bits(xf - data->predMV.x, yf - data->predMV.y, data->iFcode) + d_mv_bits(xb - data->bpredMV.x, yb - data->bpredMV.y, data->iFcode) ); sad += sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV->x = xf; data->currentMV->y = yf; *dir = Direction; } } static void CheckCandidateDirect(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int32_t sad; int k; const uint8_t *ReferenceF; const uint8_t *ReferenceB; VECTOR mvs, b_mvs; if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return; sad = lambda_vec16[data->iQuant] * d_mv_bits(x, y, 1); for (k = 0; k < 4; k++) { mvs.x = data->directmvF[k].x + x; b_mvs.x = ((x == 0) ? data->directmvB[k].x : mvs.x - data->referencemv[k].x); mvs.y = data->directmvF[k].y + y; b_mvs.y = ((y == 0) ? data->directmvB[k].y : mvs.y - data->referencemv[k].y); if (( mvs.x > data->max_dx ) || ( mvs.x < data->min_dx ) || ( mvs.y > data->max_dy ) || ( mvs.y < data->min_dy ) || ( b_mvs.x > data->max_dx ) || ( b_mvs.x < data->min_dx ) || ( b_mvs.y > data->max_dy ) || ( b_mvs.y < data->min_dy )) return; switch ( ((mvs.x&1)<<1) + (mvs.y&1) ) { case 0 : ReferenceF = data->Ref + mvs.x/2 + (mvs.y/2)*(data->iEdgedWidth); break; case 1 : ReferenceF = data->RefV + mvs.x/2 + ((mvs.y-1)/2)*(data->iEdgedWidth); break; case 2 : ReferenceF = data->RefH + (mvs.x-1)/2 + (mvs.y/2)*(data->iEdgedWidth); break; default : ReferenceF = data->RefHV + (mvs.x-1)/2 + ((mvs.y-1)/2)*(data->iEdgedWidth); break; } switch ( ((b_mvs.x&1)<<1) + (b_mvs.y&1) ) { case 0 : ReferenceB = data->bRef + b_mvs.x/2 + (b_mvs.y/2)*(data->iEdgedWidth); break; case 1 : ReferenceB = data->bRefV + b_mvs.x/2 + ((b_mvs.y-1)/2)*(data->iEdgedWidth); break; case 2 : ReferenceB = data->bRefH + (b_mvs.x-1)/2 + (b_mvs.y/2)*(data->iEdgedWidth); break; default : ReferenceB = data->bRefHV + (b_mvs.x-1)/2 + ((b_mvs.y-1)/2)*(data->iEdgedWidth); break; } sad += sad8bi(data->Cur + 8*(k&1) + 8*(k>>1)*(data->iEdgedWidth), ReferenceF + 8*(k&1) + 8*(k>>1)*(data->iEdgedWidth), ReferenceB + 8*(k&1) + 8*(k>>1)*(data->iEdgedWidth), data->iEdgedWidth); if (sad > *(data->iMinSAD)) return; } if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV->x = x; data->currentMV->y = y; *dir = Direction; } } static void CheckCandidateDirectno4v(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int32_t sad; const uint8_t *ReferenceF; const uint8_t *ReferenceB; VECTOR mvs, b_mvs; if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return; sad = lambda_vec16[data->iQuant] * d_mv_bits(x, y, 1); mvs.x = data->directmvF[0].x + x; b_mvs.x = ((x == 0) ? data->directmvB[0].x : mvs.x - data->referencemv[0].x); mvs.y = data->directmvF[0].y + y; b_mvs.y = ((y == 0) ? data->directmvB[0].y : mvs.y - data->referencemv[0].y); if (( mvs.x > data->max_dx ) || ( mvs.x < data->min_dx ) || ( mvs.y > data->max_dy ) || ( mvs.y < data->min_dy ) || ( b_mvs.x > data->max_dx ) || ( b_mvs.x < data->min_dx ) || ( b_mvs.y > data->max_dy ) || ( b_mvs.y < data->min_dy )) return; switch ( ((mvs.x&1)<<1) + (mvs.y&1) ) { case 0 : ReferenceF = data->Ref + mvs.x/2 + (mvs.y/2)*(data->iEdgedWidth); break; case 1 : ReferenceF = data->RefV + mvs.x/2 + ((mvs.y-1)/2)*(data->iEdgedWidth); break; case 2 : ReferenceF = data->RefH + (mvs.x-1)/2 + (mvs.y/2)*(data->iEdgedWidth); break; default : ReferenceF = data->RefHV + (mvs.x-1)/2 + ((mvs.y-1)/2)*(data->iEdgedWidth); break; } switch ( ((b_mvs.x&1)<<1) + (b_mvs.y&1) ) { case 0 : ReferenceB = data->bRef + b_mvs.x/2 + (b_mvs.y/2)*(data->iEdgedWidth); break; case 1 : ReferenceB = data->bRefV + b_mvs.x/2 + ((b_mvs.y-1)/2)*(data->iEdgedWidth); break; case 2 : ReferenceB = data->bRefH + (b_mvs.x-1)/2 + (b_mvs.y/2)*(data->iEdgedWidth); break; default : ReferenceB = data->bRefHV + (b_mvs.x-1)/2 + ((b_mvs.y-1)/2)*(data->iEdgedWidth); break; } sad += sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV->x = x; data->currentMV->y = y; *dir = Direction; } } static void CheckCandidate8(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) { int32_t sad; const uint8_t * Reference; if (( x > data->max_dx) || ( x < data->min_dx) || ( y > data->max_dy) || (y < data->min_dy)) return; switch ( ((x&1)<<1) + (y&1) ) { case 0 : Reference = data->Ref + x/2 + (y/2)*(data->iEdgedWidth); break; case 1 : Reference = data->RefV + x/2 + ((y-1)/2)*(data->iEdgedWidth); break; case 2 : Reference = data->RefH + (x-1)/2 + (y/2)*(data->iEdgedWidth); break; default : Reference = data->RefHV + (x-1)/2 + ((y-1)/2)*(data->iEdgedWidth); break; } sad = sad8(data->Cur, Reference, data->iEdgedWidth); sad += lambda_vec8[data->iQuant] * d_mv_bits(x - data->predMV.x, y - data->predMV.y, data->iFcode); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV->x = x; data->currentMV->y = y; *dir = Direction; } } static void CheckCandidate8_qpel(const int x, const int y, const int Direction, int * const dir, const SearchData * const data) // CheckCandidate16no4v variant which expects x and y in quarter pixel resolution // Important: This is no general usable routine! x and y must be +/-1 (qpel resolution!) // around currentMV! { int32_t sad; uint8_t *Reference = (uint8_t *) data->RefQ; const uint8_t *ref1, *ref2, *ref3, *ref4; VECTOR halfpelMV = *(data->currentMV); int32_t iEdgedWidth = data->iEdgedWidth; uint32_t rounding = data->rounding; if (( x > data->max_dx) || ( x < data->min_dx) || ( y > data->max_dy) || (y < data->min_dy)) return; switch( ((x&1)<<1) + (y&1) ) { case 0: // pure halfpel position - shouldn't happen during a refinement step GET_REFERENCE(halfpelMV.x, halfpelMV.y, (const uint8_t *) Reference); break; case 1: // x halfpel, y qpel - top or bottom during qpel refinement GET_REFERENCE(halfpelMV.x, halfpelMV.y, ref1); GET_REFERENCE(halfpelMV.x, y - halfpelMV.y, ref2); interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding); break; case 2: // x qpel, y halfpel - left or right during qpel refinement GET_REFERENCE(halfpelMV.x, halfpelMV.y, ref1); GET_REFERENCE(x - halfpelMV.x, halfpelMV.y, ref2); interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding); break; default: // x and y in qpel resolution - the "corners" (top left/right and // bottom left/right) during qpel refinement GET_REFERENCE(halfpelMV.x, halfpelMV.y, ref1); GET_REFERENCE(halfpelMV.x, y - halfpelMV.y, ref2); GET_REFERENCE(x - halfpelMV.x, halfpelMV.y, ref3); GET_REFERENCE(x - halfpelMV.x, y - halfpelMV.y, ref4); interpolate8x8_avg4(Reference, ref1, ref2, ref3, ref4, iEdgedWidth, rounding); break; } sad = sad8(data->Cur, Reference, data->iEdgedWidth); sad += lambda_vec8[data->iQuant] * d_mv_bits(x - data->predQMV.x, y - data->predQMV.y, data->iFcode); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentQMV->x = x; data->currentQMV->y = y; *dir = Direction; } } /* CHECK_CANDIATE FUNCTIONS END */ /* MAINSEARCH FUNCTIONS START */ static void AdvDiamondSearch(int x, int y, const SearchData * const data, int bDirection) { /* directions: 1 - left (x-1); 2 - right (x+1), 4 - up (y-1); 8 - down (y+1) */ int iDirection; do { iDirection = 0; if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1); if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2); if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4); if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8); /* now we're doing diagonal checks near our candidate */ if (iDirection) { //checking if anything found bDirection = iDirection; iDirection = 0; x = data->currentMV->x; y = data->currentMV->y; if (bDirection & 3) { //our candidate is left or right CHECK_CANDIDATE(x, y + iDiamondSize, 8); CHECK_CANDIDATE(x, y - iDiamondSize, 4); } else { // what remains here is up or down CHECK_CANDIDATE(x + iDiamondSize, y, 2); CHECK_CANDIDATE(x - iDiamondSize, y, 1); } if (iDirection) { bDirection += iDirection; x = data->currentMV->x; y = data->currentMV->y; } } else { //about to quit, eh? not so fast.... switch (bDirection) { case 2: CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); break; case 1: CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); break; case 2 + 4: CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); break; case 4: CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); break; case 8: CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); break; case 1 + 4: CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); break; case 2 + 8: CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); break; case 1 + 8: CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); break; default: //1+2+4+8 == we didn't find anything at all CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1 + 4); CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1 + 8); CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2 + 4); CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2 + 8); break; } if (!iDirection) break; //ok, the end. really bDirection = iDirection; x = data->currentMV->x; y = data->currentMV->y; } } while (1); //forever } static void SquareSearch(int x, int y, const SearchData * const data, int bDirection) { int iDirection; do { iDirection = 0; if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1+16+64); if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2+32+128); if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4+16+32); if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8+64+128); if (bDirection & 16) CHECK_CANDIDATE(x - iDiamondSize, y - iDiamondSize, 1+4+16+32+64); if (bDirection & 32) CHECK_CANDIDATE(x + iDiamondSize, y - iDiamondSize, 2+4+16+32+128); if (bDirection & 64) CHECK_CANDIDATE(x - iDiamondSize, y + iDiamondSize, 1+8+16+64+128); if (bDirection & 128) CHECK_CANDIDATE(x + iDiamondSize, y + iDiamondSize, 2+8+32+64+128); bDirection = iDirection; x = data->currentMV->x; y = data->currentMV->y; } while (iDirection); } static void DiamondSearch(int x, int y, const SearchData * const data, int bDirection) { /* directions: 1 - left (x-1); 2 - right (x+1), 4 - up (y-1); 8 - down (y+1) */ int iDirection; do { iDirection = 0; if (bDirection & 1) CHECK_CANDIDATE(x - iDiamondSize, y, 1); if (bDirection & 2) CHECK_CANDIDATE(x + iDiamondSize, y, 2); if (bDirection & 4) CHECK_CANDIDATE(x, y - iDiamondSize, 4); if (bDirection & 8) CHECK_CANDIDATE(x, y + iDiamondSize, 8); /* now we're doing diagonal checks near our candidate */ if (iDirection) { //checking if anything found bDirection = iDirection; iDirection = 0; x = data->currentMV->x; y = data->currentMV->y; if (bDirection & 3) { //our candidate is left or right CHECK_CANDIDATE(x, y + iDiamondSize, 8); CHECK_CANDIDATE(x, y - iDiamondSize, 4); } else { // what remains here is up or down CHECK_CANDIDATE(x + iDiamondSize, y, 2); CHECK_CANDIDATE(x - iDiamondSize, y, 1); } bDirection += iDirection; x = data->currentMV->x; y = data->currentMV->y; } } while (iDirection); } /* MAINSEARCH FUNCTIONS END */ /* HALFPELREFINE COULD BE A MAINSEARCH FUNCTION, BUT THERE IS NO NEED FOR IT */ static void HalfpelRefine(const SearchData * const data) { /* Do a half-pel refinement (or rather a "smallest possible amount" refinement) */ VECTOR backupMV = *(data->currentMV); int iDirection; //not needed CHECK_CANDIDATE(backupMV.x - 1, backupMV.y - 1, 0); CHECK_CANDIDATE(backupMV.x + 1, backupMV.y - 1, 0); CHECK_CANDIDATE(backupMV.x - 1, backupMV.y + 1, 0); CHECK_CANDIDATE(backupMV.x + 1, backupMV.y + 1, 0); CHECK_CANDIDATE(backupMV.x - 1, backupMV.y, 0); CHECK_CANDIDATE(backupMV.x + 1, backupMV.y, 0); CHECK_CANDIDATE(backupMV.x, backupMV.y + 1, 0); CHECK_CANDIDATE(backupMV.x, backupMV.y - 1, 0); } static void QuarterpelRefine(const SearchData * const data) { /* Perform quarter pixel refinement*/ VECTOR backupMV = *(data->currentQMV); int iDirection; //not needed CHECK_CANDIDATE(backupMV.x - 1, backupMV.y - 1, 0); CHECK_CANDIDATE(backupMV.x + 1, backupMV.y - 1, 0); CHECK_CANDIDATE(backupMV.x - 1, backupMV.y + 1, 0); CHECK_CANDIDATE(backupMV.x + 1, backupMV.y + 1, 0); CHECK_CANDIDATE(backupMV.x - 1, backupMV.y, 0); CHECK_CANDIDATE(backupMV.x + 1, backupMV.y, 0); CHECK_CANDIDATE(backupMV.x, backupMV.y + 1, 0); CHECK_CANDIDATE(backupMV.x, backupMV.y - 1, 0); } static __inline int SkipDecisionP(const IMAGE * current, const IMAGE * reference, const int x, const int y, const uint32_t iEdgedWidth, const uint32_t iQuant) { /* keep repeating checks for all b-frames before this P frame, to make sure that SKIP is possible (todo) how: if skip is not possible set sad00 to a very high value */ uint32_t sadC = sad8(current->u + x*8 + y*(iEdgedWidth/2)*8, reference->u + x*8 + y*(iEdgedWidth/2)*8, iEdgedWidth/2); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0; sadC += sad8(current->v + (x + y*(iEdgedWidth/2))*8, reference->v + (x + y*(iEdgedWidth/2))*8, iEdgedWidth/2); if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0; return 1; } static __inline void SkipMacroblockP(MACROBLOCK *pMB, const int32_t sad) { pMB->mode = MODE_NOT_CODED; pMB->mvs[0].x = pMB->mvs[1].x = pMB->mvs[2].x = pMB->mvs[3].x = 0; pMB->mvs[0].y = pMB->mvs[1].y = pMB->mvs[2].y = pMB->mvs[3].y = 0; pMB->qmvs[0].x = pMB->qmvs[1].x = pMB->qmvs[2].x = pMB->qmvs[3].x = 0; pMB->qmvs[0].y = pMB->qmvs[1].y = pMB->qmvs[2].y = pMB->qmvs[3].y = 0; pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = sad; } bool MotionEstimation(MBParam * const pParam, FRAMEINFO * const current, FRAMEINFO * const reference, const IMAGE * const pRefH, const IMAGE * const pRefV, const IMAGE * const pRefHV, const uint32_t iLimit) { MACROBLOCK *const pMBs = current->mbs; const IMAGE *const pCurrent = ¤t->image; const IMAGE *const pRef = &reference->image; const VECTOR zeroMV = { 0, 0 }; uint32_t x, y; uint32_t iIntra = 0; int32_t InterBias, quant = current->quant; uint8_t *qimage; // some pre-initialized thingies for SearchP int32_t temp[5]; VECTOR currentMV[5]; VECTOR currentQMV[5]; int32_t iMinSAD[5]; SearchData Data; Data.iEdgedWidth = pParam->edged_width; Data.currentMV = currentMV; Data.currentQMV = currentQMV; Data.iMinSAD = iMinSAD; Data.temp = temp; Data.iFcode = current->fcode; Data.rounding = pParam->m_rounding_type; if((qimage = (uint8_t *) malloc(32 * pParam->edged_width)) == NULL) return 1; // allocate some mem for qpel interpolated blocks // somehow this is dirty since I think we shouldn't use malloc outside // encoder_create() - so please fix me! if (sadInit) (*sadInit) (); for (y = 0; y < pParam->mb_height; y++) { for (x = 0; x < pParam->mb_width; x++) { MACROBLOCK *pMB = &pMBs[x + y * pParam->mb_width]; int32_t sad00 = pMB->sad16 = sad16v(pCurrent->y + (x + y * pParam->edged_width) * 16, pRef->y + (x + y * pParam->edged_width) * 16, pParam->edged_width, pMB->sad8 ); if (!(current->global_flags & XVID_LUMIMASKING)) { pMB->dquant = NO_CHANGE; pMB->quant = current->quant; } else if (pMB->dquant != NO_CHANGE) { quant += DQtab[pMB->dquant]; if (quant > 31) quant = 31; else if (quant < 1) quant = 1; pMB->quant = quant; } //initial skip decision if ((pMB->dquant == NO_CHANGE) && (sad00 <= MAX_SAD00_FOR_SKIP * pMB->quant) && (SkipDecisionP(pCurrent, pRef, x, y, pParam->edged_width, pMB->quant)) ) { if (pMB->sad16 < pMB->quant * INITIAL_SKIP_THRESH) { SkipMacroblockP(pMB, sad00); continue; sad00 = 256 * 4096; } } else sad00 = 256*4096; // skip not allowed - for final skip decision SearchP(pRef->y, pRefH->y, pRefV->y, pRefHV->y, qimage, pCurrent, x, y, current->motion_flags, pMB->quant, &Data, pParam, pMBs, reference->mbs, current->global_flags & XVID_INTER4V, pMB); /* final skip decision, a.k.a. "the vector you found, really that good?" */ if (sad00 < pMB->quant * MAX_SAD00_FOR_SKIP) if ((100*pMB->sad16)/(sad00+1) > FINAL_SKIP_THRESH) { SkipMacroblockP(pMB, sad00); continue; } /* finally, intra decision */ InterBias = MV16_INTER_BIAS; if (pMB->quant > 8) InterBias += 50 * (pMB->quant - 8); // to make high quants work if (y != 0) if ((pMB - pParam->mb_width)->mode == MODE_INTER ) InterBias -= 50; if (x != 0) if ((pMB - 1)->mode == MODE_INTER ) InterBias -= 50; if (InterBias < pMB->sad16) { const int32_t deviation = dev16(pCurrent->y + (x + y * pParam->edged_width) * 16, pParam->edged_width); if (deviation < (pMB->sad16 - InterBias)) { if (++iIntra >= iLimit) { free(qimage); return 1; } pMB->mode = MODE_INTRA; pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = zeroMV; pMB->qmvs[0] = pMB->qmvs[1] = pMB->qmvs[2] = pMB->qmvs[3] = zeroMV; pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = 0; } } } } free(qimage); return 0; } #define PMV_HALFPEL16 (PMV_HALFPELDIAMOND16|PMV_HALFPELREFINE16) static __inline int make_mask(const VECTOR * const pmv, const int i) { int mask = 255, j; for (j = 0; j < i; j++) { if (MVequal(pmv[i], pmv[j])) return 0; // same vector has been checked already if (pmv[i].x == pmv[j].x) { if (pmv[i].y == pmv[j].y + iDiamondSize) { mask &= ~4; continue; } if (pmv[i].y == pmv[j].y - iDiamondSize) { mask &= ~8; continue; } } else if (pmv[i].y == pmv[j].y) { if (pmv[i].x == pmv[j].x + iDiamondSize) { mask &= ~1; continue; } if (pmv[i].x == pmv[j].x - iDiamondSize) { mask &= ~2; continue; } } } return mask; } static __inline void PreparePredictionsP(VECTOR * const pmv, int x, int y, const int iWcount, const int iHcount, const MACROBLOCK * const prevMB) { //this function depends on get_pmvdata which means that it sucks. It should get the predictions by itself if ( (y != 0) && (x != (iWcount-1)) ) { // [5] top-right neighbour pmv[5].x = EVEN(pmv[3].x); pmv[5].y = EVEN(pmv[3].y); } else pmv[5].x = pmv[5].y = 0; if (x != 0) { pmv[3].x = EVEN(pmv[1].x); pmv[3].y = EVEN(pmv[1].y); }// pmv[3] is left neighbour else pmv[3].x = pmv[3].y = 0; if (y != 0) { pmv[4].x = EVEN(pmv[2].x); pmv[4].y = EVEN(pmv[2].y); }// [4] top neighbour else pmv[4].x = pmv[4].y = 0; // [1] median prediction pmv[1].x = EVEN(pmv[0].x); pmv[1].y = EVEN(pmv[0].y); pmv[0].x = pmv[0].y = 0; // [0] is zero; not used in the loop (checked before) but needed here for make_mask pmv[2].x = EVEN(prevMB->mvs[0].x); // [2] is last frame pmv[2].y = EVEN(prevMB->mvs[0].y); if ((x != iWcount-1) && (y != iHcount-1)) { pmv[6].x = EVEN((prevMB+1+iWcount)->mvs[0].x); //[6] right-down neighbour in last frame pmv[6].y = EVEN((prevMB+1+iWcount)->mvs[0].y); } else pmv[6].x = pmv[6].y = 0; } static void SearchP(const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const uint8_t * const pRefQ, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const uint32_t iQuant, SearchData * const Data, const MBParam * const pParam, const MACROBLOCK * const pMBs, const MACROBLOCK * const prevMBs, int inter4v, MACROBLOCK * const pMB) { int i, iDirection = 255, mask, threshA; VECTOR pmv[7]; Data->predQMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, 0); get_pmvdata2(pMBs, pParam->mb_width, 0, x, y, 0, pmv, Data->temp); //has to be changed to get_pmv(2)() get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode, pParam->m_quarterpel); Data->predMV = pmv[0]; Data->Cur = pCur->y + (x + y * Data->iEdgedWidth) * 16; Data->Ref = pRef + (x + Data->iEdgedWidth*y)*16; Data->RefH = pRefH + (x + Data->iEdgedWidth*y) * 16; Data->RefV = pRefV + (x + Data->iEdgedWidth*y) * 16; Data->RefHV = pRefHV + (x + Data->iEdgedWidth*y) * 16; Data->RefQ = pRefQ; Data->iQuant = iQuant; if (!(MotionFlags & PMV_HALFPEL16)) { Data->min_dx = EVEN(Data->min_dx); Data->max_dx = EVEN(Data->max_dx); Data->min_dy = EVEN(Data->min_dy); Data->max_dy = EVEN(Data->max_dy); } if (pMB->dquant != NO_CHANGE) inter4v = 0; if (inter4v) CheckCandidate = CheckCandidate16; else CheckCandidate = CheckCandidate16no4v; for(i = 0; i < 5; i++) Data->currentMV[i].x = Data->currentMV[i].y = 0; i = d_mv_bits(Data->predMV.x, Data->predMV.y, Data->iFcode); Data->iMinSAD[0] = pMB->sad16 + lambda_vec16[iQuant] * i; Data->iMinSAD[1] = pMB->sad8[0] + lambda_vec8[iQuant] * i; Data->iMinSAD[2] = pMB->sad8[1]; Data->iMinSAD[3] = pMB->sad8[2]; Data->iMinSAD[4] = pMB->sad8[3]; if ((x == 0) && (y == 0)) threshA = 512; else { threshA = Data->temp[0]; // that's when we keep this SAD atm if (threshA < 512) threshA = 512; if (threshA > 1024) threshA = 1024; } PreparePredictionsP(pmv, x, y, pParam->mb_width, pParam->mb_height, prevMBs + x + y * pParam->mb_width); if (inter4v) CheckCandidate = CheckCandidate16; else CheckCandidate = CheckCandidate16no4v; /* main loop. checking all predictions */ for (i = 1; i < 7; i++) { if (!(mask = make_mask(pmv, i)) ) continue; (*CheckCandidate)(pmv[i].x, pmv[i].y, mask, &iDirection, Data); if (Data->iMinSAD[0] <= threshA) break; } if ((Data->iMinSAD[0] <= threshA) || (MVequal(Data->currentMV[0], (prevMBs+x+y*pParam->mb_width)->mvs[0]) && (Data->iMinSAD[0] < (prevMBs+x+y*pParam->mb_width)->sad16))) { inter4v = 0; } else { MainSearchFunc * MainSearchPtr; if (MotionFlags & PMV_USESQUARES16) MainSearchPtr = SquareSearch; else if (MotionFlags & PMV_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; (*MainSearchPtr)(Data->currentMV->x, Data->currentMV->y, Data, iDirection); /* extended search, diamond starting in 0,0 and in prediction. note that this search is/might be done in halfpel positions, which makes it more different than the diamond above */ if (MotionFlags & PMV_EXTSEARCH16) { int32_t bSAD; VECTOR startMV = Data->predMV, backupMV = Data->currentMV[0]; if (!(MotionFlags & PMV_HALFPELREFINE16)) // who's gonna use extsearch and no halfpel? startMV.x = EVEN(startMV.x); startMV.y = EVEN(startMV.y); if (!(MVequal(startMV, backupMV))) { bSAD = Data->iMinSAD[0]; Data->iMinSAD[0] = MV_MAX_ERROR; CheckCandidate16(startMV.x, startMV.y, 255, &iDirection, Data); (*MainSearchPtr)(startMV.x, startMV.y, Data, 255); if (bSAD < Data->iMinSAD[0]) { Data->currentMV[0] = backupMV; Data->iMinSAD[0] = bSAD; } } backupMV = Data->currentMV[0]; if (MotionFlags & PMV_HALFPELREFINE16) startMV.x = startMV.y = 1; else startMV.x = startMV.y = 0; if (!(MVequal(startMV, backupMV))) { bSAD = Data->iMinSAD[0]; Data->iMinSAD[0] = MV_MAX_ERROR; CheckCandidate16(startMV.x, startMV.y, 255, &iDirection, Data); (*MainSearchPtr)(startMV.x, startMV.y, Data, 255); if (bSAD < Data->iMinSAD[0]) { Data->currentMV[0] = backupMV; Data->iMinSAD[0] = bSAD; } } } } if (MotionFlags & PMV_HALFPELREFINE16) HalfpelRefine(Data); for(i = 0; i < 5; i++) { Data->currentQMV[i].x = 2 * Data->currentMV[i].x; // initialize qpel vectors Data->currentQMV[i].y = 2 * Data->currentMV[i].y; } if((pParam->m_quarterpel) && (MotionFlags & PMV_QUARTERPELREFINE16)) { if(inter4v) CheckCandidate = CheckCandidate16_qpel; else CheckCandidate = CheckCandidate16no4v_qpel; Data->iMinSAD[0] -= lambda_vec16[iQuant] * d_mv_bits(Data->predMV.x - Data->currentMV[0].x, Data->predMV.y - Data->currentMV[0].y, Data->iFcode); Data->iMinSAD[1] -= lambda_vec8[iQuant] * d_mv_bits(Data->predMV.x - Data->currentMV[1].x, Data->predMV.y - Data->currentMV[1].y, Data->iFcode); Data->iMinSAD[0] += lambda_vec16[iQuant] * d_mv_bits(Data->predQMV.x - Data->currentQMV[0].x, Data->predMV.y - Data->currentQMV[0].y, Data->iFcode); Data->iMinSAD[1] += lambda_vec8[iQuant] * d_mv_bits(Data->predQMV.x - Data->currentQMV[1].x, Data->predMV.y - Data->currentQMV[1].y, Data->iFcode); get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode, 0); QuarterpelRefine(Data); } if (inter4v) { SearchData Data8; Data8.iFcode = Data->iFcode; Data8.iQuant = Data->iQuant; Data8.iEdgedWidth = Data->iEdgedWidth; Search8(Data, 2*x, 2*y, MotionFlags, pParam, pMB, pMBs, 0, &Data8); Search8(Data, 2*x + 1, 2*y, MotionFlags, pParam, pMB, pMBs, 1, &Data8); Search8(Data, 2*x, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 2, &Data8); Search8(Data, 2*x + 1, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 3, &Data8); } if (!(inter4v) || (Data->iMinSAD[0] < Data->iMinSAD[1] + Data->iMinSAD[2] + Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant )) { // INTER MODE pMB->mode = MODE_INTER; pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = Data->currentMV[0]; pMB->qmvs[0] = pMB->qmvs[1] = pMB->qmvs[2] = pMB->qmvs[3] = Data->currentQMV[0]; pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = Data->iMinSAD[0]; if(pParam->m_quarterpel) { pMB->pmvs[0].x = Data->currentQMV[0].x - Data->predQMV.x; pMB->pmvs[0].y = Data->currentQMV[0].y - Data->predQMV.y; } else { pMB->pmvs[0].x = Data->currentMV[0].x - Data->predMV.x; pMB->pmvs[0].y = Data->currentMV[0].y - Data->predMV.y; } } else { // INTER4V MODE; all other things are already set in Search8 pMB->mode = MODE_INTER4V; pMB->sad16 = Data->iMinSAD[1] + Data->iMinSAD[2] + Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * iQuant; } } static void Search8(const SearchData * const OldData, const int x, const int y, const uint32_t MotionFlags, const MBParam * const pParam, MACROBLOCK * const pMB, const MACROBLOCK * const pMBs, const int block, SearchData * const Data) { Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x/2 , y/2, block); Data->predQMV = get_qpmv2(pMBs, pParam->mb_width, 0, x/2 , y/2, block); Data->iMinSAD = OldData->iMinSAD + 1 + block; Data->currentMV = OldData->currentMV + 1 + block; Data->currentQMV = OldData->currentQMV + 1 + block; if(pParam->m_quarterpel) { //it is qpel. substract d_mv_bits[qpel] from 0, add d_mv_bits[hpel] everywhere if (block == 0) *(Data->iMinSAD) -= lambda_vec8[Data->iQuant] * d_mv_bits( Data->currentQMV->x - Data->predQMV.x, Data->currentQMV->y - Data->predQMV.y, Data->iFcode); *(Data->iMinSAD) += lambda_vec8[Data->iQuant] * d_mv_bits( Data->currentMV->x - Data->predMV.x, Data->currentMV->y - Data->predMV.y, Data->iFcode); } else //it is not qpel. add d_mv_bits[hpel] everywhere but not in 0 (it's already there) if (block != 0) *(Data->iMinSAD) += lambda_vec8[Data->iQuant] * d_mv_bits( Data->currentMV->x - Data->predMV.x, Data->currentMV->y - Data->predMV.y, Data->iFcode); if (MotionFlags & (PMV_EXTSEARCH8|PMV_HALFPELREFINE8)) { Data->Ref = OldData->Ref + 8 * ((block&1) + pParam->edged_width*(block>>1)); Data->RefH = OldData->RefH + 8 * ((block&1) + pParam->edged_width*(block>>1)); Data->RefV = OldData->RefV + 8 * ((block&1) + pParam->edged_width*(block>>1)); Data->RefHV = OldData->RefHV + 8 * ((block&1) + pParam->edged_width*(block>>1)); Data->RefQ = OldData->RefQ; Data->Cur = OldData->Cur + 8 * ((block&1) + pParam->edged_width*(block>>1)); get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 8, pParam->width, pParam->height, OldData->iFcode, pParam->m_quarterpel); CheckCandidate = CheckCandidate8; if (MotionFlags & PMV_EXTSEARCH8) { int32_t temp_sad = *(Data->iMinSAD); // store current MinSAD MainSearchFunc *MainSearchPtr; if (MotionFlags & PMV_USESQUARES8) MainSearchPtr = SquareSearch; else if (MotionFlags & PMV_ADVANCEDDIAMOND8) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; (*MainSearchPtr)(Data->currentMV->x, Data->currentMV->y, Data, 255); if(*(Data->iMinSAD) < temp_sad) { Data->currentQMV->x = 2 * Data->currentMV->x; // update our qpel vector Data->currentQMV->y = 2 * Data->currentMV->y; } } if (MotionFlags & PMV_HALFPELREFINE8) { int32_t temp_sad = *(Data->iMinSAD); // store current MinSAD HalfpelRefine(Data); // perform halfpel refine of current best vector if(*(Data->iMinSAD) < temp_sad) { // we have found a better match Data->currentQMV->x = 2 * Data->currentMV->x; // update our qpel vector Data->currentQMV->y = 2 * Data->currentMV->y; } } if(pParam->m_quarterpel) { if((!(Data->currentQMV->x & 1)) && (!(Data->currentQMV->y & 1)) && (MotionFlags & PMV_QUARTERPELREFINE8)) { CheckCandidate = CheckCandidate8_qpel; Data->iMinSAD[0] -= lambda_vec8[Data->iQuant] * d_mv_bits(Data->predMV.x - Data->currentMV[0].x, Data->predMV.y - Data->currentMV[0].y, Data->iFcode); Data->iMinSAD[0] += lambda_vec8[Data->iQuant] * d_mv_bits(Data->predQMV.x - Data->currentQMV[0].x, Data->predQMV.y - Data->currentQMV[0].y, Data->iFcode); QuarterpelRefine(Data); } } } if(pParam->m_quarterpel) { pMB->pmvs[block].x = Data->currentQMV->x - Data->predQMV.x; pMB->pmvs[block].y = Data->currentQMV->y - Data->predQMV.y; } else { pMB->pmvs[block].x = Data->currentMV->x - Data->predMV.x; pMB->pmvs[block].y = Data->currentMV->y - Data->predMV.y; } pMB->mvs[block] = *(Data->currentMV); pMB->qmvs[block] = *(Data->currentQMV); pMB->sad8[block] = 4 * (*Data->iMinSAD); } /* B-frames code starts here */ static __inline VECTOR ChoosePred(const MACROBLOCK * const pMB, const uint32_t mode) { /* the stupidiest function ever */ if (mode == MODE_FORWARD) return pMB->mvs[0]; else return pMB->b_mvs[0]; } static void __inline PreparePredictionsBF(VECTOR * const pmv, const int x, const int y, const uint32_t iWcount, const MACROBLOCK * const pMB, const uint32_t mode_curr) { // [0] is prediction pmv[0].x = EVEN(pmv[0].x); pmv[0].y = EVEN(pmv[0].y); pmv[1].x = pmv[1].y = 0; // [1] is zero pmv[2] = ChoosePred(pMB, mode_curr); pmv[2].x = EVEN(pmv[2].x); pmv[2].y = EVEN(pmv[2].y); if ((y != 0)&&(x != (int)(iWcount+1))) { // [3] top-right neighbour pmv[3] = ChoosePred(pMB+1-iWcount, mode_curr); pmv[3].x = EVEN(pmv[3].x); pmv[3].y = EVEN(pmv[3].y); } else pmv[3].x = pmv[3].y = 0; if (y != 0) { pmv[4] = ChoosePred(pMB-iWcount, mode_curr); pmv[4].x = EVEN(pmv[4].x); pmv[4].y = EVEN(pmv[4].y); } else pmv[4].x = pmv[4].y = 0; if (x != 0) { pmv[5] = ChoosePred(pMB-1, mode_curr); pmv[5].x = EVEN(pmv[5].x); pmv[5].y = EVEN(pmv[5].y); } else pmv[5].x = pmv[5].y = 0; if ((x != 0)&&(y != 0)) { pmv[6] = ChoosePred(pMB-1-iWcount, mode_curr); pmv[6].x = EVEN(pmv[5].x); pmv[5].y = EVEN(pmv[5].y); } else pmv[6].x = pmv[6].y = 0; // more? } /* search backward or forward, for b-frames */ static void SearchBF( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const uint32_t iFcode, const MBParam * const pParam, MACROBLOCK * const pMB, const VECTOR * const predMV, int32_t * const best_sad, const int32_t mode_current, SearchData * const Data) { const int32_t iEdgedWidth = pParam->edged_width; int i, iDirection, mask; VECTOR pmv[7]; MainSearchFunc *MainSearchPtr; *Data->iMinSAD = MV_MAX_ERROR; Data->iFcode = iFcode; Data->Ref = pRef + (x + y * iEdgedWidth) * 16; Data->RefH = pRefH + (x + y * iEdgedWidth) * 16; Data->RefV = pRefV + (x + y * iEdgedWidth) * 16; Data->RefHV = pRefHV + (x + y * iEdgedWidth) * 16; Data->predMV = *predMV; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, iFcode, pParam->m_quarterpel); pmv[0] = Data->predMV; PreparePredictionsBF(pmv, x, y, pParam->mb_width, pMB, mode_current); Data->currentMV->x = Data->currentMV->y = 0; CheckCandidate = CheckCandidate16no4v; // main loop. checking all predictions for (i = 0; i < 8; i++) { if (!(mask = make_mask(pmv, i)) ) continue; CheckCandidate16no4v(pmv[i].x, pmv[i].y, mask, &iDirection, Data); } if (MotionFlags & PMV_USESQUARES16) MainSearchPtr = SquareSearch; else if (MotionFlags & PMV_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; (*MainSearchPtr)(Data->currentMV->x, Data->currentMV->y, Data, 255); HalfpelRefine(Data); // three bits are needed to code backward mode. four for forward // we treat the bits just like they were vector's if (mode_current == MODE_FORWARD) *Data->iMinSAD += 4 * lambda_vec16[Data->iQuant]; else *Data->iMinSAD += 3 * lambda_vec16[Data->iQuant]; if (*Data->iMinSAD < *best_sad) { *best_sad = *Data->iMinSAD; pMB->mode = mode_current; pMB->pmvs[0].x = Data->currentMV->x - predMV->x; pMB->pmvs[0].y = Data->currentMV->y - predMV->y; if (mode_current == MODE_FORWARD) pMB->mvs[0] = *Data->currentMV; else pMB->b_mvs[0] = *Data->currentMV; } } static int32_t SearchDirect(const IMAGE * const f_Ref, const uint8_t * const f_RefH, const uint8_t * const f_RefV, const uint8_t * const f_RefHV, const IMAGE * const b_Ref, const uint8_t * const b_RefH, const uint8_t * const b_RefV, const uint8_t * const b_RefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const int32_t TRB, const int32_t TRD, const MBParam * const pParam, MACROBLOCK * const pMB, const MACROBLOCK * const b_mb, int32_t * const best_sad, SearchData * const Data) { int32_t skip_sad; int k; MainSearchFunc *MainSearchPtr; *Data->iMinSAD = 256*4096; Data->referencemv = b_mb->mvs; Data->Ref = f_Ref->y + (x + Data->iEdgedWidth*y) * 16; Data->RefH = f_RefH + (x + Data->iEdgedWidth*y) * 16; Data->RefV = f_RefV + (x + Data->iEdgedWidth*y) * 16; Data->RefHV = f_RefHV + (x + Data->iEdgedWidth*y) * 16; Data->bRef = b_Ref->y + (x + Data->iEdgedWidth*y) * 16; Data->bRefH = b_RefH + (x + Data->iEdgedWidth*y) * 16; Data->bRefV = b_RefV + (x + Data->iEdgedWidth*y) * 16; Data->bRefHV = b_RefHV + (x + Data->iEdgedWidth*y) * 16; Data->max_dx = 2 * pParam->width - 2 * (x) * 16; Data->max_dy = 2 * pParam->height - 2 * (y) * 16; Data->min_dx = -(2 * 16 + 2 * (x) * 16); Data->min_dy = -(2 * 16 + 2 * (y) * 16); for (k = 0; k < 4; k++) { pMB->mvs[k].x = Data->directmvF[k].x = ((TRB * Data->referencemv[k].x) / TRD); pMB->b_mvs[k].x = Data->directmvB[k].x = ((TRB - TRD) * Data->referencemv[k].x) / TRD; pMB->mvs[k].y = Data->directmvF[k].y = ((TRB * Data->referencemv[k].y) / TRD); pMB->b_mvs[k].y = Data->directmvB[k].y = ((TRB - TRD) * Data->referencemv[k].y) / TRD; if ( ( pMB->b_mvs[k].x > Data->max_dx ) || ( pMB->b_mvs[k].x < Data->min_dx ) || ( pMB->b_mvs[k].y > Data->max_dy ) || ( pMB->b_mvs[k].y < Data->min_dy )) { *best_sad = 256*4096; // in that case, we won't use direct mode pMB->mode = MODE_DIRECT; // just to make sure it doesn't say "MODE_DIRECT_NONE_MV" pMB->b_mvs[0].x = pMB->b_mvs[0].y = 0; return 0; } if (b_mb->mode != MODE_INTER4V) { pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = pMB->mvs[0]; pMB->b_mvs[1] = pMB->b_mvs[2] = pMB->b_mvs[3] = pMB->b_mvs[0]; Data->directmvF[1] = Data->directmvF[2] = Data->directmvF[3] = Data->directmvF[0]; Data->directmvB[1] = Data->directmvB[2] = Data->directmvB[3] = Data->directmvB[0]; break; } } if (b_mb->mode == MODE_INTER4V) CheckCandidate = CheckCandidateDirect; else CheckCandidate = CheckCandidateDirectno4v; (*CheckCandidate)(0, 0, 255, &k, Data); // skip decision if (*Data->iMinSAD - 2 * lambda_vec16[Data->iQuant] < (int32_t)Data->iQuant * SKIP_THRESH_B) { //possible skip - checking chroma. everything copied from MC //this is not full chroma compensation, only it's fullpel approximation. should work though int sum, dx, dy, b_dx, b_dy; sum = pMB->mvs[0].x + pMB->mvs[1].x + pMB->mvs[2].x + pMB->mvs[3].x; dx = (sum == 0 ? 0 : SIGN(sum) * (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2)); sum = pMB->mvs[0].y + pMB->mvs[1].y + pMB->mvs[2].y + pMB->mvs[3].y; dy = (sum == 0 ? 0 : SIGN(sum) * (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2)); sum = pMB->b_mvs[0].x + pMB->b_mvs[1].x + pMB->b_mvs[2].x + pMB->b_mvs[3].x; b_dx = (sum == 0 ? 0 : SIGN(sum) * (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2)); sum = pMB->b_mvs[0].y + pMB->b_mvs[1].y + pMB->b_mvs[2].y + pMB->b_mvs[3].y; b_dy = (sum == 0 ? 0 : SIGN(sum) * (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2)); sum = sad8bi(pCur->u + 8*x + 8*y*(Data->iEdgedWidth/2), f_Ref->u + (y*8 + dy/2) * (Data->iEdgedWidth/2) + x*8 + dx/2, b_Ref->u + (y*8 + b_dy/2) * (Data->iEdgedWidth/2) + x*8 + b_dx/2, Data->iEdgedWidth/2); sum += sad8bi(pCur->v + 8*x + 8*y*(Data->iEdgedWidth/2), f_Ref->v + (y*8 + dy/2) * (Data->iEdgedWidth/2) + x*8 + dx/2, b_Ref->v + (y*8 + b_dy/2) * (Data->iEdgedWidth/2) + x*8 + b_dx/2, Data->iEdgedWidth/2); if ((uint32_t) sum < MAX_CHROMA_SAD_FOR_SKIP * Data->iQuant) { pMB->mode = MODE_DIRECT_NONE_MV; return *Data->iMinSAD; } } skip_sad = *Data->iMinSAD; // DIRECT MODE DELTA VECTOR SEARCH. // This has to be made more effective, but at the moment I'm happy it's running at all if (MotionFlags & PMV_USESQUARES16) MainSearchPtr = SquareSearch; else if (MotionFlags & PMV_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; (*MainSearchPtr)(0, 0, Data, 255); HalfpelRefine(Data); *Data->iMinSAD += 1 * lambda_vec16[Data->iQuant]; // one bit is needed to code direct mode. we treat this bit just like it was vector's *best_sad = *Data->iMinSAD; if (b_mb->mode == MODE_INTER4V) pMB->mode = MODE_DIRECT; else pMB->mode = MODE_DIRECT_NO4V; //for faster compensation pMB->pmvs[3] = *Data->currentMV; for (k = 0; k < 4; k++) { pMB->mvs[k].x = Data->directmvF[k].x + Data->currentMV->x; pMB->b_mvs[k].x = ((Data->currentMV->x == 0) ? Data->directmvB[k].x : pMB->mvs[k].x - Data->referencemv[k].x); pMB->mvs[k].y = (Data->directmvF[k].y + Data->currentMV->y); pMB->b_mvs[k].y = ((Data->currentMV->y == 0) ? Data->directmvB[k].y : pMB->mvs[k].y - Data->referencemv[k].y); if (b_mb->mode != MODE_INTER4V) { pMB->mvs[3] = pMB->mvs[2] = pMB->mvs[1] = pMB->mvs[0]; pMB->b_mvs[3] = pMB->b_mvs[2] = pMB->b_mvs[1] = pMB->b_mvs[0]; break; } } return skip_sad; } static __inline void SearchInterpolate(const uint8_t * const f_Ref, const uint8_t * const f_RefH, const uint8_t * const f_RefV, const uint8_t * const f_RefHV, const uint8_t * const b_Ref, const uint8_t * const b_RefH, const uint8_t * const b_RefV, const uint8_t * const b_RefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t fcode, const uint32_t bcode, const uint32_t MotionFlags, const MBParam * const pParam, const VECTOR * const f_predMV, const VECTOR * const b_predMV, MACROBLOCK * const pMB, int32_t * const best_sad, SearchData * const fData) { const int32_t iEdgedWidth = pParam->edged_width; int iDirection, i, j; SearchData bData; bData.iMinSAD = fData->iMinSAD; *bData.iMinSAD = 4096*256; bData.Cur = fData->Cur; fData->iEdgedWidth = bData.iEdgedWidth = iEdgedWidth; bData.currentMV = fData->currentMV + 1; bData.iQuant = fData->iQuant; fData->iFcode = bData.bFcode = fcode; fData->bFcode = bData.iFcode = bcode; bData.bRef = fData->Ref = f_Ref + (x + y * iEdgedWidth) * 16; bData.bRefH = fData->RefH = f_RefH + (x + y * iEdgedWidth) * 16; bData.bRefV = fData->RefV = f_RefV + (x + y * iEdgedWidth) * 16; bData.bRefHV = fData->RefHV = f_RefHV + (x + y * iEdgedWidth) * 16; bData.Ref = fData->bRef = b_Ref + (x + y * iEdgedWidth) * 16; bData.RefH = fData->bRefH = b_RefH + (x + y * iEdgedWidth) * 16; bData.RefV = fData->bRefV = b_RefV + (x + y * iEdgedWidth) * 16; bData.RefHV = fData->bRefHV = b_RefHV + (x + y * iEdgedWidth) * 16; bData.bpredMV = fData->predMV = *f_predMV; fData->bpredMV = bData.predMV = *b_predMV; fData->currentMV[0] = pMB->mvs[0]; fData->currentMV[1] = pMB->b_mvs[0]; get_range(&fData->min_dx, &fData->max_dx, &fData->min_dy, &fData->max_dy, x, y, 16, pParam->width, pParam->height, fcode, pParam->m_quarterpel); get_range(&bData.min_dx, &bData.max_dx, &bData.min_dy, &bData.max_dy, x, y, 16, pParam->width, pParam->height, bcode, pParam->m_quarterpel); if (fData->currentMV[0].x > fData->max_dx) fData->currentMV[0].x = fData->max_dx; if (fData->currentMV[0].x < fData->min_dx) fData->currentMV[0].x = fData->min_dy; if (fData->currentMV[0].y > fData->max_dy) fData->currentMV[0].y = fData->max_dx; if (fData->currentMV[0].y > fData->min_dy) fData->currentMV[0].y = fData->min_dy; if (fData->currentMV[1].x > bData.max_dx) fData->currentMV[1].x = bData.max_dx; if (fData->currentMV[1].x < bData.min_dx) fData->currentMV[1].x = bData.min_dy; if (fData->currentMV[1].y > bData.max_dy) fData->currentMV[1].y = bData.max_dx; if (fData->currentMV[1].y > bData.min_dy) fData->currentMV[1].y = bData.min_dy; CheckCandidateInt(fData->currentMV[0].x, fData->currentMV[0].y, 255, &iDirection, fData); //diamond. I wish we could use normal mainsearch functions (square, advdiamond) do { iDirection = 255; // forward MV moves i = fData->currentMV[0].x; j = fData->currentMV[0].y; CheckCandidateInt(i + 1, j, 0, &iDirection, fData); CheckCandidateInt(i, j + 1, 0, &iDirection, fData); CheckCandidateInt(i - 1, j, 0, &iDirection, fData); CheckCandidateInt(i, j - 1, 0, &iDirection, fData); // backward MV moves i = fData->currentMV[1].x; j = fData->currentMV[1].y; fData->currentMV[2] = fData->currentMV[0]; CheckCandidateInt(i + 1, j, 0, &iDirection, &bData); CheckCandidateInt(i, j + 1, 0, &iDirection, &bData); CheckCandidateInt(i - 1, j, 0, &iDirection, &bData); CheckCandidateInt(i, j - 1, 0, &iDirection, &bData); } while (!(iDirection)); // two bits are needed to code interpolate mode. we treat the bits just like they were vector's *fData->iMinSAD += 2 * lambda_vec16[fData->iQuant]; if (*fData->iMinSAD < *best_sad) { *best_sad = *fData->iMinSAD; pMB->mvs[0] = fData->currentMV[0]; pMB->b_mvs[0] = fData->currentMV[1]; pMB->mode = MODE_INTERPOLATE; pMB->pmvs[1].x = pMB->mvs[0].x - f_predMV->x; pMB->pmvs[1].y = pMB->mvs[0].y - f_predMV->y; pMB->pmvs[0].x = pMB->b_mvs[0].x - b_predMV->x; pMB->pmvs[0].y = pMB->b_mvs[0].y - b_predMV->y; } } void MotionEstimationBVOP(MBParam * const pParam, FRAMEINFO * const frame, const int32_t time_bp, const int32_t time_pp, // forward (past) reference const MACROBLOCK * const f_mbs, const IMAGE * const f_ref, const IMAGE * const f_refH, const IMAGE * const f_refV, const IMAGE * const f_refHV, // backward (future) reference const MACROBLOCK * const b_mbs, const IMAGE * const b_ref, const IMAGE * const b_refH, const IMAGE * const b_refV, const IMAGE * const b_refHV) { uint32_t i, j; int32_t best_sad, skip_sad; int f_count = 0, b_count = 0, i_count = 0, d_count = 0, n_count = 0; static const VECTOR zeroMV={0,0}; VECTOR f_predMV, b_predMV; /* there is no prediction for direct mode*/ const int32_t TRB = time_pp - time_bp; const int32_t TRD = time_pp; // some pre-inintialized data for the rest of the search SearchData Data; int32_t iMinSAD; VECTOR currentMV[3]; Data.iEdgedWidth = pParam->edged_width; Data.currentMV = currentMV; Data.iMinSAD = &iMinSAD; Data.iQuant = frame->quant; // note: i==horizontal, j==vertical for (j = 0; j < pParam->mb_height; j++) { f_predMV = b_predMV = zeroMV; /* prediction is reset at left boundary */ for (i = 0; i < pParam->mb_width; i++) { MACROBLOCK * const pMB = frame->mbs + i + j * pParam->mb_width; const MACROBLOCK * const b_mb = b_mbs + i + j * pParam->mb_width; /* special case, if collocated block is SKIPed: encoding is forward (0,0), cpb=0 without further ado */ if (b_mb->mode == MODE_NOT_CODED) { pMB->mode = MODE_NOT_CODED; continue; } Data.Cur = frame->image.y + (j * Data.iEdgedWidth + i) * 16; /* direct search comes first, because it (1) checks for SKIP-mode and (2) sets very good predictions for forward and backward search */ skip_sad = SearchDirect(f_ref, f_refH->y, f_refV->y, f_refHV->y, b_ref, b_refH->y, b_refV->y, b_refHV->y, &frame->image, i, j, frame->motion_flags, TRB, TRD, pParam, pMB, b_mb, &best_sad, &Data); if (pMB->mode == MODE_DIRECT_NONE_MV) { n_count++; continue; } // best_sad = 256*4096; //uncomment to disable Directsearch. // To disable any other mode, just comment the function call // forward search SearchBF(f_ref->y, f_refH->y, f_refV->y, f_refHV->y, &frame->image, i, j, frame->motion_flags, frame->fcode, pParam, pMB, &f_predMV, &best_sad, MODE_FORWARD, &Data); // backward search SearchBF(b_ref->y, b_refH->y, b_refV->y, b_refHV->y, &frame->image, i, j, frame->motion_flags, frame->bcode, pParam, pMB, &b_predMV, &best_sad, MODE_BACKWARD, &Data); // interpolate search comes last, because it uses data from forward and backward as prediction SearchInterpolate(f_ref->y, f_refH->y, f_refV->y, f_refHV->y, b_ref->y, b_refH->y, b_refV->y, b_refHV->y, &frame->image, i, j, frame->fcode, frame->bcode, frame->motion_flags, pParam, &f_predMV, &b_predMV, pMB, &best_sad, &Data); switch (pMB->mode) { case MODE_FORWARD: f_count++; f_predMV = pMB->mvs[0]; break; case MODE_BACKWARD: b_count++; b_predMV = pMB->b_mvs[0]; break; case MODE_INTERPOLATE: i_count++; f_predMV = pMB->mvs[0]; b_predMV = pMB->b_mvs[0]; break; case MODE_DIRECT: case MODE_DIRECT_NO4V: d_count++; break; default: break; } } } // fprintf(debug,"B-Stat: F: %04d B: %04d I: %04d D: %04d, N: %04d\n", // f_count,b_count,i_count,d_count,n_count); } /* Hinted ME starts here */ static void Search8hinted(const SearchData * const OldData, const int x, const int y, const uint32_t MotionFlags, const MBParam * const pParam, MACROBLOCK * const pMB, const MACROBLOCK * const pMBs, const int block, SearchData * const Data) { int32_t temp_sad; MainSearchFunc *MainSearchPtr; Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x/2 , y/2, block); Data->predQMV = get_qpmv2(pMBs, pParam->mb_width, 0, x/2 , y/2, block); Data->iMinSAD = OldData->iMinSAD + 1 + block; Data->currentMV = OldData->currentMV + 1 + block; Data->currentQMV = OldData->currentQMV + 1 + block; if (block != 0) { if(pParam->m_quarterpel) { *(Data->iMinSAD) += lambda_vec8[Data->iQuant] * d_mv_bits( Data->currentQMV->x - Data->predQMV.x, Data->currentQMV->y - Data->predQMV.y, Data->iFcode); } else { *(Data->iMinSAD) += lambda_vec8[Data->iQuant] * d_mv_bits( Data->currentMV->x - Data->predMV.x, Data->currentMV->y - Data->predMV.y, Data->iFcode); } } Data->Ref = OldData->Ref + 8 * ((block&1) + pParam->edged_width*(block>>1)); Data->RefH = OldData->RefH + 8 * ((block&1) + pParam->edged_width*(block>>1)); Data->RefV = OldData->RefV + 8 * ((block&1) + pParam->edged_width*(block>>1)); Data->RefHV = OldData->RefHV + 8 * ((block&1) + pParam->edged_width*(block>>1)); Data->RefQ = OldData->RefQ; Data->Cur = OldData->Cur + 8 * ((block&1) + pParam->edged_width*(block>>1)); get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 8, pParam->width, pParam->height, OldData->iFcode, pParam->m_quarterpel); CheckCandidate = CheckCandidate8; temp_sad = *(Data->iMinSAD); // store current MinSAD if (MotionFlags & PMV_USESQUARES8) MainSearchPtr = SquareSearch; else if (MotionFlags & PMV_ADVANCEDDIAMOND8) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; (*MainSearchPtr)(Data->currentMV->x, Data->currentMV->y, Data, 255); if(*(Data->iMinSAD) < temp_sad) { Data->currentQMV->x = 2 * Data->currentMV->x; // update our qpel vector Data->currentQMV->y = 2 * Data->currentMV->y; } if (MotionFlags & PMV_HALFPELREFINE8) { temp_sad = *(Data->iMinSAD); // store current MinSAD HalfpelRefine(Data); // perform halfpel refine of current best vector if(*(Data->iMinSAD) < temp_sad) { // we have found a better match Data->currentQMV->x = 2 * Data->currentMV->x; // update our qpel vector Data->currentQMV->y = 2 * Data->currentMV->y; } } if(pParam->m_quarterpel) { if((!(Data->currentQMV->x & 1)) && (!(Data->currentQMV->y & 1)) && (MotionFlags & PMV_QUARTERPELREFINE8)) { CheckCandidate = CheckCandidate8_qpel; QuarterpelRefine(Data); } } if(pParam->m_quarterpel) { pMB->pmvs[block].x = Data->currentQMV->x - Data->predQMV.x; pMB->pmvs[block].y = Data->currentQMV->y - Data->predQMV.y; } else { pMB->pmvs[block].x = Data->currentMV->x - Data->predMV.x; pMB->pmvs[block].y = Data->currentMV->y - Data->predMV.y; } pMB->mvs[block] = *(Data->currentMV); pMB->qmvs[block] = *(Data->currentQMV); pMB->sad8[block] = 4 * (*Data->iMinSAD); } static void SearchPhinted ( const uint8_t * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const uint32_t iQuant, const MBParam * const pParam, const MACROBLOCK * const pMBs, int inter4v, MACROBLOCK * const pMB, SearchData * const Data) { const int32_t iEdgedWidth = pParam->edged_width; int i, t; MainSearchFunc * MainSearchPtr; Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, 0); get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode, pParam->m_quarterpel); Data->Cur = pCur->y + (x + y * iEdgedWidth) * 16; Data->Ref = pRef + (x + iEdgedWidth*y)*16; Data->RefH = pRefH + (x + iEdgedWidth*y) * 16; Data->RefV = pRefV + (x + iEdgedWidth*y) * 16; Data->RefHV = pRefHV + (x + iEdgedWidth*y) * 16; Data->iQuant = iQuant; if (!(MotionFlags & PMV_HALFPEL16)) { Data->min_dx = EVEN(Data->min_dx); Data->max_dx = EVEN(Data->max_dx); Data->min_dy = EVEN(Data->min_dy); Data->max_dy = EVEN(Data->max_dy); } for(i = 0; i < 5; i++) Data->iMinSAD[i] = MV_MAX_ERROR; if (pMB->dquant != NO_CHANGE) inter4v = 0; if (inter4v) CheckCandidate = CheckCandidate16; else CheckCandidate = CheckCandidate16no4v; pMB->mvs[0].x = EVEN(pMB->mvs[0].x); pMB->mvs[0].y = EVEN(pMB->mvs[0].y); if (pMB->mvs[0].x > Data->max_dx) pMB->mvs[0].x = Data->max_dx; // this is in case iFcode changed if (pMB->mvs[0].x < Data->min_dx) pMB->mvs[0].x = Data->min_dx; if (pMB->mvs[0].y > Data->max_dy) pMB->mvs[0].y = Data->max_dy; if (pMB->mvs[0].y < Data->min_dy) pMB->mvs[0].y = Data->min_dy; (*CheckCandidate)(pMB->mvs[0].x, pMB->mvs[0].y, 0, &t, Data); if (pMB->mode == MODE_INTER4V) for (i = 1; i < 4; i++) { // all four vectors will be used as four predictions for 16x16 search pMB->mvs[i].x = EVEN(pMB->mvs[i].x); pMB->mvs[i].y = EVEN(pMB->mvs[i].y); if (!(make_mask(pMB->mvs, i))) (*CheckCandidate)(pMB->mvs[i].x, pMB->mvs[i].y, 0, &t, Data); } if (MotionFlags & PMV_USESQUARES16) MainSearchPtr = SquareSearch; else if (MotionFlags & PMV_ADVANCEDDIAMOND16) MainSearchPtr = AdvDiamondSearch; else MainSearchPtr = DiamondSearch; (*MainSearchPtr)(Data->currentMV->x, Data->currentMV->y, Data, 255); if (MotionFlags & PMV_HALFPELREFINE16) HalfpelRefine(Data); for(i = 0; i < 5; i++) { Data->currentQMV[i].x = 2 * Data->currentMV[i].x; // initialize qpel vectors Data->currentQMV[i].y = 2 * Data->currentMV[i].y; } if((pParam->m_quarterpel) && (MotionFlags & PMV_QUARTERPELREFINE16)) { if(inter4v) CheckCandidate = CheckCandidate16_qpel; else CheckCandidate = CheckCandidate16no4v_qpel; QuarterpelRefine(Data); } if (inter4v) { SearchData Data8; Data8.iFcode = Data->iFcode; Data8.iQuant = Data->iQuant; Data8.iEdgedWidth = Data->iEdgedWidth; Search8hinted(Data, 2*x, 2*y, MotionFlags, pParam, pMB, pMBs, 0, &Data8); Search8hinted(Data, 2*x + 1, 2*y, MotionFlags, pParam, pMB, pMBs, 1, &Data8); Search8hinted(Data, 2*x, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 2, &Data8); Search8hinted(Data, 2*x + 1, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 3, &Data8); } if (!(inter4v) || (Data->iMinSAD[0] < Data->iMinSAD[1] + Data->iMinSAD[2] + Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant )) { // INTER MODE pMB->mode = MODE_INTER; pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = Data->currentMV[0]; pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = Data->iMinSAD[0]; pMB->pmvs[0].x = Data->currentMV[0].x - Data->predMV.x; pMB->pmvs[0].y = Data->currentMV[0].y - Data->predMV.y; } else { // INTER4V MODE; all other things are already set in Search8hinted pMB->mode = MODE_INTER4V; pMB->sad16 = Data->iMinSAD[1] + Data->iMinSAD[2] + Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * iQuant; } } void MotionEstimationHinted( MBParam * const pParam, FRAMEINFO * const current, FRAMEINFO * const reference, const IMAGE * const pRefH, const IMAGE * const pRefV, const IMAGE * const pRefHV) { MACROBLOCK *const pMBs = current->mbs; const IMAGE *const pCurrent = ¤t->image; const IMAGE *const pRef = &reference->image; uint32_t x, y; int8_t * qimage; int32_t temp[5], quant = current->quant; int32_t iMinSAD[5]; VECTOR currentMV[5]; SearchData Data; Data.iEdgedWidth = pParam->edged_width; Data.currentMV = currentMV; Data.iMinSAD = iMinSAD; Data.temp = temp; Data.iFcode = current->fcode; Data.rounding = pParam->m_rounding_type; if((qimage = (uint8_t *) malloc(32 * pParam->edged_width)) == NULL) return; // allocate some mem for qpel interpolated blocks // somehow this is dirty since I think we shouldn't use malloc outside // encoder_create() - so please fix me! Data.RefQ = qimage; if (sadInit) (*sadInit) (); for (y = 0; y < pParam->mb_height; y++) { for (x = 0; x < pParam->mb_width; x++) { MACROBLOCK *pMB = &pMBs[x + y * pParam->mb_width]; //intra mode is copied from the first pass. At least for the time being if ((pMB->mode == MODE_INTRA) || (pMB->mode == MODE_NOT_CODED) ) continue; if (!(current->global_flags & XVID_LUMIMASKING)) { pMB->dquant = NO_CHANGE; pMB->quant = current->quant; } else if (pMB->dquant != NO_CHANGE) { quant += DQtab[pMB->dquant]; if (quant > 31) quant = 31; else if (quant < 1) quant = 1; pMB->quant = quant; } SearchPhinted(pRef->y, pRefH->y, pRefV->y, pRefHV->y, pCurrent, x, y, current->motion_flags, pMB->quant, pParam, pMBs, current->global_flags & XVID_INTER4V, pMB, &Data); } } free(qimage); } static __inline int MEanalyzeMB ( const uint8_t * const pRef, const uint8_t * const pCur, const int x, const int y, const MBParam * const pParam, const MACROBLOCK * const pMBs, MACROBLOCK * const pMB, SearchData * const Data) { int i, mask; VECTOR pmv[3]; *(Data->iMinSAD) = MV_MAX_ERROR; Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, 0); get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16, pParam->width, pParam->height, Data->iFcode, pParam->m_quarterpel); Data->Cur = pCur + (x + y * pParam->edged_width) * 16; Data->Ref = pRef + (x + y * pParam->edged_width) * 16; CheckCandidate = CheckCandidate16no4vI; pmv[1].x = EVEN(pMB->mvs[0].x); pmv[1].y = EVEN(pMB->mvs[0].y); pmv[0].x = EVEN(Data->predMV.x); pmv[0].y = EVEN(Data->predMV.y); pmv[2].x = pmv[2].y = 0; CheckCandidate16no4vI(pmv[0].x, pmv[0].y, 255, &i, Data); if (!(mask = make_mask(pmv, 1))) CheckCandidate16no4vI(pmv[1].x, pmv[1].y, mask, &i, Data); if (!(mask = make_mask(pmv, 2))) CheckCandidate16no4vI(0, 0, mask, &i, Data); DiamondSearch(Data->currentMV->x, Data->currentMV->y, Data, i); pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = *Data->currentMV; // all, for future get_pmv() return *(Data->iMinSAD); } #define INTRA_THRESH 1350 #define INTER_THRESH 900 int MEanalysis( const IMAGE * const pRef, const IMAGE * const pCurrent, MBParam * const pParam, MACROBLOCK * const pMBs, const uint32_t iFcode) { uint32_t x, y, intra = 0; int sSAD = 0; VECTOR currentMV; int32_t iMinSAD; SearchData Data; Data.iEdgedWidth = pParam->edged_width; Data.currentMV = ¤tMV; Data.iMinSAD = &iMinSAD; Data.iFcode = iFcode; Data.iQuant = 2; if (sadInit) (*sadInit) (); for (y = 0; y < pParam->mb_height-1; y++) { for (x = 0; x < pParam->mb_width; x++) { int sad, dev; MACROBLOCK *pMB = &pMBs[x + y * pParam->mb_width]; sad = MEanalyzeMB(pRef->y, pCurrent->y, x, y, pParam, pMBs, pMB, &Data); if ( x != 0 && y != 0 && x != pParam->mb_width-1 ) { //no edge macroblocks, they just don't work if (sad > INTRA_THRESH) { dev = dev16(pCurrent->y + (x + y * pParam->edged_width) * 16, pParam->edged_width); if (dev + INTRA_THRESH < sad) intra++; if (intra > (pParam->mb_height-2)*(pParam->mb_width-2)/2) return 2; // I frame } sSAD += sad; } } } sSAD /= (pParam->mb_height-2)*(pParam->mb_width-2); if (sSAD > INTER_THRESH ) return 1; //P frame emms(); return 0; // B frame } int FindFcode( const MBParam * const pParam, const FRAMEINFO * const current) { uint32_t x, y; int max = 0, min = 0, i; for (y = 0; y < pParam->mb_height; y++) { for (x = 0; x < pParam->mb_width; x++) { MACROBLOCK *pMB = ¤t->mbs[x + y * pParam->mb_width]; for(i = 0; i < (pMB->mode == MODE_INTER4V ? 4:1); i++) { if (pMB->mvs[i].x > max) max = pMB->mvs[i].x; if (pMB->mvs[i].y > max) max = pMB->mvs[i].y; if (pMB->mvs[i].x < min) min = pMB->mvs[i].x; if (pMB->mvs[i].y < min) min = pMB->mvs[i].y; } } } min = -min; max += 1; if (min > max) max = min; for (i = 1; (max > 32 << (i - 1)); i++); return i; }