// 30.10.2002 corrected qpel chroma rounding // 04.10.2002 added qpel support to MBMotionCompensation // 01.05.2002 updated MBMotionCompensationBVOP // 14.04.2002 bframe compensation #include "../encoder.h" #include "../utils/mbfunctions.h" #include "../image/interpolate8x8.h" #include "../image/reduced.h" #include "../utils/timer.h" #include "motion.h" #define ABS(X) (((X)>0)?(X):-(X)) #define SIGN(X) (((X)>0)?1:-1) // decode an inter macroblock static void rrv_mv_scaleup(VECTOR * mv) { if (mv->x > 0) { mv->x = 2*mv->x - 1; } else if (mv->x < 0) { mv->x = 2*mv->x + 1; } if (mv->y > 0) { mv->y = 2*mv->y - 1; } else if (mv->y < 0) { mv->y = 2*mv->y + 1; } } static __inline void compensate16x16_interpolate(int16_t * const dct_codes, uint8_t * const cur, const uint8_t * const ref, const uint8_t * const refh, uint8_t * const refv, const uint8_t * const refhv, uint32_t x, uint32_t y, const int32_t dx, const int32_t dy, const uint32_t stride, const uint32_t quarterpel, const int reduced_resolution, const uint32_t rounding) { if (reduced_resolution) { /* XXX: todo */ VECTOR mv; int i,j; uint8_t tmp[18*18]; x*=2; y*=2; mv.x = dx; mv.y = dy; rrv_mv_scaleup(&mv); interpolate32x32_switch( refv, ref, x, y, mv.x, mv.y, stride, rounding); for (j = 0; j < 32; j++) for (i = 0; i < 32; i++) cur[(y+j)*stride + x + i] -= refv[(y+j)*stride + x + i]; filter_18x18_to_8x8(dct_codes, cur + y*stride + x, stride); filter_18x18_to_8x8(dct_codes+64, cur + y*stride + x + 16, stride); filter_18x18_to_8x8(dct_codes+128, cur + (y+16)*stride + x, stride); filter_18x18_to_8x8(dct_codes+192, cur + (y+16)*stride + x + 16, stride); /* for (j = 0; j < 16; j++) for (i = 0; i < 16; i++) tmp[(j+1)*18 + i+1] = refv[ (y+j)*stride + x+i]; for (i = 1; i < 17; i++) { tmp[ 0*18 + i] = tmp[ 1*18 + i]; tmp[17*18 + i] = tmp[16*18 + i]; } for (i = 0; i < 18; i++) { tmp[ i*18 + 0] = tmp[i*18 + 1]; tmp[ i*18 + 17] = tmp[i*18 + 16]; } filter_18x18_to_8x8(dct_codes, tmp, 18); for (j = 0; j < 16; j++) for (i = 0; i < 16; i++) tmp[(j+1)*18 + i+1] = refv[ (y+j)*stride + x+i + 16]; for (i = 1; i < 17; i++) { tmp[ 0*18 + i] = tmp[ 1*18 + i]; tmp[17*18 + i] = tmp[16*18 + i]; } for (i = 0; i < 18; i++) { tmp[ i*18 + 0] = tmp[i*18 + 1]; tmp[ i*18 + 17] = tmp[i*18 + 16]; } filter_18x18_to_8x8(dct_codes+64, tmp, 18); for (j = 0; j < 16; j++) for (i = 0; i < 16; i++) tmp[(j+1)*18 + i+1] = refv[ (y+16+j)*stride + x+i]; for (i = 1; i < 17; i++) { tmp[ 0*18 + i] = tmp[ 1*18 + i]; tmp[17*18 + i] = tmp[16*18 + i]; } for (i = 0; i < 18; i++) { tmp[ i*18 + 0] = tmp[i*18 + 1]; tmp[ i*18 + 17] = tmp[i*18 + 16]; } filter_18x18_to_8x8(dct_codes+128, tmp, 18); for (j = 0; j < 16; j++) for (i = 0; i < 16; i++) tmp[(j+1)*18 + i+1] = refv[ (y+16+j)*stride + x+i + 16]; for (i = 1; i < 17; i++) { tmp[ 0*18 + i] = tmp[ 1*18 + i]; tmp[17*18 + i] = tmp[16*18 + i]; } for (i = 0; i < 18; i++) { tmp[ i*18 + 0] = tmp[i*18 + 1]; tmp[ i*18 + 17] = tmp[i*18 + 16]; } filter_18x18_to_8x8(dct_codes+192, tmp, 18); */ //memset(dct_codes, 0, sizeof(uint16_t) * 64 * 4); }else{ if(quarterpel) { interpolate16x16_quarterpel((uint8_t *) refv, (uint8_t *) ref, (uint8_t *) refh, (uint8_t *) refh + 64, (uint8_t *) refhv, x, y, dx, dy, stride, rounding); transfer_8to16sub(dct_codes, cur + y*stride + x, refv + y*stride + x, stride); transfer_8to16sub(dct_codes+64, cur + y*stride + x + 8, refv + y*stride + x + 8, stride); transfer_8to16sub(dct_codes+128, cur + y*stride + x + 8*stride, refv + y*stride + x + 8*stride, stride); transfer_8to16sub(dct_codes+192, cur + y*stride + x + 8*stride + 8, refv + y*stride + x + 8*stride+8, stride); } else { const uint8_t * reference; switch (((dx & 1) << 1) + (dy & 1)) // ((dx%2)?2:0)+((dy%2)?1:0) { case 0: reference = ref + ((y + dy / 2) * stride + x + dx / 2); break; case 1: reference = refv + ((y + (dy-1) / 2) * stride + x + dx / 2); break; case 2: reference = refh + ((y + dy / 2) * stride + x + (dx-1) / 2); break; default: // case 3: reference = refhv + ((y + (dy-1) / 2) * stride + x + (dx-1) / 2); break; } transfer_8to16sub(dct_codes, cur + y * stride + x, reference, stride); transfer_8to16sub(dct_codes+64, cur + y * stride + x + 8, reference + 8, stride); transfer_8to16sub(dct_codes+128, cur + y * stride + x + 8*stride, reference + 8*stride, stride); transfer_8to16sub(dct_codes+192, cur + y * stride + x + 8*stride+8, reference + 8*stride + 8, stride); } } } static __inline void compensate8x8_interpolate(int16_t * const dct_codes, uint8_t * const cur, const uint8_t * const ref, const uint8_t * const refh, const uint8_t * const refv, const uint8_t * const refhv, const uint32_t x, const uint32_t y, const int32_t dx, const int32_t dy, const uint32_t stride, const uint32_t quarterpel, const int reduced_resolution, const uint32_t rounding) { if (reduced_resolution) { // XXX: todo } else { if(quarterpel) { interpolate8x8_quarterpel((uint8_t *) refv, (uint8_t *) ref, (uint8_t *) refh, (uint8_t *) refh + 64, (uint8_t *) refhv, x, y, dx, dy, stride, rounding); transfer_8to16sub(dct_codes, cur + y*stride + x, refv + y*stride + x, stride); } else { const uint8_t * reference; switch (((dx & 1) << 1) + (dy & 1)) // ((dx%2)?2:0)+((dy%2)?1:0) { case 0: reference = ref + ((y + dy / 2) * stride + x + dx / 2); break; case 1: reference = refv + ((y + (dy-1) / 2) * stride + x + dx / 2); break; case 2: reference = refh + ((y + dy / 2) * stride + x + (dx-1) / 2); break; default: // case 3: reference = refhv + ((y + (dy-1) / 2) * stride + x + (dx-1) / 2); break; } transfer_8to16sub(dct_codes, cur + y * stride + x, reference, stride); } } } void MBMotionCompensation(MACROBLOCK * const mb, const uint32_t i, const uint32_t j, const IMAGE * const ref, const IMAGE * const refh, const IMAGE * const refv, const IMAGE * const refhv, IMAGE * const cur, int16_t * dct_codes, const uint32_t width, const uint32_t height, const uint32_t edged_width, const uint32_t quarterpel, const int reduced_resolution, const uint32_t rounding) { if (mb->mode == MODE_NOT_CODED || mb->mode == MODE_INTER || mb->mode == MODE_INTER_Q) { int32_t dx = (quarterpel ? mb->qmvs[0].x : mb->mvs[0].x); int32_t dy = (quarterpel ? mb->qmvs[0].y : mb->mvs[0].y); if ( (mb->mode == MODE_NOT_CODED) && (dx==0) && (dy==0) ) { /* quick copy */ transfer16x16_copy(cur->y + 16 * (i + j * edged_width), ref->y + 16 * (i + j * edged_width), edged_width); transfer8x8_copy(cur->u + 8 * (i + j * edged_width/2), ref->u + 8 * (i + j * edged_width/2), edged_width / 2); transfer8x8_copy(cur->v + 8 * (i + j * edged_width/2), ref->v + 8 * (i + j * edged_width/2), edged_width / 2); return; } /* quick MODE_NOT_CODED for GMC with MV!=(0,0) is still needed */ compensate16x16_interpolate(&dct_codes[0 * 64], cur->y, ref->y, refh->y, refv->y, refhv->y, 16 * i, 16 * j, dx, dy, edged_width, quarterpel, reduced_resolution, rounding); if (quarterpel) { dx /= 2; dy /= 2; } dx = (dx >> 1) + roundtab_79[dx & 0x3]; dy = (dy >> 1) + roundtab_79[dy & 0x3]; /* uv-block-based compensation */ if (reduced_resolution) { // XXX: todo }else{ transfer_8to16sub(&dct_codes[4 * 64], cur->u + 8 * j * edged_width / 2 + 8 * i, interpolate8x8_switch2(refv->u, ref->u, 8 * i, 8 * j, dx, dy, edged_width / 2, rounding), edged_width / 2); transfer_8to16sub(&dct_codes[5 * 64], cur->v + 8 * j * edged_width / 2 + 8 * i, interpolate8x8_switch2(refv->u, ref->v, 8 * i, 8 * j, dx, dy, edged_width / 2, rounding), edged_width / 2); } } else { // mode == MODE_INTER4V int32_t sum, dx, dy; VECTOR *mvs; if(quarterpel) mvs = mb->qmvs; else mvs = mb->mvs; if (reduced_resolution) { ///XXX: todo }else{ compensate8x8_interpolate(&dct_codes[0 * 64], cur->y, ref->y, refh->y, refv->y, refhv->y, 16 * i, 16 * j, mvs[0].x, mvs[0].y, edged_width, quarterpel, reduced_resolution, rounding); compensate8x8_interpolate(&dct_codes[1 * 64], cur->y, ref->y, refh->y, refv->y, refhv->y, 16 * i + 8, 16 * j, mvs[1].x, mvs[1].y, edged_width, quarterpel, reduced_resolution, rounding); compensate8x8_interpolate(&dct_codes[2 * 64], cur->y, ref->y, refh->y, refv->y, refhv->y, 16 * i, 16 * j + 8, mvs[2].x, mvs[2].y, edged_width, quarterpel, reduced_resolution, rounding); compensate8x8_interpolate(&dct_codes[3 * 64], cur->y, ref->y, refh->y, refv->y, refhv->y, 16 * i + 8, 16 * j + 8, mvs[3].x, mvs[3].y, edged_width, quarterpel, reduced_resolution, rounding); } if(quarterpel) sum = (mvs[0].x / 2) + (mvs[1].x / 2) + (mvs[2].x / 2) + (mvs[3].x / 2); else sum = mvs[0].x + mvs[1].x + mvs[2].x + mvs[3].x; dx = (sum >> 3) + roundtab_76[sum & 0xf]; if(quarterpel) sum = (mvs[0].y / 2) + (mvs[1].y / 2) + (mvs[2].y / 2) + (mvs[3].y / 2); else sum = mvs[0].y + mvs[1].y + mvs[2].y + mvs[3].y; dy = (sum >> 3) + roundtab_76[sum & 0xf]; /* uv-block-based compensation */ if (reduced_resolution) { //XXX: todo }else{ transfer_8to16sub(&dct_codes[4 * 64], cur->u + 8 * j * edged_width / 2 + 8 * i, interpolate8x8_switch2(refv->u, ref->u, 8 * i, 8 * j, dx, dy, edged_width / 2, rounding), edged_width / 2); transfer_8to16sub(&dct_codes[5 * 64], cur->v + 8 * j * edged_width / 2 + 8 * i, interpolate8x8_switch2(refv->u, ref->v, 8 * i, 8 * j, dx, dy, edged_width / 2, rounding), edged_width / 2); } } } void MBMotionCompensationBVOP(MBParam * pParam, MACROBLOCK * const mb, const uint32_t i, const uint32_t j, IMAGE * const cur, const IMAGE * const f_ref, const IMAGE * const f_refh, const IMAGE * const f_refv, const IMAGE * const f_refhv, const IMAGE * const b_ref, const IMAGE * const b_refh, const IMAGE * const b_refv, const IMAGE * const b_refhv, int16_t * dct_codes) { static const uint32_t roundtab[16] = { 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 }; const int32_t edged_width = pParam->edged_width; int32_t dx, dy; int32_t b_dx, b_dy; int k,sum; int x = i; int y = j; uint32_t quarterpel = pParam->m_quarterpel; switch (mb->mode) { case MODE_FORWARD: if (quarterpel) { dx = mb->qmvs[0].x; dy = mb->qmvs[0].y; } else { dx = mb->mvs[0].x; dy = mb->mvs[0].y; } compensate16x16_interpolate(&dct_codes[0 * 64], cur->y, f_ref->y, f_refh->y, f_refv->y, f_refhv->y, 16 * i, 16 * j, dx, dy, edged_width, quarterpel, 0 /*reduced_resolution*/, 0); if (quarterpel) { dx /= 2; dy /= 2; } dx = (dx >> 1) + roundtab_79[dx & 0x3]; dy = (dy >> 1) + roundtab_79[dy & 0x3]; /* uv-block-based compensation */ transfer_8to16sub(&dct_codes[4 * 64], cur->u + 8 * j * edged_width / 2 + 8 * i, interpolate8x8_switch2(f_refv->u, f_ref->u, 8 * i, 8 * j, dx, dy, edged_width / 2, 0), edged_width / 2); transfer_8to16sub(&dct_codes[5 * 64], cur->v + 8 * j * edged_width / 2 + 8 * i, interpolate8x8_switch2(f_refv->u, f_ref->v, 8 * i, 8 * j, dx, dy, edged_width / 2, 0), edged_width / 2); break; case MODE_BACKWARD: if (quarterpel) { b_dx = mb->b_qmvs[0].x; b_dy = mb->b_qmvs[0].y; } else { b_dx = mb->b_mvs[0].x; b_dy = mb->b_mvs[0].y; } compensate16x16_interpolate(&dct_codes[0 * 64], cur->y, b_ref->y, b_refh->y, b_refv->y, b_refhv->y, 16 * i, 16 * j, b_dx, b_dy, edged_width, quarterpel, 0 /*reduced_resolution*/, 0); if (quarterpel) { b_dx /= 2; b_dy /= 2; } b_dx = (b_dx >> 1) + roundtab_79[b_dx & 0x3]; b_dy = (b_dy >> 1) + roundtab_79[b_dy & 0x3]; /* uv-block-based compensation */ transfer_8to16sub(&dct_codes[4 * 64], cur->u + 8 * j * edged_width / 2 + 8 * i, interpolate8x8_switch2(f_refv->u, b_ref->u, 8 * i, 8 * j, b_dx, b_dy, edged_width / 2, 0), edged_width / 2); transfer_8to16sub(&dct_codes[5 * 64], cur->v + 8 * j * edged_width / 2 + 8 * i, interpolate8x8_switch2(f_refv->u, b_ref->v, 8 * i, 8 * j, b_dx, b_dy, edged_width / 2, 0), edged_width / 2); break; case MODE_INTERPOLATE: /* _could_ use DIRECT, but would be overkill (no 4MV there) */ case MODE_DIRECT_NO4V: if (quarterpel) { dx = mb->qmvs[0].x; dy = mb->qmvs[0].y; b_dx = mb->b_qmvs[0].x; b_dy = mb->b_qmvs[0].y; interpolate16x16_quarterpel((uint8_t *) f_refv->y, (uint8_t *) f_ref->y, (uint8_t *) f_refh->y, (uint8_t *) f_refh->y + 64, (uint8_t *) f_refhv->y, 16*i, 16*j, dx, dy, edged_width, 0); interpolate16x16_quarterpel((uint8_t *) b_refv->y, (uint8_t *) b_ref->y, (uint8_t *) b_refh->y, (uint8_t *) b_refh->y + 64, (uint8_t *) b_refhv->y, 16*i, 16*j, b_dx, b_dy, edged_width, 0); for (k = 0; k < 4; k++) { transfer_8to16sub2(&dct_codes[k * 64], cur->y + (i * 16+(k&1)*8) + (j * 16+((k>>1)*8)) * edged_width, f_refv->y + (i * 16+(k&1)*8) + (j * 16+((k>>1)*8)) * edged_width, b_refv->y + (i * 16+(k&1)*8) + (j * 16+((k>>1)*8)) * edged_width, edged_width); } b_dx /= 2; b_dy /= 2; dx /= 2; dy /= 2; } else { dx = mb->mvs[0].x; dy = mb->mvs[0].y; b_dx = mb->b_mvs[0].x; b_dy = mb->b_mvs[0].y; for (k = 0; k < 4; k++) { transfer_8to16sub2(&dct_codes[k * 64], cur->y + (i * 16+(k&1)*8) + (j * 16+((k>>1)*8)) * edged_width, get_ref(f_ref->y, f_refh->y, f_refv->y, f_refhv->y, 2*i + (k&1), 2*j + (k>>1), 8, dx, dy, edged_width), get_ref(b_ref->y, b_refh->y, b_refv->y, b_refhv->y, 2*i + (k&1), 2 * j+(k>>1), 8, b_dx, b_dy, edged_width), edged_width); } } dx = (dx >> 1) + roundtab_79[dx & 0x3]; dy = (dy >> 1) + roundtab_79[dy & 0x3]; b_dx = (b_dx >> 1) + roundtab_79[b_dx & 0x3]; b_dy = (b_dy >> 1) + roundtab_79[b_dy & 0x3]; transfer_8to16sub2(&dct_codes[4 * 64], cur->u + (y * 8) * edged_width / 2 + (x * 8), interpolate8x8_switch2(f_refv->u, b_ref->u, 8 * i, 8 * j, b_dx, b_dy, edged_width / 2, 0), interpolate8x8_switch2(f_refv->u + 8, f_ref->u, 8 * i, 8 * j, dx, dy, edged_width / 2, 0), edged_width / 2); transfer_8to16sub2(&dct_codes[5 * 64], cur->v + (y * 8) * edged_width / 2 + (x * 8), interpolate8x8_switch2(f_refv->u, b_ref->v, 8 * i, 8 * j, b_dx, b_dy, edged_width / 2, 0), interpolate8x8_switch2(f_refv->u + 8, f_ref->v, 8 * i, 8 * j, dx, dy, edged_width / 2, 0), edged_width / 2); break; case MODE_DIRECT: if (quarterpel) { for (k=0;k<4;k++) { dx = mb->qmvs[k].x; dy = mb->qmvs[k].y; b_dx = mb->b_qmvs[k].x; b_dy = mb->b_qmvs[k].y; interpolate8x8_quarterpel((uint8_t *) f_refv->y, (uint8_t *) f_ref->y, (uint8_t *) f_refh->y, (uint8_t *) f_refh->y + 64, (uint8_t *) f_refhv->y, 16*i + (k&1)*8, 16*j + (k>>1)*8, dx, dy, edged_width, 0); interpolate8x8_quarterpel((uint8_t *) b_refv->y, (uint8_t *) b_ref->y, (uint8_t *) b_refh->y, (uint8_t *) b_refh->y + 64, (uint8_t *) b_refhv->y, 16*i + (k&1)*8, 16*j + (k>>1)*8, b_dx, b_dy, edged_width, 0); transfer_8to16sub2(&dct_codes[k * 64], cur->y + (i * 16+(k&1)*8) + (j * 16+((k>>1)*8)) * edged_width, f_refv->y + (i * 16+(k&1)*8) + (j * 16+((k>>1)*8)) * edged_width, b_refv->y + (i * 16+(k&1)*8) + (j * 16+((k>>1)*8)) * edged_width, edged_width); } sum = mb->qmvs[0].y/2 + mb->qmvs[1].y/2 + mb->qmvs[2].y/2 + mb->qmvs[3].y/2; dy = (sum >> 3) + roundtab_76[sum & 0xf]; sum = mb->qmvs[0].x/2 + mb->qmvs[1].x/2 + mb->qmvs[2].x/2 + mb->qmvs[3].x/2; dx = (sum >> 3) + roundtab_76[sum & 0xf]; sum = mb->b_qmvs[0].y/2 + mb->b_qmvs[1].y/2 + mb->b_qmvs[2].y/2 + mb->b_qmvs[3].y/2; b_dy = (sum >> 3) + roundtab_76[sum & 0xf]; sum = mb->b_qmvs[0].x/2 + mb->b_qmvs[1].x/2 + mb->b_qmvs[2].x/2 + mb->b_qmvs[3].x/2; b_dx = (sum >> 3) + roundtab_76[sum & 0xf]; } else { for (k=0;k<4;k++) { dx = mb->mvs[k].x; dy = mb->mvs[k].y; b_dx = mb->b_mvs[k].x; b_dy = mb->b_mvs[k].y; transfer_8to16sub2(&dct_codes[k * 64], cur->y + (i*16 + (k&1)*8) + (j*16 + (k>>1)*8 ) * edged_width, get_ref(f_ref->y, f_refh->y, f_refv->y, f_refhv->y, 2*i + (k&1), 2*j + (k>>1), 8, dx, dy, edged_width), get_ref(b_ref->y, b_refh->y, b_refv->y, b_refhv->y, 2*i + (k&1), 2*j + (k>>1), 8, b_dx, b_dy, edged_width), edged_width); } sum = mb->mvs[0].x + mb->mvs[1].x + mb->mvs[2].x + mb->mvs[3].x; dx = (sum == 0 ? 0 : SIGN(sum) * (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2)); sum = mb->mvs[0].y + mb->mvs[1].y + mb->mvs[2].y + mb->mvs[3].y; dy = (sum == 0 ? 0 : SIGN(sum) * (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2)); sum = mb->b_mvs[0].x + mb->b_mvs[1].x + mb->b_mvs[2].x + mb->b_mvs[3].x; b_dx = (sum == 0 ? 0 : SIGN(sum) * (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2)); sum = mb->b_mvs[0].y + mb->b_mvs[1].y + mb->b_mvs[2].y + mb->b_mvs[3].y; b_dy = (sum == 0 ? 0 : SIGN(sum) * (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2)); } transfer_8to16sub2(&dct_codes[4 * 64], cur->u + (y * 8) * edged_width / 2 + (x * 8), interpolate8x8_switch2(f_refv->u, b_ref->u, 8 * i, 8 * j, b_dx, b_dy, edged_width / 2, 0), interpolate8x8_switch2(f_refv->u + 8, f_ref->u, 8 * i, 8 * j, dx, dy, edged_width / 2, 0), edged_width / 2); transfer_8to16sub2(&dct_codes[5 * 64], cur->v + (y * 8) * edged_width / 2 + (x * 8), interpolate8x8_switch2(f_refv->u, b_ref->v, 8 * i, 8 * j, b_dx, b_dy, edged_width / 2, 0), interpolate8x8_switch2(f_refv->u + 8, f_ref->v, 8 * i, 8 * j, dx, dy, edged_width / 2, 0), edged_width / 2); break; } }